Vis enkel innførsel

dc.contributor.authorWang, Liang
dc.contributor.authorMoilanen, Antero
dc.contributor.authorLehtinen, Jere
dc.contributor.authorKonttinen, Jukka
dc.contributor.authorMatas, Berta Güell
dc.date.accessioned2019-10-07T08:08:00Z
dc.date.available2019-10-07T08:08:00Z
dc.date.created2016-11-15T21:32:49Z
dc.date.issued2017
dc.identifier.citationEnergy Procedia. 2017, 105 1295-1301.nb_NO
dc.identifier.issn1876-6102
dc.identifier.urihttp://hdl.handle.net/11250/2620523
dc.description.abstractThe spruce bark with different particle sizes were devolatilized under various final temperatures and heating rates. The char yield and potassium release from the spruce bark at studied conditions were quantified. Lower char yields realized from the smaller fuel particles at high temperature and heating rate. It is mainly attributed to shorter residence time of volatiles in the fuel/char particles and less intensive secondary reaction of volatiles consequently. The devolatilization temperature has the most significant effects on alkali release from the studied sprue bark. At 600 °C, less than 5% of alkali released from the both small and large particles regardless of heating rate. However, at 850 °C, release of potassium from the small sprue bark particles sharply increased from 2.63% and 4.71% to 12.87% and 17.89%, as they were heated under heating rate of 50 K/min and 500 K/min, respectively. Large fraction of alkali released from studied fuel particles as they were devolatilized under a high heating rate. Additionally, more potassium release from small particles (125 < d< 180 μm) then the larger ones (500 < d< 600 μm) and this tendency increased with devolatilization temperature. In brief, intensive devolatilization conditions may limit secondary reactions of potassium containing compounds in the volatiles and thereby formation of more stable phases. The results obtained in the present work are of importance for understanding of potassium release during thermal conversion of spruce bark and proposing measures for mitigating potassium related operational problems.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleRelease of Potassium during Devolatilization of Spruce Barknb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.rights.holderThe Authorsnb_NO
dc.source.pagenumber1295-1301nb_NO
dc.source.volume105nb_NO
dc.source.journalEnergy Procedianb_NO
dc.identifier.doi10.1016/j.egypro.2017.03.463
dc.identifier.cristin1400831
cristin.unitcode7548,70,0,0
cristin.unitnameTermisk energi
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal