Vis enkel innførsel

dc.contributor.authorAursand, Peder
dc.contributor.authorHammer, Morten
dc.contributor.authorLavrov, Alexandre
dc.contributor.authorLund, Halvor
dc.contributor.authorMunkejord, Svend Tollak
dc.contributor.authorTorsæter, Malin
dc.date.accessioned2019-06-18T12:58:41Z
dc.date.available2019-06-18T12:58:41Z
dc.date.created2017-05-22T13:22:53Z
dc.date.issued2017
dc.identifier.citationInternational Journal of Greenhouse Gas Control. 2017, 62 130-141.nb_NO
dc.identifier.issn1750-5836
dc.identifier.urihttp://hdl.handle.net/11250/2601225
dc.description.abstractShips have been shown to be the most cost-effective way to transport CO2 from many sources in the Nordic region to offshore storage sites. Injection from ships introduces new challenges for the integrity of CO2 injection wells. The low temperature and the intermittency of CO2 injected from ships give rise to large temperature variations in the well. Such variations may lead to thermal stresses that exceed the limits of the well construction method and materials. In this paper we present a coupled flow and heat conduction model for CO2 wells. The model is used to conduct a parameter study and determine the parameters’ effect on the temperature variations in the well during injection from ships. The parameters varied are injection rate, injection time, injection temperature and time between injections. The resulting temperature variations are used as input for a 2D thermoelastic finite-element model in ABAQUS to determine the thermal stresses. Our results show that the amplitude of temperature variations downhole is mainly increased by longer pauses between injections, and by lower injection temperature. In the worst-case scenario considered in this paper, the thermal stresses may be large enough to induce debonding at the casing–cement interface.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleWell integrity for CO2 injection from ships: Simulation of the effect of flow and material parameters on thermal stressesnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber130-141nb_NO
dc.source.volume62nb_NO
dc.source.journalInternational Journal of Greenhouse Gas Controlnb_NO
dc.identifier.doi10.1016/j.ijggc.2017.04.007
dc.identifier.cristin1471338
dc.relation.projectNorges forskningsråd: 193816nb_NO
dc.relation.projectNorges forskningsråd: 233893nb_NO
cristin.unitcode7548,60,0,0
cristin.unitcode7571,33,0,0
cristin.unitnameGassteknologi
cristin.unitnameFormasjonsfysikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal