A Taxonomy for Combining Activity Recognition and Process Discovery in Industrial Environments
Journal article, Peer reviewed
Accepted version
Permanent lenke
http://hdl.handle.net/11250/2576243Utgivelsesdato
2018Metadata
Vis full innførselSamlinger
- Publikasjoner fra CRIStin - SINTEF AS [5470]
- SINTEF Digital [2334]
Sammendrag
Despite the increasing automation levels in an Industry 4.0 scenario, the tacit knowledge of highly skilled manufacturing workers remains of strategic importance. Retaining this knowledge by formally capturing it is a challenge for industrial organisations. This paper explores research on automatically capturing this knowledge by using methods from activity recognition and process mining on data obtained from sensorised workers and environments. Activity recognition lifts the abstraction level of sensor data to recognizable activities and process mining methods discover models of process executions. We classify the existing work, which largely neglects the possibility of applying process mining, and derive a taxonomy that identifies challenges and research gaps. A Taxonomy for Combining Activity Recognition and Process Discovery in Industrial Environments