Vis enkel innførsel

dc.contributor.authorBergna-Diaz, Gilbert
dc.contributor.authorFreytes, Julian
dc.contributor.authorGuillaud, Xavier
dc.contributor.authorD'Arco, Salvatore
dc.contributor.authorSuul, Jon Are Wold
dc.date.accessioned2018-08-17T09:25:02Z
dc.date.available2018-08-17T09:25:02Z
dc.date.created2018-02-13T12:16:09Z
dc.date.issued2018
dc.identifier.issn2168-6777
dc.identifier.urihttp://hdl.handle.net/11250/2558386
dc.description.abstractAbstract: This paper demonstrates that the sum and difference of the upper and lower arm voltages are suitable variables for deriving a generalized state-space model of an MMC which settles at a constant equilibrium in steady-state operation. The presented modelling approach allows for separating the multiple frequency components appearing within the MMC as a first step of the model derivation, to avoid variables containing multiple frequency components in steady-state. On this basis, it is shown that Park transformations at three different frequencies (+ω, -2ω and +3ω) can be applied for deriving a model formulation where all state-variables settle at constant values in steady-state, corresponding to an equilibrium point of the model. The resulting model is accurately capturing the internal current and voltage dynamics and the coupling between the different frequency components appearing in the variables of a three-phase MMC. Independently from the control system implementation, the derived equations are valid for accurate representation of the MMC in the applied dqz reference frames, and it can be linearized for utilization in eigenvalue-based analysis of small-signal dynamics. Furthermore, the model can be utilized for control system design by multi-variable methods requiring any stable equilibrium to be defined by a fixed operating point. Time-domain simulations in comparison to an established average model of the MMC, as well as results from a detailed simulation model of an MMC with 400 sub-modules per arm, are presented as verification of the validity and accuracy of the developed model.nb_NO
dc.description.abstractGeneralized Voltage-based State-Space Modelling of Modular Multilevel Converters with Constant Equilibrium in Steady-Statenb_NO
dc.language.isoengnb_NO
dc.publisherIEEEnb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleGeneralized Voltage-based State-Space Modelling of Modular Multilevel Converters with Constant Equilibrium in Steady Statenb_NO
dc.title.alternativeGeneralized Voltage-based State-Space Modelling of Modular Multilevel Converters with Constant Equilibrium in Steady-Statenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber707-725nb_NO
dc.source.volume6nb_NO
dc.source.journalIEEE Journal of Emerging and Selected Topics in Power Electronicsnb_NO
dc.source.issue2nb_NO
dc.identifier.doi10.1109/JESTPE.2018.2793159
dc.identifier.cristin1564690
dc.relation.projectNorges forskningsråd: 268053nb_NO
cristin.unitcode7548,50,0,0
cristin.unitnameEnergisystemer
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal