Show simple item record

dc.contributor.authorAcher, Thomas
dc.contributor.authorKnaup, Konrad
dc.contributor.authorZander, Hans-Jörg
dc.date.accessioned2018-01-28T15:32:58Z
dc.date.available2018-01-28T15:32:58Z
dc.date.issued2017
dc.identifier.isbn978-82-536-1544-8
dc.identifier.issn2387-4295
dc.identifier.urihttp://hdl.handle.net/11250/2480061
dc.description.abstractCoil-wound heat exchangers (CWHE) are commonly adapted in process engineering for the efficient transfer of heat between fluids which feature wide temperature and pressure ranges. The field of application for this apparatus ranges from heating or cooling of single-phase flows, over the evaporation or condensation of fluids, to the utilization as isothermal reactor. Due to their large specific heat transfer area accompanied by a compact design, coil-wound heat exchangers are widely used in various process plants (e.g., LNG plants). Depending on the application, twophase flows may occur at both, the tube- as well as the shellside of the apparatus. For the design of a CWHE, the fluid and thermodynamic processes in the unit are commonly represented by a system of one-dimensional correlations. This approach implies uniform thermohydraulic conditions on horizontal cutting planes of the exchanger. Fluid and thermodynamic effects in the apparatus which result in radial parameter variations are inaccessible to these conventional design tools. To this end, a multidimensional CFD model has been established to enhance the representation of fluid and thermodynamic phenomena in CWHE design. The shellside of the CWHE and all tube-side sections are each numerically represented by separate domains which are coupled by source terms to account for the thermodynamic interaction between tube- and shell-side. In each flow region, the hydraulic effect of the tube bundle is modeled as a porous medium with corresponding fluid dynamic characteristics. The gas-liquid dynamics in each flow region is modeled based on an Euler-Euler approach. Unlike classical Euler-Euler models, local phase fractions and fluid properties are calculated from species relations as well as pressure and temperature fields. This model framework is augmented by locally evaluated correlations for pressure drop and heat transfer to account for apparatus internals and thermal coupling. The models for gas-liquid interaction forces are derived from standard correlations and augmented by findings from detailed CFD studies. Remaining parameters are specified by a parameterization study based on experimental findings.nb_NO
dc.language.isoengnb_NO
dc.publisherSINTEF Academic Press
dc.relation.ispartofProgress in Applied CFD – CFD2017 Selected papers from 12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries
dc.relation.ispartofseriesSINTEF Proceedings;2
dc.subjectProcess industrynb_NO
dc.subjectHeat exchangernb_NO
dc.subjectMultiphase heat transfernb_NO
dc.subjectEuler-Euler approachnb_NO
dc.titleAn Euler‐Euler model for gas‐liquid flows in a coil wound heat exchangernb_NO
dc.typeChapternb_NO
dc.typeConference objectnb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.subject.nsiVDP::Technology: 500nb_NO


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record