Vis enkel innførsel

dc.contributor.authorNordhagen, Håkon Ottar
dc.contributor.authorMunkejord, Svend Tollak
dc.contributor.authorHammer, Morten
dc.contributor.authorGruben, Gaute
dc.contributor.authorFourmeau, Marion
dc.contributor.authorDumoulin, Stephane
dc.date.accessioned2017-11-17T09:41:49Z
dc.date.available2017-11-17T09:41:49Z
dc.date.created2017-04-20T08:56:38Z
dc.date.issued2017
dc.identifier.citationEngineering structures. 2017, 143 245-260.nb_NO
dc.identifier.issn0141-0296
dc.identifier.urihttp://hdl.handle.net/11250/2466834
dc.description.abstractThis work considers a predictive numerical modelling approach for fracture-propagation control in CO2-transport pipelines, an area where current engineering tools do not work. Fluid-structure interaction model simulations are compared with three published medium-scale crack-arrest experiments with CO2-rich mixtures. The fluid flow is calculated by a one-dimensional homogeneous equilibrium model, and the thermodynamic properties of CO2 are modelled using the Span–Wagner and the Peng–Robinson equation of state. The pipe material is represented by a finite-element model taking into account large deformations and fracture propagation. Material data commonly found in the literature for steel pipes in crack-arrest experiments is not sufficient to directly calibrate the material model used here. A novel three-step calibration procedure is proposed to fill the information gap in the material data. The resulting material model is based on J2 plasticity and a phenomenological ductile fracture criterion. It is shown that the numerical model provides good predictions of the pressure along the pipe, the ductile fracture speed and a conservative estimate of the final crack length. An approximately plane-strain stress state ahead of crack tip implies that a fracture criterion accounting for a wide range of stress states is not necessary.nb_NO
dc.language.isoengnb_NO
dc.relation.urihttp://www.pvv.org/~stm/research/coupled-co2-n2_preprint.pdf
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectKarbondioksidnb_NO
dc.subjectCarbon dioxidenb_NO
dc.subjectTrykkavlastningnb_NO
dc.subjectDepressurizationnb_NO
dc.subjectCFDnb_NO
dc.subjectRørnb_NO
dc.subjectPipelinesnb_NO
dc.subjectElementmetodernb_NO
dc.subjectFinite element methodsnb_NO
dc.titleA fracture-propagation-control model for pipelines transporting CO2-rich mixtures including a new method for material-model calibrationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.rights.holderThe Authors have copyright to accepted versionnb_NO
dc.source.pagenumber245-260nb_NO
dc.source.volume143nb_NO
dc.source.journalEngineering structuresnb_NO
dc.identifier.doi10.1016/j.engstruct.2017.04.015
dc.identifier.cristin1465640
dc.relation.projectNorges forskningsråd: 193816nb_NO
cristin.unitcode7401,80,6,6
cristin.unitcode7548,60,0,0
cristin.unitcode7401,80,6,0
cristin.unitcode7401,80,64,0
cristin.unitnameMaterial- og konstruksjonsmekanikk
cristin.unitnameGassteknologi
cristin.unitnameMaterialer og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal