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ABSTRACT
We present an automated data analysis tool for IIoT applications
that discovers process behavior patterns in sensor data. It takes time-
varying sensor data from reference production cycles and performs
clustering on summary statistic feature vectors derived from raw
sensor data over configurable window sizes. It automatically labels
the raw sensor data based on distinct behavior modes represented
by the clusters. The tool wraps, as a web service deployed in a
Docker container, the AI model represented by clusters/behavior
modes discovered in the reference sensor data. We have successfully
evaluated the tool over four industrial datasets. Demo video: https:
//www.youtube.com/watch?v=MhSnwPDnAh0.
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1 INTRODUCTION
The Industrial Internet of Things (IIoT) facilitates the integration of
sensors, edge computing, cloud computing devices, and industrial
machinery in production networks, providing real-time access to
diverse and dynamic sensor data sources. These data sources can be
utilized in machine learning (ML) applications, including predictive
maintenance, remote quality monitoring, and energy optimization
for continuous and repetitive manufacturing processes. ML appli-
cations in IIoT are trained with sensor data to enable real-time
decision-making and post-mortem analysis of product defects and
production failures [5, 7, 12, 13, 15]. They are sensitive to transitions
in process behavior, including normal operation, process shifts, and
drifts, which are time-ordered trends deviating from the intended
target value of measured process parameters.

Process shifts in manufacturing lines can be attributed to the
initial manual setup tasks (e.g., sensor calibration) done when pro-
ducing new lots of goods/parts. Process drifts refer to gradual shifts
occurring in one direction over time. Sensor faults, tool wear, and
workpiece surface quality contribute to process drifts. Detecting
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Figure 1: UDAVA Tool Overview.
process drifts in the presence of high-volume and high-velocity
multivariate sensor data poses a significant challenge due to po-
tential obscuration by other patterns. Thus, sensor data validation
and process pattern identification are the keys to revealing process
shifts and drifts.

This paper introduces UDAVA (Unsupervised machine learn-
ing pipeline for sensor DAta VAlidation), an automatic process
behavior pattern discovery tool designed for IIoT applications. It
leverages a reference production cycle to validate subsequent cycles
by detecting recurring patterns. Through dimensionality reduction
and clustering techniques, UDAVA efficiently analyzes dense time-
series data. The resulting cluster model is encapsulated in a docker
container, enabling batch data verification, identification of behav-
ior patterns, and quantification of deviations from the reference. It
supports easy model updates and offers a semi-supervised mode
through manually annotating reference time series data.

2 RELATEDWORK
Traditional time series clustering techniques rely on raw data sim-
ilarity and use distance metrics to divide time series into subse-
quences [1]. However, Euclidean distance [4] has limitations, such
as fixed time series sizes and sensitivity to noise and distortion. Dy-
namic time warping (DTW) [10] improves upon these limitations
but struggles with dissimilar motifs across sensors. UDAVA clusters
reduced dimensionality feature vectors, allowing the discovery of
multiple similar patterns with diverse motifs (without repetition).

While deep learning techniques such as LSTM, CNN, and au-
toencoders have shown effectiveness in detecting abnormal behav-
ior [9], their interpretability is limited and they rely heavily on large,
high-quality training datasets. These methods primarily focus on
residual error-based detection and lack comprehensive support for
general process behavior detection in IIoT. Unsupervised outlier
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Figure 2: Example clusters in 2D feature space detected by
UDAVA. Each colored dot represents an observation (feature
vector) of the data set; the four colors correspond to four clus-
ters in the model. Diamond-shaped markers are the cluster
centers (𝑐𝑖 ) defined by the mean of the features of all feature
vectors in each cluster. The annotations illustrate the calcu-
lation of the deviation metric 𝐷𝑙 for a feature vector 𝐹𝑙 (𝑙 is
the feature vector’s index in the data set) shown as a black
dot, where 𝑑𝑖,𝑙 is the Euclidean distance of 𝐹𝑙 to 𝑐𝑖 .

detection methods [2, 8, 11] are classification-like approaches used
for abnormal behavior detection, but they only consider binary
classifications (inliers and outliers) and do not address process be-
havior. In contrast, UDAVA uncovers behavior patterns in IIoT data,
enabling the detection of abnormal behavior (anomalies).

3 TOOL OVERVIEW
UDAVA is the tool supporting our approach recently described in
our research paper [6]. It is designed and implemented as an ML
pipeline. Figure 1 presents the tool overview.

3.1 Data Preprocessing (Step 1)
UDAVA preprocesses reference and production time series (training
data and data to be validated). Feature vectors derived from pro-
duction data are utilized in Step 3. Training data are obtained from
optimal production cycles and are the baseline for comparison with
data from subsequent production cycles. Raw time series contains
temporal relationships between consecutive data points, making
clustering computationally intensive, especially with high volumes
of data. To address this, UDAVA extracts features from data subse-
quences, eliminating the temporal dimension. For more granularity,
the sliding window technique [3] is applied, albeit at the cost of
increased computational time. Feature extraction is performed on
each subsequence, generating a corresponding feature vector.

3.2 Unsupervised Learning of Clusters (Step 2)
UDAVA employs an automated clustering algorithm to assign each
feature vector to clusters. This process generates a cluster model,
represented by cluster centers, which define distinct process behav-
ior patterns for reference data (Figure 2). The time series is divided
into subsequences of a window size determined by the sampling
frequency. Feature vectors are computed from each subsequence,
comprising statistical measures (e.g., mean, median, standard devi-
ation, variance, and frequency) and reducing data dimensionality.

Figure 3: Example manual labels created in Label Studio. The
blue line graph shows grinding power data from a roughing
process performed by a grinding machine. The x-axis repre-
sents time steps; the y-axis indicates grinding power in watts.
The text labels above the graph represent seven subprocesses
in the production cycle. The colored boxes overlaying the
line graph are the labels. They are referred to as "regions";
each region color corresponds to a label.
The clustering algorithm operates on these feature vectors (the clus-
ter centers exist in the feature space rather than the time domain).
UDAVA supports several clustering algorithms in Scikit-learn.

UDAVA offers a semi-supervised mode that allows users to pro-
vide manual labels by annotating a small set of reference time
series data. The annotation involves selecting periods/regions of
the time series and assigning them specific subprocess labels, such
as Grinding, Roughing, Finishing in Figure 3. Label Studio (https:
//labelstud.io/) is used to create these labels exported as JSON files
for UDAVA (see Figure 1).

When manual labels are provided, the tool derives feature vec-
tors from the annotated data and computes cluster centers for each
label. These cluster centers serve as the initial centers for the clus-
tering algorithm. In the absence of annotated data, the algorithm
initializes cluster centers randomly. Users can configure UDAVA to
keep the initial cluster centers from the annotated data, skipping
the clustering process (unless additional cluster centers unrelated
to annotated labels need to be identified). Otherwise, the initial
cluster centers are adjusted by running the clustering algorithm.

3.3 Labeling and Validating New Data (Step 3)
UDAVA labels and validates new production data using the cluster
model. Production data is preprocessed like reference data. Cluster
labels are assigned to its feature vectors (see Figure 4) and plotted
onto the sensor data, which changes color according to the assigned
cluster label. Finally, the feature vectors’ labels are assigned to their
corresponding subsequences and plotted back into temporal space.

UDAVA calculates a deviation metric to measure the dissimilarity
between a feature vector (subsequence) and the cluster centers.
This metric provides an approximate assessment of the conformity
of production data to the expected behavior. It is computed for each
feature vector in the production time series data. The reference data,
collected during (near-)optimal production cycles, serves as the
baseline for comparing against the production data. The deviation
metric determines the proximity of a new observation (feature
vector) to the existing cluster centers. By comparing the deviation
metric values within the production data set or against the reference
data set, we can identify spikes or higher averages as indications of
deviations or significant changes in the production data.

https://labelstud.io/
https://labelstud.io/
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Figure 4: Raw data from an example data set (multicolored
line) with the deviation metric 𝐷 (black line), for the refer-
ence (top) and production (bottom) data. The subsequences
are colored based on their cluster.

3.4 Noise Filtering (Step 4)
UDAVA post-processes the cluster model output to extract addi-
tional data insights. It identifies continuous sequences of the same
label to identify meaningful data segments. Segments shorter than a
user-defined minimum duration threshold are considered noise and
can be disregarded. In such cases, the short segments are merged
with the neighboring segments closest in the future space, effec-
tively “swallowing” the noise and ensuring continuity in the data.

3.5 Event Log Creation (Step 5)
UDAVA generates an event log recording the start and end of each
segment in sequential order, along with their timestamps and labels.
The event log supports visualizing, inspecting, and automatically
validating production cycles, ensuring they occur as expected. Each
log entry corresponds to a labeled occurrence in the cluster model,
enabling verification of the expected duration and order of subpro-
cesses (e.g., Rotating, Roughing) within the production process.

4 IMPLEMENTATION & AVAILABILITY
UDAVA is deployed as a Docker container, encompassing the train-
ing and inference pipelines in Figure 5. The ML pipeline retrieves
the required assets from a Docker volume mounted in the host file
system and saves the generated models in the cache. The inference
pipeline can be accessed via a browser-based GUI or programmati-
cally through the RESTAPI. The RESTAPI of UDAVA, built on Flask,
allows seamless integration with other applications and provides a
user-friendly interface. It leverages Flask-RESTful, i.e., an extension
simplifying endpoint creation and management. It is implemented
as a single Python script (api.py), encompassing the necessary code
for API setup, route definition, and request handling. By importing
various Python modules for data processing, ML, and visualization,
the API offers a comprehensive range of features to cater to the
needs of end users. UDAVA utilizes several Python libraries (NumPy,
Pandas, Plotly, and Scikit-learn). NumPy and Pandas are used to

Figure 5: Deployment of UDAVA as a Docker Container.

handle and manipulate large datasets. Plotly enables interactive
data visualization. Scikit-learn is used for implementing clustering
algorithms and various data analysis techniques. The API makes
use of the yaml library for configuration file operations and the
UUID library for generating unique model identifiers.

The API provides multiple endpoints. The “create” model end-
point allows users to create a new model by specifying parameters,
training data, and optional annotations. It supports GET and POST
requests, where GET retrieves the list of existing models, and POST
initiates the model creation process. The “infer GUI” enables users
to perform dataset inference using a GUI, while the “infer” serves
REST API clients for programmatic inference. Both endpoints sup-
port GET and POST requests, with GET returning a status code
and POST initiating the inference process. UDAVA incorporates
file-based storage and DVC to manage data and model assets. Dedi-
cated directories in the application store the raw data, models, and
metadata, facilitating convenient access and retrieval. DVC tracks
asset changes, allowing users to maintain a version-controlled his-
tory of their work. Thus, the API efficiently handles the model and
data storage, retrieval, and versioning. DVC ensures a separation
between the API’s core functionality and the storage mechanism.

The UDAVA REST API is containerized using Docker to simplify
deployment and ensure a consistent runtime environment. Docker
packages the API and its dependencies into a portable and self-
contained container, enabling deployment on diverse platforms.
Persistent storage of assets and data files is ensured using Docker
volumes during container execution. Thus, data is stored on the host
machine, providing accessibility and modification even after the
container is closed. Docker facilitates efficient and consistent API
deployment across various environments, ensuring a seamless user
experience. Additional details about UDAVA, including executable
files and a screencast covering motivations, are available at:

https://sintef-9012.github.io/Udava/

https://sintef-9012.github.io/Udava/
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5 EVALUATION
This section presents key findings from the evaluation conducted
to address the following research questions.

• RQ1. To what extent can UDAVA discover behavior patterns
in sensor data for a reference production cycle?

• RQ2. Does comparing process behavior patterns reveal process
shifts and drifts in subsequent production cycles?

• RQ3. To what extent can UDAVA detect anomalies in IIoT data?
• RQ4. How can UDAVA be deployed, tested and maintained in
industrial production environments?

We assessed UDAVA using four datasets from (a) aerospace in-
dustry turbine disc broaching, (b) automotive industry cylinder
head milling for car engines, (c) aluminum workpiece processing in
an operation sequence for aluminum parts, and (d) grinding power
measurements in metal bearing manufacturing.

Table 1: 𝑆𝑒 for
grinding dataset.

𝑤 𝑆𝑒

5 0.58
10 0.75
15 0.76
20 0.82
25 0.77
30 0.58

To address RQ1, we compared UDAVA’s
event log with the expected outcome by
defining the anticipated order and dura-
tion range for each label. We tallied the
occurrences of events followed by the ex-
pected label and verified if each event
fell within the expected duration range
for that label. Hits were recorded for cor-
rect appearances and durations, while
misses were tallied for inconsistencies. To
quantify the degree of alignment between
UDAVA’s output and the expected outcome, we computed an event
log score (𝑆𝑒 ) using the formula (number of hits / (number of hits +
number of misses)), providing a scale from 0 to 1. Table 1 displays
UDAVA’s event log scores (𝑆𝑒 ) for various window sizes (𝑤 ) in
the grinding dataset. These scores enable fine-tuning of UDAVA’s
hyperparameters to enhance its capability in detecting behavior
patterns. UDAVA achieves an 𝑆𝑒 of 0.82 with a window size of 20.

To answer RQ2, we compared behavior patterns in the refer-
ence and production data in the four datasets. The observed drifts
were minimal as the production cycles showed limited deviations.
Nonetheless, the deviation metric gave valuable data validation
across multiple cycles and facilitated root cause analysis by com-
paring with other parameters such as tool wear.

To respond to RQ3, we utilized UDAVA to detect anomalies in
the aluminum processing dataset. This dataset was chosen due
to its explicit labeling of anomalies for evaluation. UDAVA was
configured with a window size of 1100 and an overlap of 330, em-
ploying DBScan with parameters 𝑒𝑝𝑠 = 0.53,𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 6, and
𝑚𝑒𝑡𝑟𝑖𝑐 = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛. It achieved a recall of 0.76, a precision of 0.72,
and an F1-score of 0.74. The test dataset contains anomalous data
with higher amplitudes compared to the normal data in the training
dataset, facilitating the differentiation between the two types of
behavior. However, certain portions of both the anomalous and nor-
mal data exhibit similar statistical properties, e.g., mean and value
range, which might explain the relatively modest performance.

To address RQ4, we analyzed UDAVA’s deployment in indus-
trial environments. UDAVA utilizes DVC for versioning reference
data, ensuring that changes trigger data preprocessing, unsuper-
vised learning, and the creation of a new web service model. Data
versioning and dependency management challenges are crucial in

designing UDAVA’s architecture. The deployment infrastructure
poses scientific challenges in designing architectures [14] along the
edge-cloud continuum while addressing data privacy and security
concerns.

6 CONCLUSION
We introduced a tool for labeling behavior patterns in IIoT data of
industrial processes through unsupervised learning of summary sta-
tistics. The tool’s main features include: (1) comparing production
data’s feature vectors with cluster centers derived from reference
data, (2) utilizing a deviation metric to quantify the divergence of
production data from the original cluster centers, and (3) employing
the deviation metric to identify potential drifts in production data,
enabling the implementation of measures to mitigate drift effects.
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