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ABSTRACT

With the proliferation of IoT devices and the consequent exponen-
tial growth in data generation, ensuring data quality has become
a critical challenge in IoT applications. Erroneous data can signifi-
cantly impact the reliability and effectiveness of decision-making
processes and downstream analytics. Leveraging the computational
abilities of edge devices enables data profiling and repair tasks at the
edge, allowing for immediate remediation of erroneous data within
the data stream and improved scalability through distributed repair
across multiple edge devices. Cloud-based data profiling and repair
methods have been extensively researched, but limited computa-
tional resources constrain their applicability at edge/fog devices.
To overcome this limitation and enhance generalizability, Machine
Learning (ML) offers a promising solution, allowing sensor sub-
stitution, missing value prediction, and corrupt data replacement.
ML-based data repair techniques can be flexibly deployed at the
edge using containerized repair services for real-time data repair.
In this paper, we propose and assess EDPRaaS (Edge-based Data
Profiling and Repair as a Service), a novel approach designed for
efficient data quality profiling and repair in IoT environments. ED-
PRaas$ incorporates an ML-based data repair component, enabling
real-time data repair at the edge. It leverages pandas profiling and
Great Expectations tools for data profiling, providing comprehen-
sive insights into the dataset and detecting data quality issues.
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1 INTRODUCTION

The Internet of Things (IoT) has experienced a remarkable expan-
sion in recent years, resulting in a proliferation of interconnected
devices that generate vast volumes of data. However, the quality
of data collected from IoT devices is often compromised due to
various factors such as sensor inaccuracies, network latency, and
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environmental conditions [10, 13, 30]. Data quality issues, includ-
ing incomplete or inconsistent data, can significantly impact the
reliability and effectiveness of IoT applications and services [7, 22].
Therefore, guaranteeing the reliability and accuracy of IoT data
becomes imperative for facilitating trustworthy decision-making
processes and extracting valuable insights within the IoT domain.

Two critical and complementing data quality management tech-
niques for IoT systems are data profiling and repairing, which
involve checking data for data quality requirements and repairing
data for detected data quality problems. Traditional approaches to
data profiling and repair [15, 17, 33, 34] often rely on centralized
architectures, where all data processing tasks are performed in the
cloud. However, this centralized approach poses challenges concern-
ing network bandwidth, latency, scalability, privacy, and security.
For instance, cloud-based data profiling and repair solutions rely
on the availability and reliability of cloud services. Any disruptions
or downtime in the cloud infrastructure can impact the ability to
perform real-time or near-real-time data profiling and repair tasks.
On the other hand, as the number of IoT devices and the volume of
data grow, cloud-based data profiling and repair systems need to
scale accordingly to handle the increasing workload. Scaling cloud
resources can be costly as it requires provisioning and maintaining
additional infrastructure to handle the processing demands.

Edge computing emerged as a promising paradigm for process-
ing data closer to the data source, reducing latency, bandwidth
requirements, and reliance on centralized cloud resources. It opens
up new possibilities for performing data profiling and repair di-
rectly at the edge. For instance, data repair at the edge involves
immediate remediation of erroneous data within the data stream.
The distributed data repair across multiple edge devices or gateways
also enables the workload to be distributed, improving scalability.

Although considerable research has been devoted to devising and
employing data profiling and repair techniques on the cloud [6, 15,
17, 29, 34, 36], only a few approaches [19, 23, 26, 27] detect and re-
pair "corrupt” data at edge/fog devices near the data source, where
computational resources are scarce. However, these approaches
have specific constraints that limit their applicability and generaliz-
ability in IoT applications [7]. For instance, Lin et al. [19] require all
dependent data computations in the application state history, which
are not always available. To overcome such limitations, Machine
Learning (ML) offers a promising solution that can be combined
with existing data profiling techniques. ML models can learn corre-
lations among data sources (sensors), enabling the substitution of
sensors, prediction of missing values, and generation of new data
to replace corrupt data. ML-based data repair techniques can be
deployed at the edge or in the cloud, leveraging available training
data to create containerized repair services for real-time data repair.
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In this paper, we propose, apply, and assess our approach (ED-
PRaaS) for Edge-based Data Profiling and Repair as a Service for
IoT. EDPRaaS provides scalable and efficient data profiling and re-
pair capabilities at the edge of IoT networks. It leverages pandas
profiling [25] and Great Expectations [8] tools for data profiling
tasks. It utilizes the Nerve Edge platform [21] as the runtime envi-
ronment for executing the data profiling and repair service. The
data repair component of EDPRaaS involves training an ML model
on the cloud, which is then deployed to the edge for real-time data
repair. The ML-based data repair component of EDPRaaS can effec-
tively handle complex patterns and relationships within the data.
ML models can learn from existing data patterns and make predic-
tions or corrections for erroneous or missing data. This ML-driven
approach allows for automated and adaptive data repair, reducing
manual intervention and enabling scalability.

EDPRaasS utilizes pandas profiling [25] and Great Expectations [8]
for data profiling, leveraging their complementary capabilities in
assessing data quality. Pandas profiling provides comprehensive
insights with descriptive statistics and visualizations, generating
user-friendly reports summarizing data quality problems in the
data stream. In contrast, Great Expectations enables finer control
with custom assertions, detecting data inconsistencies, duplicate
records, data range violations, missing values, and schema discrep-
ancies. The data repair component of EDPRaaS employs the output
of Great Expectations as input for data repair operations; pandas
profiling generates reports on data quality problems for end-users.

Edge servers such as IBM Edge computing [11] and Nerve Edge
servers [21] are getting more powerful and can be offered as a ser-
vice. We worked with the Nerve Edge platform, which has industrial
environment compatibility, essential infrastructure, support for di-
verse communication protocols, and Docker containerization. The
platform’s seamless integration with custom software components
and efficiency make the Nerve Edge platform a suitable choice for
deploying EDPRaaS at the edge.

We evaluated EDPRaaS using various ML models/architectures
on three industrial IoT datasets. These ML models include light-
weight models, i.e., XGBoost (XBG) and Stochastic Gradient Descent
(SGD), and deep learning models, i.e., Convolutional Neural Net-
works (CNN) and Recurrent Neural Networks (RNN). The evalua-
tion results demonstrate the potential benefits of leveraging simpler
ML models like XGBoost for improved reliability in some scenarios.
Furthermore, the findings indicate that edge-based inference with
moderately sophisticated models could be feasible, considering the
model training is performed in the cloud.

The contributions of this work can be summarized as follows: (i)
the development of an edge-based framework that provides data
profiling and repair as a service for IoT, (ii) the design and implemen-
tation of an ML-based data repair technique for the edge, (iii) the
evaluation and analysis of the proposed framework’s performance
and efficiency in improving data quality for IoT applications.

2 BACKGROUND

2.1 Data Quality for IoT

Data quality is defined in ISO/IEC 25012:2008 [12] as a degree to
which the characteristics of data satisfy stated and implied needs
when used under specified conditions. Data quality metrics are the
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measurements by which you assess your data. They benchmark
how complete, valid, accurate, timely, and consistent the data is
and help differentiate between high-quality and low-quality data.
They can be obtained from data quality dimensions, i.e., the
measurement attributes of data, which we can assess and improve.
Data accuracy and completeness are two data quality dimensions
addressed by quality metrics. Data completeness refers to the
degree to which all parts of the data are given with no missing
information [35]; data accuracy is the degree of similarity of a
measured quantity to its actual value.

Data quality require-
ments describe the needs or
conditions that high-quality
data should meet. They are
checked on the input data
to compute the correspond-
ing metrics. The data qual- o s Sudden
ity requirement violation in- Rate of Change t
dicates a data quality prob-
lem/issue. Figure 1 shows
some data quality problems
on time-series data. Missing data refers to cases when a variable
or attribute has no value. Outliers are extreme values that devi-
ate from other observations of data. Duplicated records are two
or more adjacent data points in the same timestamp. A sudden
rate of change refers to cases where a variable changes suddenly
(unrealistically) over a specific period of time.

Data quality management techniques (in short, data qual-
ity techniques) improve and maintain data quality across system
components. There are three types of data quality techniques:

. Outliers

Max
Missing
Data
\
N \

Min
Duplicated

Figure 1: Example quality
problems on time-series data.

e Data Profiling: Data is monitored to check data quality
requirements for detecting quality issues such as outliers.

e Data Cleaning: It entails the removal of corrupt and un-
usable data, e.g., those affected by environmental noise or
extreme operating conditions such as high temperature.

o Data Repair: It restores data that has been lost, accidentally
deleted, corrupted, or made inaccessible, e.g., by using simu-
lation data or data from redundant sources (other sensors).

Data quality techniques can be online (real-time at or close to
the data source) and offline (for large historical datasets on the
cloud) [14, 28]. Our approach provides an online data profiling and
repair service at the edge. More specifically, EDPRaaS is primarily
categorized as a data repair solution rather than a data cleaning
solution because of its focus on correcting erroneous or corrupt data
within a constant data stream. In contrast, data cleaning involves
only removing corrupt data.

As part of data profiling, we utilize the Great Expectations (GE)
framework [8], an open-source solution designed to support engi-
neers in defining expectations (assertions) regarding data quality.
GE facilitates the generation of code that enables data analysis
and the creation of interactive hypertext data documents. These
documents serve the purpose of profiling the data and evaluating
its quality by assessing the degree to which expectations are met.
Specifically, they prove invaluable for auditing the acquisition and
persistence of data from industrial processes. Additionally, they
play a crucial role in fostering a culture of data quality, instilling
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confidence among engineers in their data-driven decision-making
processes, and providing estimates of associated uncertainties.

Another data profiling solution is pandas-profiling [25], an open-
source Python library that automates the process of creating ex-
ploratory data analysis reports. It is built on top of the pandas
library [24], widely used for data manipulation and analysis in
Python. Pandas-profiling generates reports with descriptive statis-
tics, interactive visualizations, and insights on variables, correla-
tions, missing values, data types, interactions, and more.

2.2 Edge Computing and Nerve Platform

Traditionally, cloud computing has been the dominant model to
process and store data. However, cloud-centric architectures face
challenges concerning latency, bandwidth limitations, privacy con-
cerns, and reliance on centralized resources. These challenges are
particularly relevant in the IoT realm, where data is generated and
processed in real time and often requires rapid response and local
decision-making. Edge computing addresses these challenges by
placing computing resources (e.g., servers, storage, and analytic
capabilities) closer to the network edge. Since edge servers such as
IBM Edge computing [11] and Nerve Edge servers [21] are getting
more powerful, they can be offered as a service and act as local data
processing units performing computations and analysis.

Among various Edge platforms, the Nerve Edge platform [21],
developed by TTTech Industrial [32], offers a software infrastruc-
ture for industrial automation. It seamlessly integrates with various
commercial off-the-shelf hardware platforms, such as TTTech In-
dustrial’s Nerve-certified Intel Atom-based MFN 100 edge comput-
ing device [20]. The Nerve software infrastructure encompasses the
local software stack of a Nerve node, incorporating a virtualization
solution, as well as the cloud-hosted Nerve Management System.

The local software stack of a Nerve node employs hypervisor
technology to virtualize the underlying hardware platform. Sup-
ported hypervisors are Linux KVM [16], ACRN [18], and Xen [1].
A node’s virtualized architecture allows for the most flexibility in
workload deployment supporting (i) virtual machines (VMs) for
workloads requiring strict spatial isolation for security reasons, (ii)
dedicated statically partitioned real-time VMs for workloads also
requiring temporal isolation, such as (soft) real-time workloads, and
(iif) Docker containers for workloads requiring less strict spatial
and temporal isolation but more flexibility, faster startup times, and
tighter development cycles. An administrator can register nodes in
the web-based Nerve Management System, which offers users role-
based access control to multiple web-based tools. These tools ease
the administration of edge devices and enable the seamless deploy-
ment and management of workloads on several nodes regardless
of their physical locations.

3 RELATED WORK

The literature on data profiling and repair techniques has seen
significant contributions, with a focus on cloud-based implemen-
tations [6, 15, 17, 29, 34, 36]. However, only a limited number of
approaches [19, 23, 26, 27] have specifically targeted detecting and
repairing "corrupt" data at edge and fog devices near the data source,
where computational resources are constrained. These edge-based
solutions present promising opportunities but encounter distinct
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constraints that limit their applicability and generalizability in the
context of IoT applications [7]. For instance, an edge-based ap-
proach proposed by Lin et al. [19] requires access to all dependent
data computations in the application state history, which may not
always be practically feasible in real-world scenarios. Russel et
al. [26] propose a data repair solution enhancing the initial sensed
data from cameras by incorporating raw data from ambient sensors
at the edge. This approach employs sensory substitution to bol-
ster the data’s robustness, resilience, and dependability. However,
it is tailored to data sourced from cameras and ambient sensors
for motion detection, which may restrict its applicability to these
particular sensor types.

ML can address these limitations of edge-based data repair solu-
tions while enhancing data repair in IoT environments. ML-based
data repair techniques can offer the flexibility of deployment op-
tions, allowing them to operate at the edge or in the cloud. However,
only a few ML-based techniques support data repair for IoT [7].
Flick et al. [6] utilize ML algorithms, specifically K-means for clus-
tering and regression modeling, to identify outliers within clusters.
However, their approach does not involve predicting new values
to replace the outliers. Instead, they employ overflow, overweight,
substitution value, and algebraic sign calculations to compute the
new values. Sen et al. [29] present an ML pipeline to train ML mod-
els that can step in for faulty sensors to maintain reasonable quality
and continuity in sensor data streams. These two approaches [6, 29]
are offline data repair solutions and do not consider ML-based data
repair at the edge. Okafor et al. [23] propose an online ML-based
solution for data repair that involves calibrating low-cost sensors
to align their measurements with concentrations obtained from ref-
erence sensors. However, it does not explicitly address deployment
and versioning scenarios of ML models at the edge. Sen et al. [31]
propose an edge-cloud Al pipeline architecture where online data
repair services can be offered to tame data quality. They do not
devise or implement scenarios for edge-based data repair. EDPRaaS
supports online data repair scenarios where ML models are trained
and deployed based on the availability of training data. The ML
models in EDPRaa$ are containerized as online repair services and
deployed on edge for real-time data repair.

4 EDPRAAS APPROACH: DATA PROFILING
AND REPAIR AT THE EDGE

EDPRaaS is a real-time data profiling and repair solution designed
for edge environments. Figure 2 illustrates the comprehensive ED-
PRaasS architecture, encompassing the IoT-Edge-Cloud computing
continuum. EDPRaaS operates through a series of events and ser-
vices, starting with acquiring (industrial) IoT sensor data via IoT
gateways (Section 4.1), followed by profiling the data (Section 4.2),
and then repairing data on the fly at the Edge (Section 4.3).

4.1 Data Acquisition at the Edge

Data acquisition is achieved through IoT gateways, such as the
Danobat Smart Box [4], which act as universal interfaces to ma-
chine tools, sensors, and Programmable Logic Controllers (PLCs),
ensuring secure data gathering and transmission. Standardized pro-
tocols such as MQTT or OPC UA [9] are employed to stream data
to the Edge, with the Nerve platform offering Edge-based services
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Figure 2: EDPRaaS8 architecture showcasing EDPRaaS steps from IoT devices to both edge and cloud platforms. An industrial IoT
device, e.g., the Danobat Smart Box, acquires sensor data from machine tools, sensors, and PLCs. The data is then transmitted
via an MQTT broker to the Nerve Edge Platform for data profiling and repair operations.
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Figure 3: The sequence diagram of data flow between Edge-Cloud services.

supporting these protocols. Figure 2 illustrates a representative 4.3 Data Repair at the Edge

MQTT broker facilitating efficient and reliable data communication Model Training on the Cloud: To ensure high-quality data repair
between IoT devices and subsequent services. OPC UA is utilized models, ML model training is conducted on a cloud platform like
when high-frequency data streaming is necessary. EDPRaaS im- Amazon AWS or Microsoft Azure, offering ample scalability and
plements a data profiling service and a lightweight erroneous data computational resources. The cloud platform utilizes a scalable
repair service leveraging ML to tackle data quality issues. Figure 3 data broker (e.g., Apache Kafka) to efficiently handle data streams,
presents a sequence diagram of EDPRaa$S depicting the coordinated supported by a robust database and an ML pipeline for training
process of data profiling, repair, and cloud-based ML model training, data repair models. These models are tailored to rectify erroneous

or corrupt data within the streamed data.

4.2 Data Profiling at the Edge The Kafka broker, deployed on a cloud platform, subscribes to
The data profiling service subscribes to live data streams and utilizes data, error codes, and correlated variables published on the MQTT
pandas profiling and Great Expectations to identify data quality broker (see Figure 3). This information is stored in the cloud data-
issues in the streaming data. Great Expectations are used to assert base. The Erroneous Data Repair Training pipeline utilizes this
the correctness of the data and validate the data quality (see an data, including error-free data, to train and validate one or more
example expectation in Figure 5). Employing Great Expectations, ML models (see Figure 4 for the details of the pipeline). These mod-
EDPRaa$ uncovers data quality issues, including missing values, els are trained to replace erroneous values in variables based on
outliers, and duplications, and provides an overall dataset assess- the data profile generated during data acquisition. Variables cor-
ment. Pandas Profiling enables exploratory data analysis, general related to the target sensor serve as input data, while error-free
warnings related to possible errors, and finding correlations be- sensor values (before failure) are used as output for training and
tween the variables in the dataset. This information is forwarded validation. A configuration file defines the window size of input
to the MQTT broker (see Figure 3). and output variables, the train/validation/test split, and the criteria
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Figure 4: ML Pipeline and its ML Models for Data Repair.

for selecting representative data for training. Periodic updates to
these ML models are published to the Kafka broker on the cloud
and subsequently to the MQTT broker on the Nerve Edge.

The Lightweight Erroneous Data Repair Service, subscribed
to new data, error codes, and model updates, receives the updated
model from the MQTT broker on the Nerve Edge. When the vali-
dation module detects erroneous data through the error codes, it
sends instructions to the repair module on how to batch the data
for repair. The repair module utilizes the appropriate ML model
from the updated model and applies it to the batched data, inferring
new values for the affected variables. The repaired data is then
published to the MQTT broker, replacing the original erroneous
values. Cloud services or edge devices can now use the repaired
data on the MQTT broker for further analysis or decision-making
involving tasks such as predictive maintenance or tool wear predic-
tion. IoT devices subscribing to the MQTT broker can also receive
the repaired data to use in their operations.

Figure 5 illustrates the erroneous data repair process using sam-
ple data from a temperature sensor in a manufacturing setup. We
employ Great Expectations to define the expected temperature
range of 20 to 40 degrees Celsius. The first diagram represents
the original sensor data, including a segment of erroneous values
caused by environmental interference. Upon detecting anomalies,
an error code is transmitted via the MQTT broker, triggering the
data correction process using the data repair model. The second
diagram displays the data after the repair process, demonstrating
the successful restoration of accurate values.
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1 {
2 "expectation_ type": "expect_column_values_to_be_between",
3 "kwargs": {
4 "column": "Temperature_Xx",
5 "max_value": 40,
6 "min_value": 20
7 3
8 "meta": {3}
9 }
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Figure 5: Temperature sensor data profiling and correction
in a manufacturing environment. The JSON body in Great
Expectations defines the expected data range for the sensor.
The middle graph shows the original time series data, with
erroneous measurements highlighted in grey due to envi-
ronmental interference. The bottom graph displays the time
series after erroneous data repair.

EDPRaaS offers several advantages. Firstly, it facilitates real-
time detection and repair of erroneous sensor data by leveraging
data from other sensors, ensuring uninterrupted functionality for
analytics solutions reliant on the affected data. Secondly, since the
ML model training occurs in the cloud, there is no need for resource-
intensive training on the edge, reducing computational overhead
at the edge devices. Lastly, the edge ML module can be enhanced
to estimate uncertainties in the ML model or input data, providing
valuable feedback to the ML pipeline in the cloud for continuous
improvements. This iterative feedback loop can improve the overall
performance of the data repair process.

5 EVALUATION

We evaluate our approach on three datasets from three distinct
domains to address the following Research Questions (RQ)s:

e RQ1. To what extent can EDPRaaS repair erroneous data in a
constant data stream? The goal of this research question is to
assess the reliability and accuracy of EDPRaaS in maintaining
data quality and ensuring the integrity of the data stream.

e RQ2. Is EDPRaasS capable of timely response to erroneous data?
The goal of this research question is to evaluate how quickly
and effectively EDPRaaS can perform repair actions for data
quality issues, such as inconsistencies or missing values.
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e RQ3. How can EDPRaaS be deployed and run on the edge for
industrial environments? The goal of this research question
is to provide insights into the technical considerations, chal-
lenges, and potential solutions for seamless integration and
utilization of EDPRaasS in industrial environments.

5.1

Datasets. Our evaluation used three Industrial 0T datasets (sensor
time series data from three industrial manufacturing setups) and
two different model configurations (light and heavy configurations).
The first dataset (FERSA dataset) contains accelerometer data col-
lected at a rate of 1 HZ. We used the raw data of one variable to
predict the amplitude in the light model configuration. In the heavy
one, we employed a lower window size and all variables as input
with feature engineering. We trained the models on 100 MB of data.

The second dataset (Automotive dataset) is from the automotive
domain and contains 14 variables collected at 10 HZ from the milling
process of a cylinder head’s combustion chamber. It includes spindle
torque and position and power for each ax. In the light configuration,
we used one variable to predict the target variables without feature
engineering. We utilized all input variables and feature engineering
in the heavy configuration.

The third dataset (Aeromec dataset) is from the aerospace domain
and contains standard CNC machine data, including temperature
measurements and high-frequency accelerometer data. It has over
200 variables with some data quality metrics such as SNR, jitter,
and ski slope. In the light configuration, we predicted the amplitude
of an accelerometer using its frequency, while we utilized all input
variables and feature engineering in the heavy configuration.
Setup. EDPRaaS is assessed using the Nerve platform and runs
on an MFN 100, i.e., a Nerve device optimized for use with the
Nerve software [20]. The device is designed for harsh industrial
environments (-40°C to +70°C). It is based on an Intel Atom x5-
E3940/50 CPU and offers 4 GB/8 GB RAM and up to 512 GB SSD
storage. The MFN 100 offers one I/O port for Ethernet-based fieldbus
connectivity, four GbE switch ports, and one SFP port.

Experiment Design

5.2 Results

This section discusses the results of our case studies, addressing, in
turn, each of the RQs.

RQ1: To what extent can EDPRaas$ repair erroneous data in
a constant data stream? In response to RQ1, we investigated
the performance of diverse ML architectures/models in EDPRaaS
through case studies, comprising both lightweight, XGBoost (XBG)
and Stochastic Gradient Descent (SGD), and deep learning mod-
els, Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN). We aimed to assess the trade-off between computa-
tional resources and performance, particularly in relatively simple
cases where lightweight algorithms might suffice. The evaluation
utilized the coefficient of determination (R? score) as a metric to
gauge predictive accuracy, with an R? score of 1 representing per-
fect predictions and scores closer to 0 indicating lower accuracy.
When comparing the performance of different models on the same
dataset, we used mean squared error (MSE) to assess how well a
model’s predictions match the true observed values.
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Table 1 displays the models’ performance (R? and MSE scores) on
our three distinct datasets. We selected two model configurations
(light and heavy in Table 1) to investigate the impact of model
complexity on performance and latency (see RQ2 for latency). The
light configuration employs limited input variables, avoids feature
engineering, and adopts a larger window size. Conversely, the heavy
configuration incorporates most or all variables as input, applies
relevant feature engineering, and employs a smaller window size
to increase resource utilization.

Observing the results, XGBoost consistently achieves relatively
high R? and low MSE scores across different datasets and configu-
rations, indicating its effectiveness in making accurate predictions
for data repair. However, SGD exhibited significant variations, e.g.,
showcasing promising performance (R? = 0.69) in the light con-
figuration in the Fersa dataset but encountering challenges (R?
= -8.478e+20) in the heavy configuration in the Aeromec dataset,
possibly indicating model complexity trade-offs. Conversely, the
RNN and CNN models showed mixed results, with relatively lower
R? scores and higher MSE values across different configurations,
suggesting varying degrees of fit to the data.

Based on the performance results presented in Table 1, we can
conclude that there are trade-offs between model complexity and
predictive accuracy in the context of data repair in EDPRaaS. While
more complex ML architectures (such as RNN and CNN) under the
heavy configuration can offer higher predictive accuracy in some
cases (e.g., in the Automotive dataset), they may also exhibit signif-
icantly poorer performance in other scenarios. On the other hand,
the light configuration, which uses fewer variables and features in
the models, may not always achieve the highest predictive accu-
racy but can provide consistent and acceptable performance across
different datasets. Overall, the choice of model architecture and
configuration seems pivotal in balancing predictive accuracy (R?)
and error magnitudes (MSE) in EDPRaaS. As such, decision-makers
must weigh the advantages of more complex models against the
potential pitfalls they may encounter, ensuring that the selected
models align effectively with the specific characteristics of the
datasets and operational requirements.

Summary of the RQ1 Results: Selecting the ML architecture and
configuration for EDPRaas$ should consider dataset characteristics and
the edge use case. Balancing model complexity with performance risk
is crucial. For scenarios where reliability and consistency are crucial,
adopting simpler ML architectures like XGBoost, which demonstrate
relatively high R? scores across datasets, may be preferred. Under-
standing trade-offs allows informed decision-making to choose the
most suitable ML solutions for efficient and accurate data repair in
EDPRaaS.

RQ2: Is EDPRaaS capable of timely response to erroneous
data? To address RQ2, we evaluated the efficiency of the ML pipeline
output (ML models) considering different parameters, such as model
architecture, batch size, and dataset size. The goal was to deter-
mine the effectiveness of ML models as data repair tools within the
edge environment and identify the most suitable configurations for
optimal performance.

The resource consumption of the ML models is relatively mod-
est, but optimization efforts are still warranted. The combined size
of the modules exceeds 5 GB, and during execution, they utilize
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Table 1: ML Model performance (R?> and MSE) and efficiency (latency in seconds) in EDPRaaS.

Fersa Dataset Automotive Dataset Aeromec Dataset
Model Light Configuration Heavy Configuration Light Configuration | Heavy Configuration | Light Configuration Heavy Configuration
Late. | R MSE | Late. R? MSE | Late. [ RZ [ MSE | Late. | R MSE [ Late. [ R” [ MSE | Late. R” MSE
XGB 4.38 0.791 4.04e-09 5.28 0.8741 2.34e-09 4.81 0.75 22.81 5.03 0.90 9.13 5.73 0.82 0.003 6.28 0.99 0.0002
SGD 4.35 0.693 5.94e-9 4.49 0.7515 4.63e-9 4.81 0.08 84.32 4.90 0.34 59.81 4.96 0.25 0.011 6.72 -8.48e+20 1.26e+19
RNN 5.46 -0.004 1.94e-8 5.71 -2.51e-5 1.86e-08 6.00 0.26 67.66 6.17 0.76 21.79 6.13 0.03 0.015 7.94 0.80 0.0029
CNN 4.70 0.725 5.30e-9 4.90 -0.0004 1.86e-8 5.35 0.22 71.18 5.53 0.67 29.52 5.47 0.82 0.003 7.05 0.70 0.0044

approximately one core’s worth of CPU power and up to 700 MB
of RAM. These resource requirements might slightly increase if
both modules experience peak usage simultaneously, which could
occur in datasets with frequent errors. Further optimization is rec-
ommended to enhance efficiency.

We conducted latency assessments of EDPRaa$ using lightweight
and deep learning architectures, evaluating the time from validation
to repair. By comparing the added latency with performance metrics,
we determined the benefits of the edge-based solution. Furthermore,
we investigated the impact of different parameter sets on latency,
focusing on the influence of reducing the number of input variables
and their complexity on prediction time. To do so, we selected two
parameter sets for each dataset: one with few input variables and
another incorporating feature engineering.

Table 1 displays the latency results for a batch of 1000 data points.
As expected, deep learning architectures exhibit higher latency,
with the recurrent neural network showing a maximum increase
of up to 1.5 seconds. In the Fersa dataset, the simple models assert
dominance by showcasing the low latencies in light and heavy con-
figurations, indicating their ability to process and repair data swiftly.
The CNN and RNN models exhibit relatively higher latencies, im-
plying a trade-off between model complexity and processing speed.
The Automotive dataset presents a similar trend, with the XGBoost
model continuing to demonstrate commendable latency efficiency.
The SGD model, which exhibited the lowest latency in the Fersa
dataset, displays stable and competitive latencies in the Automotive
dataset, showcasing its adaptability to different contexts. The RNN
and CNN models again exhibit relatively higher latencies in the
Aeromec dataset, highly likely because this dataset contains more
input variables (larger input size).

As expected, the heavy configuration and complex architectures
require more inference time, although the time difference is less
pronounced (compared to model training). Thus, deploying edge-
based inference for cases requiring moderately sophisticated models
becomes a feasible option if we perform training on the cloud.

Summary of the RQ2 Results: EDPRaasS efficiently repairs er-
roneous data using both simple and complex ML models at the edge.
Our findings indicate that deploying resource-intensive deep learning
models is feasible when their training occurs in the cloud.

RQ3: How can EDPRaaS be deployed and run on the edge
for industrial environments? To address RQ3, we analyzed the
deployment of EDPRaasS in three industrial settings, summarizing
the experience based on Al engineering dimensions. Al engineering,
a discipline focusing on tools, systems, and processes for applying
Al in real-world contexts, has been studied extensively [2, 3].

Data versioning and dependency management: We employed
Data Version Control (DVC) [5] to manage EDPRaaS on edge de-
vices by versioning only crucial data from the MQTT broker, elimi-
nating redundancy and saving resources. In the IoT realm, where
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data needs constantly change, storing all data is unnecessary. The
DVC ’dvc g¢’ command for garbage collection helps establish purg-
ing policies, automatically removing unused data and preserving
vital information for current and future tasks. Therefore, EDPRaaS
runs efficiently under resource constraints. By leveraging DVC for
data versioning and dependency management, ML processes in
EDPRaaS are streamlined and optimized without cloud offloading.
Deployment infrastructure: EDPRaaS, deployed on the Nerve
Edge platform via Docker containers, comprises separate compo-
nents. One container hosts the ML model and data processing logic,
while another serves as an MQTT broker for data communication.
Data from the Nerve platform’s data gateway, supporting various
protocols, is received by EDPRaaS. The MQTT broker facilitates
real-time communication between components. The ML model
within the Docker container analyzes incoming data, detects errors,
and conducts data repair. Repaired data is published back to the
MQTT broker for further processing or storage. The streamlined de-
ployment using Docker containers ensures portability and seamless
integration of EDPRaasS into the Nerve platform.

Monitoring and Logging: DVC and the Nerve software infrastruc-
ture facilitate monitoring and logging for EDPRaaS. DVC provides
the "dvc add" command to track data files and "dvc run" to execute
EDPRaaS. It enables versioning, replication, and reproducibility of
data and models. Docker, integrated into Nerve, offers monitoring
and logging features such as "docker stats" to obtain real-time re-
source usage statistics, "docker logs" to access container logs, and
"docker events" to monitor container lifecycle events.
Integration of models and components. EDPRaaS utilizes ML
frameworks (e.g., TensorFlow) for creating ML models and em-
ploys DVC for versioning, facilitating model management and re-
producibility. Docker containerizes the ML models with necessary
dependencies, ensuring easy portability and execution on the Nerve
Edge platform. Docker Compose is used to integrate the container-
ized models with custom software components, forming a compre-
hensive data repair service. EDPRaa$ provides a REST API endpoint
for data repair requests, utilizing the trained ML model to identify
and correct erroneous data. The Nerve platform, equipped with
diverse communication protocols (e.g., MQTT), interacts seamlessly
with the REST APL For instance, an MQTT broker collects IoT de-
vice data, forwarding it to the REST API endpoint for data repair.
This integrated approach of containerized ML models, software
components, and protocols on the Nerve platform enables efficient
online data repair at the edge.

Summary of the RQ3 Results: EDPRaasS is successfully deployed
on the edge for industrial environments. It leverages DVC for data ver-
sioning and dependency management and employs Docker containers
for streamlined deployment. Monitoring and logging capabilities are
enabled through DVC and the Nerve software infrastructure. Integra-
tion of ML models and components, facilitated by ML frameworks and
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Docker, ensures seamless operation and efficient online data repair at
the edge.

5.3 Threats to Validity

Internal validity. To limit threats to internal validity, we use
EDPRaasS to exploit the correlation between sensor variables and
not a cause-effect relationship between input and output sensors.
We did not design EDPRaaS to predict future values.

External validity. To ensure the generalizability of our approach
to different types of IoT data, we address the external threat to
validity by utilizing three representative production lines. These
lines manufacture different components for different companies,
generating diverse data in terms of size and characteristics.
Construct validity. Validity threats related to measurement accu-
racy are a critical consideration. In the case of datasets comprising
sensor data, it is possible for the measurements to lack correla-
tion, leading to potential noise when assessing the performance of
ML models. To address this concern, we took steps to mitigate the
threat by consulting domain experts who possess expert knowledge
in identifying the relevant sensor data to be utilized for making
accurate predictions.

6 CONCLUSIONS

In this paper, we presented EDPRaaS (Edge-based Data Profiling and
Repair as a Service), a novel and efficient approach for data quality
enhancement in IoT environments. By deploying data repair opera-
tions at the edge, EDPRaaS addresses the challenges of real-time
decision-making, bandwidth efficiency, resource constraints, and
online operation. Additionally, the integration of Machine Learn-
ing (ML) in the data repair component enhances the accuracy and
adaptability of the repair process, ensuring continuous data quality
improvement. EDPRaaS leverages the power of pandas profiling and
Great Expectations for comprehensive data profiling, enabling the
identification of data quality issues such as missing values, outliers,
and duplications. Our evaluations demonstrated the effectiveness
and versatility of EDPRaa$S, showcasing its potential for real-time
data quality management in various IoT applications.
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