
Raft Protocol for Fault Tolerance and Self-Recovery in
Federated Learning

Rustem Dautov
Erik Johannes Husom
rustem.dautov@sintef.no

erik.johannes.husom@sintef.no
SINTEF Digital
Oslo, Norway

Abstract
Federated Learning (FL) has emerged as a decentralised ma-
chine learning paradigm for distributed systems, particularly
in edge and IoT environments. However, ensuring fault toler-
ance and self-recovery in such scenarios remains challenging,
because of the centralised model aggregation which acts as
a single point of failure. A possible solution to this challenge
would rely on the continuous replication of the global FL
state across participating nodes and the functional suitabil-
ity of any node to replace the aggregator in case of failures.
These functional requirements can be implemented using
one of the existing distributed consensus algorithm, such
as Raft. Our approach utilises Raft’s leader election and log
replication mechanisms to enable automatic stateful recov-
ery after failures and thus to improve fault tolerance. The log
replication process efficiently maintains consistency and co-
herence across distributed FL nodes, ensuring uninterrupted
training process and model convergence. This enhances the
robustness of the overall FL system, especially in dynamic
and unreliable cyber-physical conditions. To demonstrate
the viability of our approach, we present a proof-of-concept
implementation based on the existing FL framework Flower.
We conduct a series of experiments to measure the aggrega-
tor re-election time and traffic overheads associated with the
state replication. Despite the expected traffic overheads grow-
ing with the number of FL nodes, the results demonstrate
a resilient self-recovering system capable of withstanding
node failures while maintaining model consistency.

CCS Concepts: • Information systems→ Data replica-
tion tools; Data federation tools; • Computer systems
organization→ Fault-tolerant network topologies.

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0585-4/24/04
https://doi.org/10.1145/3643915.3644093

Keywords: Federated Learning, Fault Tolerance, Self-recovery,
Flower, Raft, Consensus Algorithm

ACM Reference Format:
Rustem Dautov and Erik Johannes Husom. 2024. Raft Protocol for
Fault Tolerance and Self-Recovery in Federated Learning. In 19th
International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS ’24), April 15–16, 2024, Lisbon, AA,
Portugal. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3643915.3644093

1 Introduction
Federated Learning (FL) has emerged as a promising para-
digm for decentralised machine learning (ML) in distributed
systems, particularly in scenarios involving edge devices and
the Internet of Tings (IoT). While FL is designed to be de-
centralised in terms of data storage and privacy, the central
aggregator plays a crucial role in coordinating the model
updates across different devices or servers. If the central
aggregator becomes unavailable or compromised, it can dis-
rupt the entire FL process, making it a single point of failure
for the whole system. To this end, ensuring fault tolerance
and self-recovery in such environments remains a critical
challenge.
A possible solution to this challenge would require two

main functional elements to be implemented – namely, con-
tinuous replication of the global state of a FL cluster across
participating nodes and functional suitability of any node
to replace the aggregator in case of failures. To this end,
this paper explores the integration of distributed consensus
algorithms to implement a self-recovery mechanism in FL
systems. Specifically, we delve into the significance of state
replication and aggregator re-election as indispensable com-
ponents in mitigating the impact of failures, ensuring the
continued operation and reliability of FL across a network
of heterogeneous and potentially unreliable devices. In this
context, we see state replication as a promising instrument,
which can enable every node in the federated system to
maintain a consistent and up-to-date information about the
training progressmaking it suitable to become the new aggre-
gator and continue from the latest stored state in the event
of failures or disruptions. In particular, the Raft consensus
protocol is renowned for its simplicity and effectiveness, and

This work licensed under Creative Commons Attribution International
4.0 License.

110

2024 IEEE/ACM 19th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)

https://orcid.org/0000-0002-0260-6343
https://orcid.org/0000-0002-9325-1604
https://doi.org/10.1145/3643915.3644093
https://doi.org/10.1145/3643915.3644093
https://doi.org/10.1145/3643915.3644093
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643915.3644093&domain=pdf&date_stamp=2024-06-07

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Rustem Dautov and Erik Johannes Husom

can be employed for replicating the state of the FL system
across all participating nodes.
By employing Raft’s leader election and log replication

mechanisms to enhance fault tolerance and enable self-recovery,
this paper investigates one of the possible ways of mitigating
the single-point-of-failure problem in the next-generation
FL architectures. Through this exploration, we aim to con-
tribute to the ongoing discourse on enhancing the resilience
and fault tolerance of FL in the face of real-world challenges.
Accordingly, the contribution of this paper is threefold: i)
the overall approach for self-recovery in FL using Raft, ii) a
proof of concept demonstrating the viability of the proposed
approach, and iii) an experimental evaluation of the key prop-
erties associated with the approach – namely, aggregator
re-election time and network traffic overheads.
The rest of the paper is organised as follows. Section 2

briefs the reader on FL and highlights existing challenges
associated with fault tolerance and self-recovery. Section 3
provides a summary of related work addressing the same
issues. Section 4 then presents our own approach, followed
by a proof-of-concept implementation in Section 5 and the
experimental evaluation in Section 6. Section 7 concludes
the paper and provides some directions for future work.

2 Research Context and Motivation:
Federated Learning

FL is an ML approach that allows a model to be trained
across multiple decentralised devices (such as smartphones,
IoT devices, or edge servers) or even organisations (like hos-
pitals or companies) without exchanging the underlying
potentially sensitive data [35]. The central idea behind FL
is to enable collaborative model training while keeping the
data on the local devices or servers. The key advantages
of FL lie in its ability to enhance privacy by keeping data
localised and reducing the need for centralised data storage.
This decentralised paradigm allows for model training on
user devices, ensuring that sensitive information remains
on the device, addressing privacy concerns associated with
traditional centralised learning methods [20]. Another sig-
nificant benefit of FL is its potential to improve efficiency
and reduce communication costs. By training models locally
on devices, FL minimises the need for extensive data transfer,
making it suitable for scenarios with bandwidth limitations
or high communication costs [9]. Moreover, FL enables the
creation of more personalised and context-aware models,
as training occurs directly on devices where data is gener-
ated, capturing local device-specific patterns [12]. Thanks to
these benefits, FL is being increasingly adopted in various
fields, including healthcare (for medical data analysis while
protecting patient privacy), IoT (for smart devices with lim-
ited processing power and connectivity), and personalised
recommendations (to improve user experiences without com-
promising user data) [23]. Some prominent FL frameworks

include Tensorflow Federated,1 FedML,2, and Flower.3 Here
is how FL typically works:4

1. Model initialisation: A global ML model is initialised
on a central server.

2. Local training: The local nodes perform model training
on their respective datasets without sharing the data itself.
The training process may involve multiple iterations of
training and updating the model’s parameters.

3. Model update aggregation: After local training, each de-
vice or server sends only the model updates (i.e., changes
in model parameters) to the central server.

4. Model aggregation: The central server aggregates these
model updates within the global model, following some
pre-defined strategy (e.g., averaging the updates).

5. Iteration: Steps 2 to 4 are repeated for multiple rounds,
improving the global model with each iteration.

2.1 Motivation: Need for Fault Tolerance and
Self-Recovery

The term federation itself assumes there exists a central point
of coordination. Thus, one of the most critical challenges FL
is the vulnerability introduced by a potential single point
of failure – that is, a centralised aggregator or coordinating
node. The reliance on a single point for aggregating and coor-
dinatingmodel updates in FL systemsmakes them vulnerable
to disruptions. Whether due to hardware malfunctions, net-
work outages, or other unforeseen events, the failure of this
central node can bring the entire learning process to a halt,
jeopardising the integrity of the model and impeding the
system’s performance.

Addressing this single point of failure is imperative for the
widespread adoption and success of FL. The implementation
of fault tolerance and self-recovery mechanisms becomes
a pressing need to ensure the continuous operation of the
system. This motivation stems from the recognition that the
robustness of FL hinges on its ability to adapt and recover
seamlessly from failures, guaranteeing the reliability and
scalability required for practical deployment in dynamic and
diverse real-world environments. As we further highlight in
the next section, the existing solutions are often too com-
plex and heavy-weight to be applied in resource-constrained
IoT scenarios, e.g., dealing with wearable devices coupled
with smartphone gateways [11, 19]. This also poses a prac-
tical requirement that an envisioned solution should not
introduce any additional overheads in terms of the required
software stack, but rather be able to natively integrate with
the existing FL frameworks, especially when deployed on
resource-constrained cyber-physical platforms [10].

1https://www.tensorflow.org/federated
2https://www.fedml.ai/
3https://flower.dev/
4A more detailed FL sequence diagram is included in Fig. 2 as part of the
description of the proposed approach.

111

https://www.tensorflow.org/federated
https://www.fedml.ai/
https://flower.dev/

Raft Protocol for Fault Tolerance and Self-Recovery in Federated Learning SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

3 Related Work
The use of a consensus algorithm for self-recovery and peer-
to-peer communications in FL is reported by Behera et al. [1].
The authors share the same motivation of avoiding a single
point of failure, and use the Raft protocol to enable the auto-
matic re-election of FL aggregators. However, the approach
does not use state replication, and the paper being just 5
pages long remains at a rather high conceptual level, lack-
ing technical details describing the proof-of-concept imple-
mentation, as well as how the experiments were conducted.
Albeit not peer-reviewed and not officially published, to the
best of our knowledge, this is the only openly accessible
research publication conceptually similar to our proposed
approach. At the same time, the community has come up
with a number of alternative approaches addressing the same
challenge. We group them into two main categories and sum-
marise in the next two subsections.

3.1 Decentralised Federated Learning
Decentralised FL is an extension of the traditional FL, which
advocates for a fully decentralised architecture both for
model training and aggregation across distributed nodes
[18]. The research landscape in this area has been charac-
terised by advancements in so-called gossip learning and
swarm learning.
Gossip learning [15] involves decentralised communica-

tion between nodes in a network, where nodes exchange in-
formation about their local models. This behaviour is driven
by gossip algorithms (whose name was inspired by how gos-
sips are spread among people) [4, 5] – a class of distributed
communication protocols wherein nodes or entities within
a network disseminate information by exchanging messages
with randomly selected peers, facilitating the spread of data
and enabling decentralised systems to collectively converge
on consistent states or make collective decisions through a
process of iterative and probabilistic communication. In gos-
sip learning, fault tolerance is achieved through redundancy
and continuous communication. If a node fails or starts mal-
functioning, other nodes can compensate by sharing their
correct models. The decentralised nature of gossip learning
inherently provides fault tolerance, as the failure of a single
node does not compromise the entire learning process [16].
Swarm learning [31, 34] is another related concept that

achieves fault tolerance through the diversity of nodes and
the FL approach. Even if some nodes fail or provide inac-
curate updates, the global model can still benefit from the
contributions of other nodes. The FL paradigm ensures that
no single point of failure exists, and the system can adapt to
the varying reliability of nodes. A potential additional feature
in swarm learning is the use of blockchain, which underpins
peer-to-peer communications and state replication.

Both gossip and swarm learning, however, are still emerg-
ing technologies, and their adoption in real-world applica-
tions might not be as widespread as the traditional FL with
centralised model aggregation or other more established ML
techniques. In theory, the decentralised model aggregation
would natively address the single point of failure, but in
practice these approaches are still too complex to implement
in real-life scenarios in a generic and re-usable manner.

3.2 Using Distributed Ledger Technology in
Federated Learning

The integration of Distributed Ledger Technology (DLT) for
state replication in the IoT represents another transforma-
tive approach that leverages the decentralised and secure
features of DLT to ensure consistent and tamper-resistant
states across a network of federated devices [21, 25, 28]. Note-
worthy, Raft is also employed in some DLT implementations
as the underlying consensus algorithm (e.g., Hyperledger
Fabric5), as well as the more heavy-weight and DLT-oriented
algorithms, such Proof-of-Work (PoW) and Proof-of-Stake
(PoS). The combination of decentralised consensus, tamper-
resistant records, smart contracts, and other features posi-
tions DLT as a powerful solution to address the challenges
posed by state replication in IoT environments. DLT’s dis-
tributed nature ensures resilience to individual node failures.
In instances where one node goes offline or experiences is-
sues, the remaining nodes continue to maintain and replicate
the state. This resilience is crucial in cyber-physical envi-
ronments where devices may be intermittently connected or
face hardware failures.
The use of DLT for storing the FL progress is also often

driven by the need to enable trustworthiness and data prove-
nance amongmultiple potentially untrusted parties. Through
a shared and public ledger, all participating nodes have visi-
bility into the replicated state, which promotes transparency
and accountability. This transparency is essential for audit-
ing purposes, as the entire transaction history is recorded
on the ledger, facilitating efficient tracking of state changes.
This is often used in FL scenarios where there is a need for
trustworthiness among participating nodes, such as financial
or healthcare sectors [24, 32].

However, deploying DLT on resource-constrained devices
in the IoT context poses challenges due to limited process-
ing power, storage, and energy resources. Running complex
DLT algorithms may strain these devices and compromise
their primary functions. The energy-intensive consensus
mechanisms of DLT can also reduce the efficiency of devices
powered by batteries or energy harvesting. Also, scalability
issues arise as maintaining a complete ledger on each device
can overwhelm resources, especially in applications with a
high volume of transactions [13]. Latency introduced by DLT

5https://www.hyperledger.org/projects/fabric

112

https://www.hyperledger.org/projects/fabric

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Rustem Dautov and Erik Johannes Husom

consensus processes may be impractical for real-time applica-
tions. The decision to deploy DLT on resource-constrained
devices in FL should align with specific use case require-
ments, considering alternatives like lightweight consensus
algorithms natively integrated at the code level for more
practical and efficient solutions.

4 Proposed Approach: State Replication
Using Raft Protocol

The surveyed related work suggests that fault tolerance in
cyber-physical FL scenarios is not sufficiently addressed by
the existing approaches, which are often too complex and
heavy-weight to be implemented, especially on resource-
constrained platforms. In this paper, we propose to natively
integrate state replication into FL using a consensus algo-
rithm to build a light-weight, yet efficient and reliable self-
recovery solution.

4.1 Consensus Algorithms for Replicating the
Training Progress

Consensus algorithms are commonly used in distributed
databases, distributed file systems, and blockchain technol-
ogy to ensure that multiple nodes or processes in a network
reach an agreement or a consistent state. They play a cru-
cial role in maintaining the reliability and fault tolerance
of distributed systems. They help ensure that data remains
consistent and that decisions are made across all nodes in a
distributed network, despite failures or network issues.
Consensus algorithms often involve a leader, which is a

specific node responsible for proposing decisions and driving
the consensus process. Leader election is used to select this
node. Leader election mechanisms ensure that the leader is
chosen in a way that is fair and robust, even in the presence
of node failures or network partitions. Consensus algorithms
and leader election are often used in conjunction to achieve
coordination and fault tolerance in a group of distributed
nodes or processes. Common leader election algorithms in-
clude, for example, the Bully algorithm [26] and the Ring
algorithm [14].
Consensus algorithms also enable state replication – a

technique used to ensure that the state (data) of a distributed
system remains consistent across multiple nodes. In a dis-
tributed system, multiple nodes may store and modify data
independently, and state replication helps maintain a coher-
ent state across all nodes. Some state replication techniques
include primary-backup replication [6], multi-version concur-
rency control [27], and log-based replication [2]. The latter
involves recording all state-changing operations in a log. All
nodes receive and apply the same sequence of operations to
their local state, ensuring that they stay consistent.

Some common consensus algorithms include Paxos, which
is a family of algorithms designed to handle network and
node failures [33], and Practical Byzantine Fault Tolerance

(PBFT), which was specifically designed for systems with
Byzantine failures [7]. Raft is another prominent consensus
algorithm, conceived by Ongaro and Ousterhout [29], which
provides a foundational framework for achieving distributed
consensus in fault-tolerant systems. Operating on a leader-
follower model, Raft orchestrates a cluster of nodes with the
primary objective of maintaining a consistent, replicated log
across all participants. The process initiates with an election
phase, where nodes engage in distributed voting to select
a leader. Heartbeat messages are exchanged to monitor if
the leader is still responsive, triggering a new election if the
leader becomes unreachable.
Raft organises time into terms, each characterised by a

unique numeric identifier, with the leader managing log repli-
cation within a term. The log itself comprises commands
representing state machine transitions. To ensure consen-
sus, the leader dispatches messages to followers, containing
log entries for replication. Entries are committed only when
a majority of nodes acknowledge the receipt, preventing
inconsistencies in the event of node failures or network in-
terruptions. Incorporating a randomised election timeout
mitigates the risk of split votes, enhancing the algorithm’s
resilience. Furthermore, Raft enables nodes to voluntarily
step down if they discover a more up-to-date leader during
the election process, contributing to operational efficiency.6
Taken together, Raft provides a clear and intuitive ap-

proach to distributed consensus, offering fault tolerance, con-
sistency, and leader stability in diverse distributed computing
scenarios. Its well-defined mechanisms for leader election,
log replication, and commitment make it widely adopted
for ensuring consensus in distributed systems. Finally, Raft
is more understandable and user-friendly than Paxos [17],
thanks to which the community has come up with multiple
software implementations in many mainstream languages,
making Raft a convenient option for natively integrating
state replication at the code level, rather than using external
tools or libraries.

4.2 Enhancing Federated Learning with Raft
Now, equipped with the general knowledge about FL and
consensus algorithms, we explore how the two can be effec-
tively combined to facilitate self-recovery. We first propose
and discuss 4 possible levels, at which self-recovery can be
integrated into FL. Table 1 summarises these levels, where
we introduce the term checkpoint – a point, when the ag-
gregator or worker nodes write their current state into the
global replicated state of the whole FL cluster.
Determining the most practical and efficient way to im-

plement checkpoints in FL using the Raft protocol involves
considering several factors, including system architecture,
communication overheads, fault tolerance requirements, and

6Explaining the internals of the Raft protocol goes beyond the scope of this
paper. Interested readers are referred to the original paper [29].

113

Raft Protocol for Fault Tolerance and Self-Recovery in Federated Learning SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

Level State replication Description
Level 0: no self-
recovery

N/a This level represents the current state of practice, where no FL state is
stored/replicated. With the aggregator being a single point of failure, the FL
progress is lost and cannot be automatically recovered in case of failures.

Level 1: self-
recovery with
the same aggre-
gator.

Aggregated model
parameters stored
locally without
replication.

The aggregator continuously stores intermediate training results locally and is able
to restart the FL process from the latest checkpoint after a crash. This, however,
strictly assumes that the same node will remain the aggregator. This kind of
functionality is offered by most ML frameworks, which allow storing serialised
training results on disk.

Level 2:
stateless self-
recovery.

N/a The FL cluster is able to re-elect a new aggregator among the remaining worker
nodes following the Raft protocol, but the re-elected aggregator will start the FL
from scratch, since no intermediate training progress was stored/replicated.

Level 3: stateful
self-recovery.

Aggregated model
parameters at the
server side.

This is a combination of the previous two levels, where the aggregator not only
stores the intermediate FL progress, but also replicates it across all FL nodes. Any
node is suitable to become a new aggregator and re-start the training from the
latest checkpoint.

Level 4: state-
ful self-recovery
of the aggrega-
tor and worker
nodes.

Aggregated model
parameters at the
server side.
Individual parame-
ters at the client
side.

All possible information is stored and replicated across all nodes. This means that
any worker node can re-start its training routine by fetching its previous state from
peer nodes. To a great extent, this might not be very practical due to the increased
amounts of redundant information being exchanged and the fact that a failure of a
worker node (as opposed to the aggregator) can often be tolerated/neglected. Still,
this kind of fully stateful self-recovery can be possibly applied in some critical
scenarios, where worker nodes are valuable in terms of their unique training data.

Table 1. Possible levels of self-recovery in FL using Raft.

the specific characteristics of the FL scenario. Another degree
of freedom here is the frequency of checkpoints, especially
on the worker nodes which may be configured to run several
training iterations (epochs) within a single training round.
Since on resource-constrained devices, even a single epoch
might a considerable amount of time, storing the intermedi-
ate progress might be beneficial. The increased frequency of
checkpoints may enhance fault tolerance but will inevitably
increase the overall system load and communication over-
heads.
With the current state of the FL technology, we consider

Level 3 as the most straightforward and practical way of im-
plementing state replication and self-recovery, as we further
explain it in Section 5. At this level, the centralised storage
at the aggregator simplifies the checkpoint management pro-
cess, as all updates come from a single point and are then
replicated to the rest of the nodes. Furthermore, the primary
challenge to be addressed is the aggregator being the sin-
gle point of failure, whereas the failures of worker nodes
can often be tolerated, while the communication costs of
replicating their state is unproportionally high.

5 Proof of Concept
We now proceed with an explanation of a proof-of-concept
implementation, starting with the description of the two
main underpinning technologies – namely, Flower frame-
work and PySyncObj library.

5.1 Flower: Baseline for Federated Learning
Flower is an open-source Python framework designed to fa-
cilitate the implementation of FL systems [3]. Flower aims to
simplify the development of FL applications by providing a
high-level interface and abstractions for communication and
coordination among devices in a distributed system. One of
the notable features of Flower is its use of strategies to define
the communication and collaboration patterns between the
server (aggregator) and the clients (worker nodes). Flower’s
strategy interface is designed to be user-friendly, enabling
developers to implement and experiment with FL without
delving into the internals of distributed systems and commu-
nication protocols. More specifically, users can benefit from
Flower strategies in the following ways:

• Strategy definition: Flower allows users to define custom
strategies that dictate how the server interacts with the
clients during the FL process. Strategies are responsible
for managing communication, aggregating model updates,
and handling synchronisation.

• Communication abstraction: strategies in Flower hide
away the details of communication between the server and
clients. This includes specifying how model parameters
are exchanged, how updates are aggregated, and how syn-
chronisation is managed across the distributed FL cluster.

114

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Rustem Dautov and Erik Johannes Husom

• Integration with ML frameworks: Flower integrates
seamlessly with multiple ML tools, including the main-
stream frameworks TensorFlow, PyTorch, XGBoost and
MXNet, allowing users to define how models are trained
and updated across multiple nodes.

• Customisation: Flower allows developers to define strate-
gies tailored to their specific FL use cases. This adaptabil-
ity is crucial in cyber-physical scenarios where different
communication patterns or synchronisation methods are
needed to accommodate slow execution and/or device
failures. Strategies can also be designed to accommodate
different data distribution patterns and privacy considera-
tions. This latter feature was used extensively in this work
to implement the proposed state replication.
To use Flower effectively, developers typically define their

FL strategies, integrating them with their ML models and
leveraging Flower’s communication abstractions. This al-
lows for the seamless orchestration of FL processes across a
distributed network of devices constituting a FL cluster.

5.2 PySyncObj: a Raft Protocol Implementation
PySyncObj7 is an open-source Python library for building
fault-tolerant distributed systems with the ability to replicate
and synchronise objects across multiple nodes. It implements
the Raft consensus algorithm and is designed to provide a
simple and flexible solution for building distributed applica-
tions. PySyncObj is designed to be user-friendly and easy to
integrate in Python applications. It abstracts the complexities
of distributed systems, making it accessible for developers
who may not be experts in distributed computing. Key fea-
tures of PySyncObj include:
• Consensus algorithm: the underlying Raft consensus al-
gorithm helps achieve distributed consensus among nodes
in a network. As already discussed, Raft is known for its
simplicity and ease of understanding compared to more
complex and heavy-weight alternatives.

• Data replication: PySyncObj enables the replication of
objects across multiple nodes, ensuring that changes to the
state of an object are synchronised across the distributed
system.

• Leader election: The Raft consensus algorithm involves
the election of a leader among nodes, and PySyncObj im-
plements this leader election process to coordinate and
manage the distributed state.

5.3 Prototype Implementation
The proof of concept was built on top of the Flower frame-
work enhanced with PySyncObj used for aggregator election
and state replication.8 Normally, Flower requires the devel-
opers to implement at least two separate Python classes –

7https://github.com/bakwc/PySyncObj/
8Source code with instructions for running the experiments: https://github.
com/SINTEF-9012/raft_flower/

i.e., one for the server, and the other one for the clients. How-
ever, as we argued throughout the paper, in order to replace
a faulty aggregator, a worker node must not only be able
to recover the state, but also be equipped with the required
aggregator execution logic. In other words, in our implemen-
tation all FL nodes execute exactly the same code base, and,
depending on the election outcome, proceed with either the
aggregator or the worker role. The corresponding algorithm
is depicted in the activity diagram in Fig. 1.

The process starts with the aggregator election, based on
which each node proceeds with the corresponding execu-
tion logic. The newly elected aggregator, no matter whether
it is the initial FL launch or recovery, first checks whether
there is any previously stored state to continue from. If it is
a recovery, the state will include the number of completed
and remaining training rounds, as well as latest aggregated
model parameters. If not, the state will be empty. The elected
aggregator then starts coordinating the FL process by first
distributing input parameters and then collection results
from several rounds of training and evaluation. The algo-
rithm includes three checkpoints, when the aggregator stores
aggregated parameters, which are then replicated to worker
nodes. Upon completion of each training or evaluation round,
worker nodes check whether the aggregator is still alive. If
not, they transition back to the initial leader election phase.
The expected final outcome of this process is a converged
and consistent ML model.
A slightly different view on the same dynamics within a

FL cluster is depicted in a simplified sequence diagram in Fig.
2, which includes two main stages of the resulting design –
namely, the initial phase of leader election among several
equally suitable nodes and the following phase of actual FL
with an elected aggregator and several worker nodes. In case
of aggregator failures, all worker nodes switch back to the
initial phase and participate in the re-election, which results
in a new aggregator and new worker nodes (provided there
is still sufficient nodes for federation). The new aggregator
will check the progress since the last checkpoint and use the
existing model parameters as the new initial parameters for
the newly selected worker nodes.

As discussed in Section 4, implementing state replication
only at the aggregator side (Level 3 in Table 1) seems the
most practical and realistic approach for most FL scenar-
ios, which do not need tracking of each FL client’s progress.
These checkpoints are included in the extended strategy def-
inition, and are executed by the aggregator. At these points,
the aggregator writes most recent model parameters to a
replicated state object (essentially – a key-value dictionary),
which is then asynchronously copied to the rest of the nodes
in a separate thread, parallel to the main FL execution logic.
This way, all worker nodes are synchronised on the training
progress and equipped with the required execution logic in
order to step up as the new elected aggregator, if needed.

115

https://github.com/bakwc/PySyncObj/
https://github.com/SINTEF-9012/raft_flower/
https://github.com/SINTEF-9012/raft_flower/

Raft Protocol for Fault Tolerance and Self-Recovery in Federated Learning SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

Figure 1. Algorithm of a Raft-enhanced FL node.

6 Experimental Evaluation
To demonstrate the viability of the proposed approach, we
now proceed with the experimental evaluation of the im-
plemented proof of concept. The experiments involve train-
ing a convolutional neural network (CNN) on the CIFAR-10
dataset [22] in a federated setup. The full dataset consists
of 60,000 colour images 32x32 pixels each, divided into 10
classes with 6,000 images per class. CIFAR-10 is widely used
in the ML community for benchmarking image classifica-
tion algorithms, owed to its diverse content and moderate
size, making it a practical choice for experimenting with new
models and techniques. CNNs are one of the most used meth-
ods in deep learning, particularly suited for tasks like image
classification due to their proficiency in processing data with
grid-like structures, commonly present in imagery data. This
compatibility makes them a natural choice for analysing
the CIFAR-10 dataset. As already explained, Flower’s com-
patibility with various ML frameworks ensured seamless
integration with PyTorch9 [30] – a widely-used open-source
ML library developed by Facebook’s AI Research lab. Our
proof of concept extends the quick-start tutorial10 on how
to use Flower together with PyTorch. The setup consists
of a central server coordinating a pre-defined set of client
nodes. Each client independently processes a subset of the
9https://pytorch.org/
10https://flower.dev/docs/framework/tutorial-quickstart-pytorch.html

CIFAR-10 dataset. This distributed approach not only sim-
ulates the decentralised nature of FL, but also adheres to
privacy-preserving principles, as each client’s data remains
local. Clients generate individual model updates (approx.
250 kB in size when serialised) based on their local datasets,
which are then aggregated by the server to enhance the
model. These updates constitute one FL round. This baseline
experiment reflects a real-life FL scenario where, for example,
smartphones could train a model using their local photos,
such that each device (client) would process its data locally,
updating and improving a shared model while maintaining
data privacy.

6.1 Experiment Testbed: a Raspberry Pi Cluster
In our testbed, we established a network comprising 11 Rasp-
berry Pi 3 boards interconnected through a local wireless
network, forming the foundation for a FL cluster (1 aggrega-
tor node + up to 10 worker nodes). Each Raspberry Pi board
is assigned with an IP address and is SSH-accessible. All
boards run a 64-bit Raspbian Bullseye OS and are equipped
with all necessary software (Python 3.9 + all required pack-
ages). Such FL setup offered an easily controllable hands-on
environment to investigate the dynamics of decentralised
learning, perform the measurements and evaluate our pro-
posed approach against the baseline version of the Flower
framework. Using physical Raspberry Pi boards is also in-
tended to demonstrate the viability of the proposed approach
in real-world edge and IoT scenarios, offering insights into
resource constraints, scalability, model convergence, and
communication efficiency for FL applications.

6.2 Experiments and Results
In our experiments we gradually increased the number of
worker nodes from 1 (which is theminimum possible number
to start and run a FL process) to 10. This way, we were able
to observe how the two main measured metrics – namely,
aggregator re-election time and network throughput – react
to the increasing number of FL nodes. In both experiments
we compared our Raft-enhanced Flower implementation
against the baseline version of Flower’s PyTorch tutorial.11

6.2.1 Measuring the FL aggregator re-election time.
The main functional property of the described approach is
self-recovery – the ability of a running FL cluster to continue
the distributed training process even if the aggregator fails,
by re-electing a new aggregator and continuously replicating
the training progress across all FL nodes. By launching from
2 to 10 worker nodes, and intentionally killing the current
aggregator, we were able to observe how the nodes soon

11Please note that in this work, we are not reporting on the training results
of the FL process and the accuracy of the resulting ML model. In fact, our
implementation is based on an existing PyTorch CNN and does not affect
the internal ML training logic or data, which means the model accuracy
and loss remained the same as in the original baseline implementation.

116

https://pytorch.org/
https://flower.dev/docs/framework/tutorial-quickstart-pytorch.html

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Rustem Dautov and Erik Johannes Husom

* The inter-node communication in the leader election phase is simplified for clarity purposes. In reality, the Raft protocol relies on several rounds of bi-lateral message exchange
with random time-outs across all nodes.

** During the state replication at the checkpoints, the message exchange is more complicated and includes acknowledgement receipts from all nodes. Also, there is continuous
heartbeat monitoring of the aggregator node. For clarity purposes, we also omit these interactions in the diagram.

Figure 2. Raft-enhanced FL sequence diagram.

detect the absence of the aggregator and proceed with re-
electing a new one following the Raft protocol.
In this first batch of experiments, the remaining nodes

were able to successfully re-elect a new aggregator and com-
plete the training. The time required to complete the re-
election grows slightly with respect to the number of FL
nodes. As demonstrated in Fig. 3, with a FL cluster of up
to 10 nodes the re-election after a single failure can be ac-
complished within 4 seconds. In case of consecutive failures
of re-elected aggregators, the total re-election time over-
heads will be proportional to the number of failures. Some

additional time should also be considered for recovering the
replicated training progress, which will depend on a specific
ML training algorithm and the size of training parameters.
In any case, we consider the re-election time overhead to be
relatively low compared to the usual duration of ML training,
especially on resource-constrained devices. Noteworthy, in
the current implementation, the serialised training param-
eters are not persisted on disk, but stored in memory. This
implies that as long as there is a single functioning node
remaining from the original FL cluster, the state can be again
replicated and recovered on newly-added nodes.

117

Raft Protocol for Fault Tolerance and Self-Recovery in Federated Learning SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

1.27 1.33
1.46

1.7
1.97

2.25
2.47

2.76

3.13

3.76

Number of worker nodes in the FL cluster

Aggregator re-election time

Figure 3. Aggregator re-election time (in seconds).

6.2.2 Measuring the FL cluster throughput. Admit-
tedly, state replication using Raft introduces additional traf-
fic overheads on top of the baseline implementation, and
the goal of this experimental evaluation was to quantify
these overheads. To achieve this, we relied on the established
iftop12 utility that provides a convenient way of measuring
TCP/UDP network traffic per network port. In the proof-of-
concept implementation, we separated the network commu-
nication on the port 8080, where all native FL-related traffic
is exchanged, and the port 5000, which we have assigned
to the Raft-based leader election and state replication activi-
ties. This way, by distinguishing between the TCP traffic on
ports 8080 and 5000, we were able to measure the network
throughput separately for both cases.

In this experiment, another controllable parameter in ad-
dition to the number of nodes could be the number of FL
training rounds. The initial experiments quickly showed that
the network throughput proportionally increases with the
number of FL rounds (i.e., doubles with 2 rounds, triples with
3 rounds, and so on). For simplicity, in our experiments we
limited the FL operation to only 1 round.

In the second batch of experiments summarised in Fig. 4,
two clear trends can be observed. On the one hand, it is evi-
dent that with the baseline Flower strategy implementation
(i.e., blue bars), the amount of network traffic is in a linear
dependency to the number of FL node. This is quite under-
standable, given the star topology of the baseline FL setup.
On the other hand, the introduction of the Raft protocol and
state replication introduces considerable traffic overheads
(i.e., red bars), growing sharply with respect to the number
12https://pdw.ex-parrot.com/iftop/

of worker nodes. The trend, however, is still somewhat linear,
and the additional traffic is approx. 5 times more than the
baseline traffic. This increase can be explained by the internal
design and implementation of the Raft protocol which relies
on a mesh topology to perform leader election, followed by
a star topology for state replication and continuous heart-
beat message interchange. While this might be an acceptable
price for having stateful self-recovery, there is still room for
further traffic optimisations, as we discuss in Section 7.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

0.98 2.15 3.1 4.06 5.02 5.97 6.93 7.88 8.84 9.8

1.77
5.17

7.94
10.9

16

22.6

29.3

36.8

43.9

49.1

Number of worker nodes in the FL cluster

Baseline Flower
Flower enhanced with RAFT

Figure 4. Network throughput (in MBs).

6.3 Assumptions and Threats to Validity
Model initialisation and code redundancy: The proof-of-
concept implementation assumes that each node might be
re-elected as a new aggregator, and thus initially possesses
the ML model. This might not align with real-world scenar-
ios where nodes might join the network dynamically with
different initial states. Same goes for the code base, which is
the same for all nodes, even though only one of them will
execute the aggregator logic.
Idealised experiment conditions: The conducted exper-
iments on network throughput were ‘clean runs’, i.e., did
not include any node crashes and re-elections. This does not
reflect real-world conditions where network instability, node
failures, and dynamic changes are common. In such cases
of disruption, the throughput is expected to be somewhat
higher, depending on the size of the FL cluster. Furthermore,
same considerations apply to the re-election time, which
will depend on the congestions and latency of real-world
networks.
Data handling and external traffic: In the experiments,
training and evaluation datasets were pre-downloaded and

118

https://pdw.ex-parrot.com/iftop/

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Rustem Dautov and Erik Johannes Husom

not part of the network traffic. In practice, data might be gen-
erated or collected on the nodes, whichmeans additional con-
siderations for data traffic and bandwidth usage are needed.
The assumption of pre-downloaded data simplifies the ex-
periment, but might not accurately reflect the complexities
of data management in a real-world distributed setting.
Increased network traffic and workload: One of the in-
herent benefits of FL in resource-constrained environments
is the minimal network traffic, primarily involving model pa-
rameter exchanges. Our approach, with Raft’s mechanisms
for log replication and state synchronisation, introduces sub-
stantial network traffic and (de)serialisation overheads. This
could challenge the suitability of the proposed system in
environments with limited bandwidth or computational re-
sources, deviating from one of the key advantages of the
traditional FL. On the other hand, this footprint is still con-
siderably lower than, for example, using DLT or a more
heavy-weight and complex consensus algorithm like Paxos.
In our CIFAR-10 example, the average size of serialised

parameters is approximately 250 kB. In real-life applications,
particularly those involving more complex ML models or
larger datasets, the size of these serialised parameters can
be significantly larger, reaching the order of megabytes or
even more. Multiplied by an increased number of federated
nodes (i.e., tens or hundreds), and a higher number of train-
ing rounds, the network traffic burden escalates considerably.
Such scenarios need to be considered, particularly in environ-
ments where bandwidth is a limiting factor. This potential
increase in network load underscores the need for further
optimisations to maintain the efficiency in more complex FL
scenarios.

7 Conclusion and Future Work
In conclusion, this paper has presented a novel and promis-
ing approach to enhance the robustness and reliability of
FL systems through the integration of self-recovery mecha-
nisms using the Raft consensus protocol. By leveraging Raft’s
distributed consensus algorithm, we have addressed the in-
herent challenges of FL, such as node failures and network
inconsistencies, leading to a more resilient and fault-tolerant
system. Our experimental results demonstrate the viability
of the proposed self-recovery mechanism, albeit at a cost
of increased network traffic. The Raft protocol’s ability to
dynamically elect leaders and maintain consistency among
distributed nodes has proven instrumental in reducing down-
time and mitigating data loss.
In more practical terms, the benefits of our proposed ap-

proach extend beyond the theoretical realm, offering a real-
world solution to enhance the reliability of FL systems in dis-
tributed and dynamic cyber-physical environments. As the
demand for FL continues to grow across various domains, in-
corporating light-weight self-recovery mechanisms without
strict dependency on external heavy-weight tools represents

a significant step forward in ensuring the scalability, fault
tolerance, and long-term sustainability of these systems. The
findings presented in this paper contribute valuable insights
to the ongoing research and development efforts aimed at
advancing the field of FL.

7.1 Future work
Evaluation against DLT: DLT and Raft-based log repli-
cation offer distinct approaches to state replication in dis-
tributed systems. DLT, commonly associatedwith blockchain,
employs decentralised consensus mechanisms, providing
tamper resistance and transparency. However, it may face
scalability challenges and can be computationally inten-
sive. In contrast, Raft offers a more efficient consensus ap-
proach, particularly suitable for scenarios prioritising sim-
plicity, quick consensus, and scalability. The choice between
the two depends on specific application requirements, with
DLT excelling in trust-sensitive applications like crypto-
currencies, while Raft being more suitable for distributed
databases and systems such as FL clusters where rapid, de-
centralised consensus is critical. A more formal evaluation
of the two approaches against a common benchmark would
be a promising next step for further work.
Selective state replication: As demonstrated by the ex-
periments, there is a considerable traffic overhead growing
sharply with respect to the number of FL nodes. In order
to reduce this, it might me convenient to replicate the state
only to a limited sub-set of nodes, which are most suitable to
become the newly elected aggregator. The suitability can be
decided based on, for example, the physical resources avail-
able to some devices, i.e., powerful computing resources,
network bandwidth, or fixed power supply [8].
Gossip algorithms for more traffic-efficient state repli-
cation: Another possible solution to the same challenge is
applying a gossip algorithm, where each node communicates
with a small subset of randomly chosen neighbours, exchang-
ing information about the system state. By disseminating
information through a series of local interactions, gossip
algorithms efficiently propagate updates throughout the net-
work without relying on global coordination. This selective
and random communication strategy is expected to signif-
icantly reduce the overall volume of messages exchanged
compared to our own approach.

8 Acknowledgments
This work has received funding from: the European Union’s
Horizon Europe research and innovation programme under
grant agreements No. 101135576 (INTEND), No. 101095634
(ENTRUST), and No. 101120657 (ENFIELD), the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No. 101020416 (ERATOSTHENES),
the Research Council of Norway’s BIA-IPN programme un-
der grant agreement No. 309700 (FLEET).

119

Raft Protocol for Fault Tolerance and Self-Recovery in Federated Learning SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

References
[1] Monik Raj Behera, Suresh Shetty, Robert Otter, et al. 2021. Federated

learning using peer-to-peer network for decentralized orchestration
of model weights. (2021).

[2] Kevin Beineke, Stefan Nothaas, and Michael Schöttner. 2016. High
throughput log-based replication for many small in-memory objects.
In 2016 IEEE 22nd International Conference on Parallel and Distributed
Systems (ICPADS). IEEE, 535–544.

[3] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier
Fernandez-Marques, Yan Gao, Lorenzo Sani, Kwing Hei Li, Titouan
Parcollet, Pedro Porto Buarque de Gusmão, et al. 2020. Flower: A
friendly federated learning research framework. (2020). https:
//doi.org/10.48550/arXiv.2007.14390

[4] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah.
2005. Gossip algorithms: Design, analysis and applications. In Pro-
ceedings IEEE 24th Annual Joint Conference of the IEEE Computer and
Communications Societies., Vol. 3. IEEE, 1653–1664.

[5] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah.
2006. Randomized gossip algorithms. IEEE transactions on information
theory 52, 6 (2006), 2508–2530.

[6] Navin Budhiraja, Keith Marzullo, Fred B Schneider, and Sam Toueg.
1993. The primary-backup approach. Distributed systems 2 (1993),
199–216.

[7] Miguel Castro and Barbara Liskov. 2002. Practical byzantine fault
tolerance and proactive recovery. ACM Transactions on Computer
Systems (TOCS) 20, 4 (2002), 398–461.

[8] Rustem Dautov and Salvatore Distefano. 2019. Automating IoT data-
intensive application allocation in clustered edge computing. IEEE
Transactions on Knowledge and Data Engineering 33, 1 (2019), 55–69.

[9] Rustem Dautov and Salvatore Distefano. 2020. Stream processing on
clustered edge devices. IEEE Transactions on Cloud Computing 10, 2
(2020), 885–898.

[10] Rustem Dautov, Salvatore Distefano, Dario Bruneo, Francesco Longo,
Giovanni Merlino, and Antonio Puliafito. 2018. Data processing in
cyber-physical-social systems through edge computing. IEEE Access 6
(2018), 29822–29835.

[11] Rustem Dautov, Erik Johannes Husom, Fotis Gonidis, Spyridon Pap-
atzelos, and Nikolaos Malamas. 2022. Bridging the Gap Between Java
and Python in Mobile Software Development to Enable MLOps. In
2022 18th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob). IEEE, 363–368.

[12] Rustem Dautov, Erik Johannes Husom, Sagar Sen, and Hui Song. 2023.
Towards Community-Driven Generative AI. Position Papers of the 18th
Conference on Computer Science and Intelligence Systems, Annals of
Computer Science and Information Systems 36 (2023), 43–50.

[13] Atis Elsts, Efstathios Mitskas, and George Oikonomou. 2018. Dis-
tributed ledger technology and the internet of things: a feasibility
study. In Proceedings of the 1st Workshop on Blockchain-enabled Net-
worked Sensor Systems. Association for Computing Machinery, 7–12.

[14] Greg N Frederickson and Nancy A Lynch. 1987. Electing a leader in a
synchronous ring. Journal of the ACM (JACM) 34, 1 (1987), 98–115.

[15] István Hegedűs, Gábor Danner, and Márk Jelasity. 2019. Gossip learn-
ing as a decentralized alternative to federated learning. In Proceedings
of the 19th IFIP International Conference on Distributed Applications and
Interoperable Systems, DAIS 2019. Springer, 74–90.

[16] István Hegedűs, Gábor Danner, and Márk Jelasity. 2021. Decentral-
ized learning works: An empirical comparison of gossip learning and
federated learning. J. Parallel and Distrib. Comput. 148 (2021), 109–124.

[17] Heidi Howard, Malte Schwarzkopf, Anil Madhavapeddy, and Jon
Crowcroft. 2015. Raft refloated: Do we have consensus? ACM SIGOPS
Operating Systems Review 49, 1 (2015), 12–21.

[18] Chenghao Hu, Jingyan Jiang, and Zhi Wang. 2019. Decentralized
federated learning: A segmented gossip approach. arXiv preprint
arXiv:1908.07782 (2019). https://doi.org/10.48550/arXiv.1908.07782

[19] Erik Johannes Husom, Rustem Dautov, Adela Nedisan Videsjorden,
Fotis Gonidis, Spyridon Papatzelos, and Nikolaos Malamas. 2022. Ma-
chine Learning for Fatigue Detection using Fitbit Fitness Trackers.
In Proceedings of the 10th International Conference on Sport Sciences
Research and Technology Support (icSPORTS 2022). SciTePress, 41–52.

[20] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet,
Mehdi Bennis, ArjunNitin Bhagoji, Kallista Bonawitz, Zachary Charles,
Graham Cormode, Rachel Cummings, et al. 2021. Advances and open
problems in federated learning. Foundations and Trends® in Machine
Learning 14, 1–2 (2021), 1–210.

[21] Hyesung Kim, Jihong Park, Mehdi Bennis, and Seong-Lyun Kim. 2019.
Blockchained on-device federated learning. IEEE Communications
Letters 24, 6 (2019), 1279–1283.

[22] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny
images. Master’s Thesis. University of Toronto, ON, Canada.

[23] Li Li, Yuxi Fan,Mike Tse, and Kuo-Yi Lin. 2020. A review of applications
in federated learning. Computers & Industrial Engineering 149 (2020),
106854.

[24] Yuan Liu, Zhengpeng Ai, Shuai Sun, Shuangfeng Zhang, Zelei Liu, and
Han Yu. 2020. Fedcoin: A peer-to-peer payment system for federated
learning. In Federated learning: privacy and incentive. Springer, 125–
138.

[25] Chuan Ma, Jun Li, Long Shi, Ming Ding, Taotao Wang, Zhu Han, and
H Vincent Poor. 2022. When federated learning meets blockchain: A
new distributed learning paradigm. IEEE Computational Intelligence
Magazine 17, 3 (2022), 26–33.

[26] Quazi Ehsanul Kabir Mamun, Salahuddin Mohammad Masum, and
Mohammad Abdur Rahim Mustafa. 2004. Modified bully algorithm
for electing coordinator in distributed systems. WSEAS Transactions
on Computers 3, 4 (2004), 948–953.

[27] Shojiro Muro, Tiko Kameda, and ToshimiMinoura. 1984. Multi-version
concurrency control scheme for a database system. J. Comput. System
Sci. 29, 2 (1984), 207–224.

[28] Dinh C Nguyen, Ming Ding, Quoc-Viet Pham, Pubudu N Pathirana,
Long Bao Le, Aruna Seneviratne, Jun Li, Dusit Niyato, and H Vincent
Poor. 2021. Federated learning meets blockchain in edge computing:
Opportunities and challenges. IEEE Internet of Things Journal 8, 16
(2021), 12806–12825.

[29] Diego Ongaro and John Ousterhout. 2014. In search of an understand-
able consensus algorithm. In 2014 USENIX annual technical conference
(USENIX ATC 14). USENIX Association, 305–319.

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. Py-
Torch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(Eds.), Vol. 32. Curran Associates, Inc.

[31] Oliver Lester Saldanha, Philip Quirke, Nicholas P West, Jacqueline A
James, Maurice B Loughrey, Heike I Grabsch, Manuel Salto-Tellez, Eliz-
abeth Alwers, Didem Cifci, Narmin Ghaffari Laleh, et al. 2022. Swarm
learning for decentralized artificial intelligence in cancer histopathol-
ogy. Nature Medicine 28, 6 (2022), 1232–1239.

[32] Muhammad Shayan, Clement Fung, Chris JM Yoon, and Ivan Beschast-
nikh. 2020. Biscotti: A blockchain system for private and secure feder-
ated learning. IEEE Transactions on Parallel and Distributed Systems
32, 7 (2020), 1513–1525.

[33] Robbert Van Renesse and Deniz Altinbuken. 2015. Paxos made moder-
ately complex. ACM Computing Surveys (CSUR) 47, 3 (2015), 1–36.

[34] Stefanie Warnat-Herresthal, Hartmut Schultze, Krishnaprasad Lin-
gadahalli Shastry, Sathyanarayanan Manamohan, Saikat Mukherjee,

120

https://doi.org/10.48550/arXiv.2007.14390
https://doi.org/10.48550/arXiv.2007.14390
https://doi.org/10.48550/arXiv.1908.07782

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Rustem Dautov and Erik Johannes Husom

Vishesh Garg, Ravi Sarveswara, Kristian Händler, Peter Pickkers, N Ah-
madAziz, et al. 2021. Swarm learning for decentralized and confidential
clinical machine learning. Nature 594, 7862 (2021), 265–270.

[35] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Feder-
ated machine learning: Concept and applications. ACM Transactions

on Intelligent Systems and Technology (TIST) 10, 2 (2019), 1–19.

Received 20 February 2007; revised 12 March 2009; accepted 5 June
2009

121

