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ABSTRACT The mining and metal processing industries are undergoing a transformation through
digitization, with sensors and data analysis playing a crucial role in modernization and increased efficiency.
Vibration sensors are particularly important in monitoring production infrastructure in metal processing
plants. This paper presents the installation of vibration sensors in an actual industrial environment and the
results of spectral vibration data analysis. The study demonstrates that vibration sensors can be installed in
challenging environments such as metal processing plants and that analyzing vibration patterns can provide
valuable insights into predicting machine failures and different machine states. By utilizing dimensionality
reduction and dominant frequency observation, we analyzed vibration data and identified patterns that are
indicative of potential machine states and critical events that reduce production throughput. This information
can be used to improve maintenance, minimize downtime, and ultimately enhance the production process’s
overall efficiency. This study highlights the importance of digitization and data analysis in the mining and
metal processing industries, particularly the capability not only to predict critical events before they impact
production throughput and take action accordingly but also to identify machine states for legacy equipment
and be part of retrofitting strategies.

INDEX TERMS Data management, data mining, classification, ferrosilicon production, sensor data, time
series, vibration sensors.

I. INTRODUCTION

Within mining and metal processing industries, digital
transformation is becoming a driving force, changing the
nature of companies and interaction with employees, com-
munities, government, and the environment at every step
of the value chain [1], [2], [3]. The metal processing
industry is already gathering a huge amount of data
from sensors to collect real-time information about the
performance of their infrastructure [4], [5]. Since many
processes and machines can possibly generate data, smart
sensors—instruments with on-board signal conditioning or
feature extraction capabilities—become a primary data source
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for producing insights via big data analytics [6], [7]. There
remain, however, many areas where the industry lacks
necessary and real-time information. Commercial sensor
equipment may be available but could be too expensive
or inadequate for direct implementation in the process.
In addition, conditions related to the hostile nature of many
processes (e.g., high temperature, dust, abrasion, corrosion,
etc.) may render data acquisition challenging [8]. Research
is thus needed to identify, evaluate, or develop sensor
technologies (both at the hardware and software levels) to
be used for real-time data gathering in harsh environments.
To investigate the use of sensor technologies in this context,
a case study was developed by Elkem'—one of the world’s

lhttps://www.elkem.com, accessed on March 13, 2023
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leading providers of advanced material solutions—exploring
vibration monitoring of mechanical sieving equipment for
fault detection and process optimization. The task focused on
deploying suitable sensors to monitor the material separators
at Elkem Bjglvefossen plant in Norway, with the goal
to detect unforeseen events and eventually increase the
production throughput. Prior investigations using off-the-
shelf IoT sensors had been unsuccessful in characterizing and
detecting faulty behavior at this plant. It was concluded that
commercial IoT solutions were not appropriate for the task.
Such sensors are almost always battery-powered, leading to
low data rates, short maintenance intervals, or both. Early
fault signatures are much weaker than the ordinary shaking
behavior and must be extracted through complex feature
engineering based on large datasets [9], [10]. A custom, high-
performance solution was thus developed to supply a set
of 1000 samples per second continuous wave-forms, from
which a wide landscape of feature extraction techniques could
be explored. We proposed a full stack pipeline from sensor
installation to data collection, management, and analytics to
reach the above-mentioned goal.

The use of vibration sensors for machine condition
monitoring has been rigorously used in various industries
and has also been presented in the scientific literature (e.g.,
[11], [12], [13], [14]), however, without deployment and large
scale validation of the proposed methodologies in industrial
settings. The lack of studies in an industrial setting is also
reported in a review of more than 100 articles in [15].
It was shown in [16] that vibration data can detect quality
faults in additive manufacturing or detect wear of rotatory
elements of a paper mill machine [17]. In [ 18], the monitoring
process of the vibrations (as recorded by accelerometers) was
successfully applied for tool wear estimation, and in [19],
the authors presented a method to track the operational
status of legacy manufacturing systems using vibration data.
In [20], it was successfully demonstrated that vibration
measurements can be used to detect structural damages in
concrete structures. Such previous results indicate that the
installation of vibration sensors and continuous evaluation of
vibration patterns can also bring value to the manufacturing
processes in ferrosilicon production, which we aimed to
investigate with the work presented in this paper.

To start with, a set of 3-axis micro-electromechanical
systems (MEMS) accelerometers were successfully installed
at selected positions on a material separator at the Elkem
Bjglvefossen plant. Capacitive and piezoelectric sensors offer
excellent performance for condition monitoring, but they can
be costly. As a result, there is increasing interest in replacing
such conventional sensors with MEMS-based sensors for
this kind of application, which was also our motivation to
choose this technology. The collected data was analyzed
with a set of unsupervised methods to project the vibration
measurements into latent feature spaces to quantitatively
compare and develop visual intuitions about abnormal and
unwanted behavior of the separator in the production process.
In addition, by performing a logistic regression, we could
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show that the vibration data could be potentially used to train
a statistical model to predict various performance indicators
and machine states within the factory. Specifically, we were
able to identify different modes of operation of the separator
and two critical failure events just by observing the dominant
frequency of the oscillations. Hence, we postulate that a
statistical model can be used to identify and possibly predict
the behavior of the separator to provide insight into the
ferrosilicon production process.

While the principal focus of this paper does not revolve
around the introduction of novel hardware or software
methodologies, it does serve as a demonstrative case
study illustrating the feasibility of employing cost-effective
vibration sensing and data analytics within a wide-scale
deployment. Furthermore, the paper reports on the diverse
challenges that necessitated resolution throughout the course
of this endeavor.

The main contributions of this work include: (1) devel-
opment of a low-cost, high-performance vibration sensing
solution; (2) installation of the sensing framework in a real
industrial setting in a harsh environment; (3) collection and
management of high-density vibration data; (4) statistical
analysis of collected data which showed its potential to detect
critical events and identify patterns related to machine states
but without prospective validation due to changes in the
production after data collection; (5) a labeled data set is made
publicly available.

The remainder of this paper is organized as follows.
Section II describes the sensor development and installation,
and the data acquisition and processing pipelines. Section III
describes the results of data processing and analysis, and what
patterns were identified. Section IV discusses the results of
this case study and data analysis, and Section V summarizes
this paper and outlines potential for future work.

Il. SENSOR DEVELOPMENT, INSTALLATION, DATA
ACQUISITION, AND PROCESSING

In this section, we present details on the production process
and the installation of the sensors (Section II-A), the design
of the sensors (Section II-B), and the data acquisition pipeline
(Section II-C). The hardware set-up and the data acquisition
pipeline were briefly introduced in [21] in the context of data
quality. Section II-D provides an overview of the collected
data, and in Section II-E, we describe how the collected data
was processed for the statistical analysis. This section can be
regarded as the description of the materials and methods used
for the experiment.

A. FERROSILICON PRODUCTION PROCESS AND SENSOR
INSTALLATION

The Elkem Bjglvefossen facility specializes in producing
ferrosilicon (FeSi) and ferrosilicon magnesium (FSM) master
alloys. Elkem Bjglvefossen is among the world’s largest
producers of FSM. Three reduction furnaces deliver the base
metal, which is then alloyed and refined to the right quality
of FeSi or FSM. These alloys are important additives in the
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FIGURE 1. Depiction of the crushing and sieving process of Elkem’s FeSi
production in Bjelvefossen. Arrows show the direction of conveyor
movement. The packing speed is derived from the scale where the packed
bags with the final product are weighed, and the information is stored in
the ERP system.

manufacturing of steel products. Silicon in the form of FeSi
is used to remove oxygen from the steel and as an alloying
element to improve the final quality of the steel. Silicon
increases strength and wear resistance, elasticity (i.e., spring
steels), scale resistance, and heat-resistant steels and lowers
electrical conductivity and magnetostriction.

After tapping and refining, the ferro-alloys are crushed to
grains ranging from 1 mm to 25 mm in size. Consumers
of FeSi and FSM have strict requirements for particle size,
related mainly to the chemical kinetics of their refining and
alloying processes. For this reason, the crushed material is
separated in sieves and packaged by particle size before
shipment. Two lattice gratings inside the Mogensen shaker
separate the material according to the required particle size.
The crushing and sieving process is depicted in Figure 1. The
raw material is crushed once before first sieving. Oversized
material is transported to a second crusher for refinement
before being sieved again. The final material is packed in bags
for shipping. There are several scales located at the silos that
measure the current weight of material inside this silo.

The subject of the present study is a mechanical shaker
platform containing one or more such sieves. The shaker is a
Mogensen S0556 that was installed in 1996 in Bjglvefossen
and is no longer produced in this type. This device is powered
by two counter-rotating 1.2-horsepower AC motors operating
at 960 RPM. Together with the spring suspension, these
cause an elliptical motion that both transports and scatters the
incoming material across the sieve. The shaker is engineered
so that the motion transitions from a slanted ellipse at

2https://Www.mog:,rensen.se, accessed on March 13, 2023
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the in-feed to nearly linear at the output. It is, therefore,
of diagnostic interest to deploy multi-axis accelerometers at
multiple locations.

Figure 2 depicts the Mogensen separator, the placement
of the logger, and one of the two vibration sensors. The first
sensor was mounted on the suspension block near the outlet
chute, where motion is purely vertical; this was confirmed
by checking the relative vibration magnitude in the x-y-z
directions. The second sensor was mounted on the service
door flange right above the motors and angled to the principal
axes of the elliptical motion. These locations were chosen to
cover a wide range of motion directions of the separator. The
data logger was installed nearby on a stationary platform.

Logger, mounted on the
shakers frame, featuring
integrated environmental
sensors and

" Shaker, located at
Elkem Bjglvefossen

P~ i ——

Accelerometer,
mounted on the shaker

FIGURE 2. Vibration sensing installation in ferrosilicon crushing facility at
Elkem Bjolvefossen, Norway, on the Mogensen shaker. One sensor is
shown in the photo, whereas two have been installed on the shaker.

B. HARDWARE SET-UP OF THE VIBRATION SENSORS

As depicted in Figure 3, the data acquisition was performed
with the following hardware installed on-site in the crushing
and sieving facility:

o Two purpose-built three-axis vibration sensors.

o A custom-made data logger unit to sample and collect

the data.

o Lenovo Thinkbook PC with Windows 10 to send the data

to the cloud and to act as a remote access point.

o TP-Link Archer MR 600 4G LTE router to provide a link

to the Internet.

The vibration sensors use ADXL356C accelerometers
from Analog Devices.> These include a 300 Hz low-pass
filter for analog conditioning. The sensors were validated on a
vibration test bench. Since the experiment is trend-based and
not reliant on absolute measurements, resources and effort
were not spent on obtaining certified calibrations.

The data logger unit comprises an MCP3208
8-channel analog-digital converter (ADC) and an ESP32

3https://www.anallog.com, accessed on March 13, 2023
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FIGURE 3. A vibration sensor encapsulated in a 3D printed watertight
package with wiring (right) together with an overview from inside the
logger enclosure that contains the ESP32 WROOM boards and the power
supply unit (left).

WROOM-32E* for data acquisition, a 32GB SD-card for
local data storage as a fallback in case of unexpected
transmission failures, a second ESP32 WROOM-32E serving
as an up-time watchdog to monitor the logger activity, and a
230VAC-to-12VDC power supply.

The set-up is custom made in-house and installed in a
separate network at the plant to ensure full control over the
acquisition pipeline. To avoid aliasing, data was sampled at
1 kHz per channel, which is more than 3 times the bandwidth
of the sensor. We study up to 10 harmonics of the 16 Hz
shaker action, leaving enough bandwidth for apodization and
digital pre-filtering.

Since the data logger was purpose-built and aspects of
the environment were unknown, conservative design choices
were made with respect to the sampling strategy and resulted
in non-uniform sampling coverage as described later in the
paper. Attention was given to designing a dust and watertight
encapsulation of the equipment to prevent damage during wet
cleaning of the facility and to ensure functional longevity
in the very dusty crushing-and-sieving environment. Due to
the presence of large AC motors that drive the separators,
attention was given to electromagnetic shielding of cables and
ground loop avoidance. Stability and quality of 4G reception
inside the premises were not known beforehand, nor the
quality of Wi-Fi coverage. Therefore, the system had to be
built to log even without access to Wi-Fi or the Internet. The
logger could continue to save data to the SD-card for several
weeks without the need to access a physical network. Finally,
to ensure software stability, multi-threading was eschewed in
favor of an alternating pattern of logging and uploading data.

C. DATA ACQUISITION PIPELINE

The data is transferred through FTP on WiFi to the Windows
computer, which was placed near the logger at the Mogensen
separator. A Telegraf® service was running on the Windows
machine, constantly sending newly arrived accelerometer
data to an InfluxDB® instance deployed in the cloud. Figure 4

4https://www.espressif.comlen/products/modules/c:sp32, accessed on
March 13, 2023

5https://www.inﬂuxdata,com/time—series—platform/telegraf, accessed on
March 13, 2023

6https://Www.inﬂuxdata.com/get-inﬂuxdb, accessed on March 13, 2023
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FIGURE 4. Overview of the data sampling pipeline from the vibration
sensor into a time series database in the cloud.

depicts a high-level architecture of the logging pipeline from
the sensors to the cloud. Data is sampled during an acquisition
window of three minutes at 1 kHz before it is sent to the
Windows PC during a 17-second sampling pause for further
handling, as depicted in Figure 5. The figure also shows
the 3-axis acceleration signal of the first sensor as it is
being acquired by the ADCs of the ESP32 WROOM board.
As expected, the motion is linear sinusoidal and aligned
nearly along the z-axis (ADC3, ADC7) with some forward-
axis motion (ADC1, ADCS5). The labels ADC4 and ADCS8
are used for the reference voltage and are not relevant for
our analysis. There is lower amplitude side-to-side motion
(ADC2, ADC6), as expected. Data from the second sensor
is qualitatively similar.

TABLE 1. Overview of the vibration data and reasons for data loss.

Time Period Data Description

April 7 Sensors were installed during the downtime of
the facility.
April 7—-May 9 Sampling duty cycle is 999 sec/230 sec, resulting

in an overall data loss of ~23%, and mean con-
secutive data sampling window of 943.36 sec-
onds.

Data deterioration and even complete drop-outs
due to cable wear from the mechanical abrasion
of the connecting sensor cable.

Vibration data available only for a single sensor
(ADC1-ADC3) due to a broken cable.

May 26 — September 8 | Sampling duty cycle is 179 sec/17 sec, resulting
in an overall data loss of ~9%, and mean consec-
utive data sampling window of 178.94 seconds.
Data logger turned off to fix the broken ac-
celerometer cable.

Production stop due to faulty motor installation
on one of the conveyor belts on August 4 and
subsequent downtime of the facility to fix the
issue. The vibration sensor went back into oper-
ation on August 8, although the Mogensen unit
was already operational on August 5.

August 16 — August 19 | Downtime of the facility for cleaning.
September 8 End of the experiment due to decommissioning
and removal of the Mogensen separator.

April 30 — May 26

May 26 — June 15

June 14 - June 15

August 5 — August 8

The microcontroller sampling routine, as well as the
process to send the data over FTP to the Windows server, runs
as a single thread. While the data is being sent to permanent
storage, no data acquisition can take place in the current setup.
Two sampling strategies have been configured for different
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FIGURE 5. Top: Vibration data from a single accelerometer sampled at 1 kHz for 3 minutes with acquisition gaps of 17 seconds.
Bottom: Vibration data for five seconds from a single sensor consisting of three measurements at orthogonal axes.

time periods, as described in Table 1, providing a detailed
overview of the data acquisition settings and the reasons for
data loss during specific periods. One measurement cycle
consisted of three minutes of data acquisition followed by an
acquisition pause of 17 seconds for data transfer, as seen in
Figure 5, resulting in an 8.6% data loss per acquisition cycle.
The different acquisition timings resulted from adjustments
to the sampling strategy during the measurement campaign
to reduce data loss.

D. DATA INVENTORY

1) VIBRATION DATA

We acquired vibration data from the two sensors. Each
sensor measures acceleration in three axes with three different
ADC:s. Due to various reasons such as power outage, planned
facility downtime, and cable wear, the collected data is not
contiguous over the whole time of the experiment (Figure 6).
In addition, the sampling was not continuous due to the need
for transferring data from the SD-card to the FTP-server (by
design). The resulting sampling pattern for signal acquisition
is described in Table 1 together with other reasons for data
loss.

Available vibration data in % of day
2022

w v om o4 = o4 =

FIGURE 6. Data that was acquired in % of a day for the period of the
experiment.

2) PROCESS DATA

In addition to the vibration data, we collected Manufacturing
Execution System (MES) data, as well as process data from
the Enterprise Resource Planning (ERP) database, providing
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information about the material currently being packed and
data from the scales at the material packing station where the
bags with completed production were packed. MES data has
a resolution of 5 seconds, and the process data from ERP has
a resolution of roughly 10 minutes. This operational data is
meant to provide insight into the current state and throughput
of the facility and will serve as labels for the correlation
analysis with the vibration data.

Another important performance indicator is overfeeding.
It occurs when the separator lattice gratings are clogged,
and material can no longer be sieved. This happens regularly
and is only reflected by the decrease in the sieving speed and
subsequently the packing speed, which can be detected by an
experienced process engineer. To address this issue, the sepa-
rator is stopped periodically for manual cleaning of the sieve.
Although undesirable, no concrete data exist that mark when
overfeeding happens and what its influence is on the down-
stream packing speed, which is reflected by the ERP data.

3) EVENTS REPORTED BY PROCESS ENGINEERS
Furthermore, two unforeseen events were reported by the
process engineers of the facility that led to unwanted
production stops. The first event happened on May 3 due to
a motor failure on the Mogensen shaker. The second event
occurred on August 4, leading to a complete production
stoppage, where the reason was a fault on one of the conveyor
belts. The conveyor belt was moving in the wrong direction,
transporting the material to the separator instead of away from
it. This led to a long downtime of the facility to fix the issue,
clean the separator, and tidy up the facility. These issues could
have been prevented if an effective detection of failures had
been in place.

E. DATA PROCESSING

1) PREPARATION OF THE FACILITY'S MES AND ERP DATA
To extract the data points from the MES data that reflect
the sieving speed, we performed outlier detection on the
first temporal derivative of the data, rejecting 20% of data
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points with Isolation Forest [22]. This outlier rejection was
necessary as the scale is sometimes perturbed by the operator
when handling the bag, resulting in inconsistent, rapidly
changing measurements. After outlier rejection, the weight
measurements were replaced through linear interpolation.

Additionally, on April 17 and July 27-28, a discrepancy
was observed between sieving speed (MES) and packing
speed (ERP) due to label mismatch. The bags were wrongly
labeled as coming from a different separator, leading to the
appearance of no packed material for those days. These days
were excluded from our analysis.

2) PRE-PROCESSING OF VIBRATION DATA WITH FOURIER
TRANSFORM FOR SPECTRAL ANALYSIS

The available vibration data were transformed to the fre-
quency domain through a Fourier transform on a window
size of 1 minute to observe potential changes in dominant
frequencies. Here, we used the Python library SciPy.

To develop intuitions on how the vibration patterns and
frequencies are related not only to the machine states and
failures of the Mogensen separator but also to possible
throughput characteristics in the overall production process,
we performed common statistical evaluations such as dimen-
sionality reduction and clustering, and a simple regression.
We assumed that analyzing the frequencies would allow us to
better interpret and understand the data. Moreover, it allowed
us to reduce the amount of data by twofold from 60,000
to 30,000 samples per minute. We further reduced the data
load in two different ways: one where we sub-sampled the
full frequency spectrum of 0-500 Hz from 30,000 to 1,000
points per minute and per accelerometer, and the other where
we took the full spectral resolution but observed only the
frequencies < 25 Hz, resulting in 1,500 points per minute and
per accelerometer. In this fashion, we processed every day of
the available vibration data for each of the three channels of
the two vibration sensors.

Furthermore, we performed a correlation analysis between
the vibration sensors and their axes, regarding them as
six different channels. Already from the raw accelerometer
signals that essentially resemble a sinusoidal, we postulated
that all six channels are heavily correlated. Under this
assumption, we investigated whether all channels are needed
to represent the information. We calculated the Pearson
correlation coefficient (PCC) on the mean power spectrum.
Further, we performed a simple principal component analysis
(PCA) to see if we could transform the multivariate signal
from six channels into fewer. Here, we used the Python library
seaborn.

3) DIMENSIONALITY REDUCTION OF SPECTRAL VIBRATION
DATA

For the dimensionality reduction, the features are represented
by the frequencies detected by the two vibration sensors for
every minute when the Mogensen unit was operational. Due
to different sampling strategies and signal drops for one of
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the vibration sensors, we divided the data into three parts as
shown in Table 2 to calculate and analyze the clusters that
form after dimensionality reduction to two dimensions on all
6,000 features in time.

TABLE 2. Partitions of the vibration data due to different characteristics
of the sampling and data availability.

Time Period
Part 1: April 7—May 9

Data Description

Analyses the data from the 17 minutes con-
secutive sampling periods.

Analyses the data from the 3 minutes con-
secutive sampling periods. Here, we miss
data from one of the vibration sensors due
to a broken cable. Therefore, only data
from 3 accelerometers is available.
Analyses the data from the 3 minutes
consecutive sampling periods and corre-
sponds.

Part 2: May 25 — June 15

Part 3: June 15 on-wards

To understand whether we can detect clustering and out-
liers in the vibration data, we applied common dimensionality
reduction methods such as PCA, multidimensional scaling
(MDS), t-distributed stochastic neighbor embedding (t-SNE),
and uniform manifold approximation and projection (UMAP)
to the extracted frequency spectra and qualitatively evaluated
the clusters that formed in the first two dimensions by color-
coding them with the labels of interest, such as particle
size, packing speed, or operational status of the sieve. Here,
we used the Python libraries scikit-learn and umap. It was
suggested that UMAP performed best on spectral frequency
data, as shown in [23] and [24], where the authors showed that
UMAP-+HDBSCAN provides the best results on time series
and spectrogram dimensionality reduction and classification.
Figure 7 shows a summary of the collected data that is used
for clustering and correlation analysis.

l ERP I' MES II even(s‘ [vibrationl

S 8d E

Mogensen
on/off
@ particle size )
sieving speed + dominant

frequency

correlation

UMAP

packing speed .
clustering

oQoo
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status spectrogram %

\ ) \_ heatmap ) A

FIGURE 7. Depiction of the data processing pipeline. Labels are extracted
from the MES and ERP data in addition to reported events by process
engineers to analyze and explain variability in the collected vibration
data through correlation of the dominant frequency and dimensionality
reduction in frequency domain after a Fast Fourier Transform (FFT).

We performed a Multinomial Logistic Regression analysis
to show that the spectra of the vibration data carry information
about the labels as extracted from the MES and ERP data
using the Python library scikit-learn.
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IIl. RESULTS

In this section, we present how the collected data was utilized
to show to what extent the process data and the collected
vibration data are correlated. We were particularly interested
in the production throughput as a performance indicator,
as well as in unplanned production stops due to critical events
that influence it. The aim was to understand the predictive
capabilities of the vibration data towards the production
throughput and its indicators.

First, we identified the labels that, according to Bjglve-
fossen’s process engineers, are relevant for production
performance after preprocessing (Section III-A). Once the
relevant labels are extracted, we present the results of
processed vibration data after converting it to the frequency
domain to understand the signal composition and its relation
to process data (Section III-B).

A. INTERPRETATION OF THE FACILITY’'S MES AND ERP
DATA

MES data and ERP data provide information about the current
state of the operation as well production capacity of the
facility. We analyzed these data to extract labels that are
relevant for correlation with the vibration data. The value
of the silo scale before the packing station is of interest as
it directly shows the speed at which the material is arriving
after the sieving process, therefore showing the sieving speed
of the process. The data, however, shows also when the silo
was emptied for bag filling, which does not allow for a direct
conclusion on the sieving speed but still can serve as an
indicator.

Also, from the MES data, we can extract when the
Mogensen separator was in operation. Here, we could
calculate how much time the separator was active as a
percentage of a 24-hour period for every day of the
experiment. This is depicted in Figure 8, where we can see
that the unit was not in continuous operation. This is due to the
use of other separators for different processes or downtime or
scheduled cleaning on all Thursdays. Here, we are interested
in unintended downtimes or other process interruptions due to
faults in the process where the Mogensen separator was in use
and that affected the packing speed. This we can deduce from
the provided ERP data from the inventory system, where it is
possible to calculate how the weight of the currently packed
bag of ferrosilicon particles is changing.

Mogensen in operation
2022

FIGURE 8. Times of operations for the Mogensen separator in % of the
day as extracted from the MES data for each day of the experiment period.
The black line separates the months of the year (April 7 - September 7).
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We evaluated the histogram of the packing speed for
each of the particle sizes individually to see if the peak of
the histogram has a different location. Here, we observed
different packing speed for different particle sizes, as can
be seen in the histogram density plot and in the box plot
in Figure 9. Therefore, the particle size needs to be taken
into account when analyzing the vibration data. We also see
that the most common size that is being produced is 3-25mm
with 4441 bags followed by 4-25mm with 1212 bags. Further,
we looked into the temporal aspect of packing speed as well
as particle size to see whether there is a dependency.

particle size
0.4 3-12 MM
1-15MM
0.3 2-15MM
2% 3-15MM
5 5-15 MM
0o2 3-16 MM
0-20 MM
0.1 2-20MM
A 3-20 MM
0.0 ; — : . . . . 5-20MM
6 8 10 12 14 16 18 20 6-20 MM
packing speed [MT/h] 3-25MM
20.0 4 -25MM
= 175
=
2150
3
[
2125 @] [
2100
% ' == ==
©
o 7.5 1 %I
5.0 1

O O O
particle size

FIGURE 9. Top: Normalized probability density plot of the packing speed

in metric tons per hour for different particle sizes. Bottom: Boxplot for

packing speed sorted by the number of measurements during the period

of the experiment, which are also indicated by a label over each box.

We can say that there is no dependency on the time of
the day on the median packing speed for all collected data
that stays stable at a median of 9 tons per hour (t/h) if
aggregated for all particle sizes. Also, we do not observe any
preference for packing certain particle sizes at the time of the
day. However, there are some days during the time of data
collection where there is very low packing speed reported,
even though the Mogensen unit was operational.

B. DIMENSIONALITY REDUCTION AND CLUSTERING OF
VIBRATION SPECTRA

Figure 10 shows the frequency spectrum for frequencies for a
single typical day on April 13 together with some operational
data. Here, we clearly see the dominant frequency at 16.5 Hz
at which the Mogensen separator is vibrating together with
the corresponding packing speed for three different particle
sizes.

Again for April 13, Figure 11 shows that to explain 98%
of the signal variance, we need already four components
and that not all channels are correlated based on Pearson’s
coefficient. However, we need to investigate further why
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FIGURE 10. Spectrogram for April 13 together with packing and sieving speed for different sizes and colored in red periods when the Mogensen
separator was not operational. The color code for the spectrogram is red to blue for low and high amplitudes of the frequencies, respectively.
Frequencies up to 50 Hz are shown to see the vibration at 16.5 Hz for the dominant frequency of the Mogensen separator.

signals from ADC 1, 3, 5, 7 are correlated in contrast to
ADC 2 and 6. For that, we analyzed the spectra when the
Mogensen separator was inactive to see the background
vibration that may be caused by nearby machinery. We could
see that the background vibration signal is heavily correlated
in all accelerometers with a PCC between 0.70 - 0.93 and
87% of variance being explained by the first component.
This gave us reason to believe that the correlation between
the accelerometers is partially caused by this effect. Hence,
we refrained from channel fusion or transformation and rather
have taken all six accelerometer signals into account during
further analysis.

PCA scree plot

Pearson correlation coefficient plot
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. -
Individual explained variance

/

° ° ° o
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°
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bor of compenents g 8
Number of components g 8

FIGURE 11. Left: Scree plot after a PCA with cumulative and individual
explained variance. Right: Pearson’s correlation coefficient for the mean
vibration power spectrum for data from April 13.

1) PACKING SPEED
Further, we analyze the vibration data only within the cohort
of the same particle size that is being sieved since we see
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prominent clustering by particle size as shown in Figure 12.
Qualitatively, we observed that UMAP produces smaller and
denser clusters that are far apart compared to clusters forming
after PCA, MDS, and t-SNE dimensionality reduction. We do
not see any direct correlation with packing speed. Here,
further investigation is needed to possibly be able to find
dependencies between the vibration patterns and production
throughput measured by packing speed. We also wanted to
see whether the dominant vibration frequency of the sieve at
ca. 16.5 Hz is influenced by the particle size being sieved and
if we can possibly detect when the Mogensen unit is under
load with material or empty or even overfeeding.

2) PARTICLE SIZE

We did not see any significant changes in the dominant
frequency, which remained stable at a median of 16.55 Hz
for all accelerometers independent of the particle size being
sieved. The median amplitude of the dominant frequency also
did not change depending on the chosen grating for sieving
in any of the accelerometers. This means that the patterns
that were identified in the data after UMAP dimensionality
reduction are not caused by the dominant frequency but
rather in higher frequency spectra, which are more subtle and
therefore carry important information. We were able to train
a Multinomial Logistic Regression model with a 25% test
split to predict the sieved particle size based on the frequency
spectra from the 2 accelerometers with good results. Here,
we report the results for part 1: average accuracy 0.93,
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FIGURE 12. The first 2 components from the dimensionality reduction colored by the respective particle sizes that are being processed for Part 1 which is
from April 7 - May 9. It is evident that UMAP produces denser and smaller clusters compared to the other evaluated dimensionality reduction methods.

precision 0.92, recall 0.89, and f1-score 0.90. Similar results
were obtained for parts 2 and 3.

3) SEPARATOR UNDER LOAD OR EMPTY

To detect when the sieve is empty or under load, we take
the sieving speed as an indicator. Especially in the beginning
of each sieving round with a new particle size, the silos and
the conveyor belts are emptied to ensure a single size in the
packed bag. During the emptying process, the separator runs
without material which is also reflected by reduced sieving
speed. We intend to find out if we can see any clustering
after dimensionality reduction when looking at the data for
a single particle size of 3 — 25 mm from the part three time
period from June 15 onward. Here, we see clear clusters that
correlate with the sieving speed as shown in Figure 13. If we
again just look at the dominant frequency we don’t see any
changes neither in the frequency nor in the amplitude of the
peak. Hence, we assume that the clusters are caused by other
spectra than the dominant one.

UMAP cluster

i @ 12.5
15 4 @ -,
0 - 5 10.0 g
o $ 75 9
% 51 m : @ g
5 %5 = o
04 £
N 25
g ® a
- 0.0
-10 0 10
UMAP2

FIGURE 13. The first two dimensions of the UMAP showing different
clusters that are partially explained by the sieving speed. Data from part
3 for particle size 3 - 25 mm.

4) REPORTED EVENT OF MOTOR FAILURE

On May 3", the site engineer reported a major failure on the
Mogensen unit where one of the motors failed which resulted
in unintended downtime of several hours. When observing
the power spectra for this period, we see that already from the
beginning of Mogensen operation after service, the vibration
pattern changed as seen in the clustering depending on the

VOLUME 12, 2024

status of the machine as shown in Figure 14. Following
this finding, we reduced the analysis to the dominant
frequency at 16 Hz where we also observe a significant
drop (Mann-Whitney-Wilcoxon test, p < 10~%) in the mean
vibration frequency in all accelerometers from 16.57 Hz
to 16.49 Hz. Further, we saw a significant change (Mann-
Whitney-Wilcoxon test, p < 10_4) in the mean amplitude for
the dominant 16 Hz frequency, but only in two accelerometers
ADC2 and ADCS (side-to-side motion). These observations
are summarized in Figure 15. For ADC2, the amplitude drops
from 89.22 dB to 81.69 dB, and for ADCS6 it is reduced from
92.19 dB to 88.70 dB when the Mogensen unit is starting
to fail. The change in other accelerometers for amplitude is
marginal and not significant. These changes happen at 4:00
hours already before the total failure event at 8:00 o’clock.

UMAP cluster

status
normal

. failing

e total failure

UMAP2

FIGURE 14. The first two dimensions of the UMAP showing different
patterns for the failing sieve taking the data from May 2-4 when the
machine was operational.

5) REPORTED EVENT OF CONVEYOR BELT FAILURE

The second event occurred on August 47 that led to a
complete production stop. The reason was a failure of the
conveyor belt that is transporting the sieved material to
the fine crusher. Here, we anticipate also seeing changes
in the vibrational patterns to detect the inconsistency as
early as possible. We can confirm our assumption when
applying UMAP dimensionality reduction to the frequency
spectra we see different clusters when the conveyor belt
is failing as shown in Figure 16. Here, we also analyzed
the dominant 16 Hz frequency peak for potential changes
when the Mogensen separator was operational and did not
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FIGURE 15. Changes in the dominant frequency and amplitude for the
event of motor failure on May 379,

see any significant differences neither in the frequency
nor in the amplitude. We also could not see any notable
differences in the high frequencies of the vibration signal
making it difficult to explain the cause of clustering after
dimensionality reduction with UMAP.
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FIGURE 16. The first two dimensions of the UMAP showing different
patterns for the failing conveyor belt taking the data from August 3-4
when the machine was operational.

IV. DISCUSSION

In this section, we discuss the results and the limitations of the
study. In Section IV-A, we justify our choices for hardware
used in the sensor installation. In Section IV-B, we present
the limitations that were identified during data collection.
Section IV-C discusses the issues that were identified
with the chosen technology stack for data management.
In Section I'V-D, we discuss the chosen sampling rate as well
as the findings from our statistical evaluation of the vibration
data and its limitations.

A. SENSOR INSTALLATION

Much effort was undertaken to make the sensor encasing
water and dust resistant. However, the mechanical durability
of the cables was underestimated, causing multiple failures
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from abrasion and fatigue during the experiment, with
subsequent data loss. Plant personnel were successfully
dispatched to re-solder broken wires; however, this situation
was not ideal. Besides these events, the sensor system
performed as expected, withstanding other aspects of the
industrial environment to deliver continuous, high-quality
data throughout the test period. One point of interest was the
use of double-sided tape to fasten sensors. Concerns about the
longevity of this solution under constant mechanical stress
and fluctuating ambient temperatures proved unfounded.
Although the motion of the Mogensen sieve is linear or
a narrow ellipse, we chose to use 3-axis accelerometers,
carefully aligned so that at least one channel should nomi-
nally measure zero acceleration. This proved valuable when
a motor fault induced unexpected side-to-side vibrations.
The overall success of the sensor solution demonstrates
that vibration sensors may be retrofitted to legacy machines
with relative ease, even in a demanding environment.
However, a wireless sensor solution is preferable in this
setting to avoid cable failure and subsequent data loss.

B. DATA COLLECTION PIPELINE

The data collection had by design a non-continuous sampling.
Data were stored as files on the SD-card and uploaded to
the FTP-server if the Wi-Fi was operating normally. Data
logging was paused while the FTP upload was active. This
had to do with the load of the SPI-bus on the microcontroller
as the SD-card and the Wi-Fi shared the same SPI bus.
To maintain a very stable sample rate, this was the best
solution. Sometimes several files had to be uploaded due
to previous Wi-Fi problems. This was caused by the 4G
router having communication problems with the 4G network.
This made data analysis unnecessarily complicated and
error-prone. Nevertheless, we could show that the proposed
approach is sufficient to collect vibration data at a relatively
high sampling rate of 1 kHz and simultaneously store the
data in the cloud. Further, the gaps in the data acquisition
can be avoided by either making use of the multi-threading
capabilities of the micro-controller or reducing the sampling
rate such that the acquired data can be sent in very small
chunks to minimize the communication overhead.

C. DATA MANAGEMENT AND DATA PREPROCESSING
We noticed that the architecture of the time-series database
InfluxDB significantly slows down data retrieval when query-
ing extensive time series datasets over long periods. Hence,
alternative databases designed for large-scale numerical data,
such as Clickhouse, should be considered in this context [25].
The preprocessing of data poses high memory require-
ments when working with fully sampled resolution of the
frequency spectra. Hence, we suggested sub-sampling of
the spectrogram down to 1000 samples per minute per
accelerometer. This leads to information loss when trying to
detect subtle frequency changes in the range of 0.1 Hz but
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still allows detecting clusters after dimensionality reduction
with UMAP.

D. PREDICTION CAPABILITIES FROM VIBRATION
PATTERNS

Statistical data analysis after dimensionality reduction with
UMAP showed clustering for different particle sizes. The
amplitude and the frequency of the dominant vibration
spectra at 16 Hz were not affected. This can be explained
by rather powerful driving motors that are not easily
affected or disturbed by external factors. The clustering after
dimensionality reduction indicates that there is information
in higher frequency spectra, which was also confirmed by
a multinomial logistic regression model that was able to
predict the particle size. Nevertheless, further analysis is
needed to investigate which spectra are contributing to the
prediction of the currently separated material. On the other
hand, we could show that when using the sieving speed as
an indicator of whether the separator has any material inside,
it correlates with clusters of the frequency-based features
after dimensionality reduction with UMAP.

When investigating the influence of the events on the
vibration patterns, it was possible to see changes in the
dominant frequency, as well as in its amplitude, already four
hours before the catastrophic motor failure. This shows that
observing the vibration of the separator is a valuable indicator
for fault prediction. Also, the changes in the dominant
frequency are on the order of 0.1 Hz, which justifies the need
for the high-frequency sampling rate of 1 kHz. This could be
compensated for by the changes in amplitude that are already
noticeable at lower sampling rates.

However, it was not possible to predict another unwanted
event of conveyor belt failure. It was not possible to see
any changes in the vibration patterns, as the conveyor belt is
not directly connected to the separator, and the accumulating
material did not have any effect on the vibration pattern of the
separator. The sieving unit vibrates at a frequency of 16.5 Hz.
Given our evaluation, it is beneficial to sample at frequencies
roughly two decades above the fundamental to pick up subtle
changes in the higher frequencies and to resolve frequency
shifts on the order of 1%. Further experimental investigation
is needed to determine the frequency spectrum of relevant
features, and from this, to determine the best trade-off
between sampling rate and condition uncertainty.

In summary, we demonstrated the capability to detect sig-
nificant failures, such as motor malfunctions, by monitoring
alterations in the dominant 16 Hz frequency component. Fur-
thermore, our findings support the feasibility of constructing
a statistical model for assessing the operational status of the
Mogensen material separator by leveraging spectral vibration
characteristics.

V. SUMMARY AND FUTURE WORK

The work presented in this paper highlights the importance
of digitization and data analysis in the mining and metal
processing industries, particularly through the use of sensor
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vibration data to predict critical events before they impact
production throughput and to identify machine states for
legacy equipment. Specifically, this paper reports:

1) Development of a low-cost, high-performance vibra-
tion sensing solution: We designed and developed a
low-cost, high-performance vibration sensing solution
that can be deployed in real industrial settings.
This solution is cost-effective and reliable, making it
accessible to small and medium-sized enterprises that
cannot afford expensive vibration sensing systems.

2) Installation of the sensing framework in a real industrial
setting in a harsh environment: The sensing framework
was installed in a real industrial setting under harsh
conditions. This provided an opportunity to test the
performance of the vibration sensing solution in a
realistic and challenging environment.

3) Collection and management of high-density vibration
data: The collected data was of high density, and we
successfully persisted it in the cloud. The collected data
served as the basis for further analysis where we could
show that it is possible to predict failures before they
cause more catastrophic damage and lead to unwanted
downtime of the facility.

4) Statistical analysis of collected data which showed
its potential to detect critical events and identify
patterns related to machine states: The collected data
was analyzed statistically to identify patterns related
to machine states. This analysis has shown that the
vibration sensing solution has the potential to detect
critical events and identify machine states.

5) A subset of collected data is made publicly available
for non-commercial use. The data covers a full
18 days, including two critical events. We hope that the
researchers’ community will benefit from this dataset
and be able to use it in their own work.

The continuous observation of the vibration patterns could
potentially help the site process engineer react to such events
earlier.

Future work includes a deployment strategy of the
analytics pipeline that consists of a simple dashboard for the
process engineer to monitor the current vibration patterns
and compare it live with vibration signals previously labeled
as corresponding to normal operation. Our preliminary
analysis showed that training a statistical model could provide
additional information to the operators and possibly predict
unwanted behavior. The Mogensen separator where the data
was collected from has recently been removed from the
factory, and the production process has changed thereafter,
making it unfeasible to deploy such a dashboard in the Bjglve-
fossen plant at this stage. Hence, a prospective validation
study with the presented data is currently unfeasible.

In addition to dust-, water-, and EMI-proofing, attention to
mechanical durability must be paid when designing sensors
for moving machines such as a shaking separator. Elastic
cable insulation and flexible shielding (braided shields are
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better than foil) will reduce fatigue. Well-designed cable
installation will reduce or avoid mechanical abrasion.

Additionally, it is crucial to collect background vibration
data to effectively distinguish the signal originating from the
machine, where the sensor is installed, from the vibrations
introduced by surrounding machinery. This practice would
ensure accurate interpretation of detected vibration patterns.

Furthermore, we emphasize that domain knowledge and
understanding of the production process are crucial to be
able to analyze the collected data. Therefore, very good
collaboration with factory personnel (e.g., site engineers) is
absolutely essential for a successful experimental set-up and
data evaluation.

With the above experience, a follow-up experiment has
been initiated at a similar machine at the Elkem Salten plant.
Here, the whole pipeline from data collection to analytics
on premise and prediction of events through a previously
trained statistical model will be demonstrated. Multi-threaded
functionality has been implemented to allow gap-free data.
The cable solution has been re-designed, with more flexible
materials and greater attention to fastening.

Benchmarking our results against an existing fault detec-
tion system would be another important direction; however,
Elkem’s separators currently lack such a system. Some
manufacturers are starting to offer vibration-based condition
monitoring, and our communication with one of them,
Mogensen, revealed that they also offer rudimentary sta-
tistical data analysis. These separators have long lifespans,
making retrofitting commercially and scientifically interest-
ing. Exploring benchmarking with existing systems could be
a future research direction as these systems become more
common at Elkem plants.

Overall, this work has contributed to the development of
low-cost, high-performance vibration sensing solutions for
industrial settings. The results of this study can be used to
improve machine maintenance and prevent downtime, which
can have significant economic benefits for businesses.

VI. DATA AVAILABILITY

A data sample consisting of 18 full days, including the two
events reported by the process engineers, is publicly available
for noncommercial use on Zenodo.” More data may be shared
upon request.
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