
Electric Power Systems Research 234 (2024) 110722

A
0

Contents lists available at ScienceDirect

Electric Power Systems Research

journal homepage: www.elsevier.com/locate/epsr

Reliability assessment combining importance resampling and the cross
entropy method✩

Ivar Bjerkebæk ∗, Håkon Toftaker
Department of Energy Systems, SINTEF Energy Research, Trondheim, Norway

A R T I C L E I N F O

Index terms:
The cross entropy method
Importance resampling
Monte Carlo simulation
Reliability analysis
Rare events

A B S T R A C T

In the ongoing transition towards a sustainable energy system, the electric power system increases in
complexity and must adapt to rapid changes and new uncertainties. Thus, development and application
of appropriate probabilistic methods is all the more important. Reliability analysis based on Monte Carlo
simulation (MCS) has become increasingly popular, and its strength lies in the ability to account for a large
number of random variables, general stochastic processes and assessing the probability distribution of the
output. However, power system reliability is governed by relatively rare interruption events which poses a
fundamental challenge to MCS. This paper presents a variance reduction technique for Monte Carlo based
reliability analysis which combines resampling and the cross entropy (CE) method. The motivation for the
work is to mitigate the computational burden related to rare event sampling, while at the same time preserving
the flexibility of MCS by introducing few assumptions on the stochastic model. The method is demonstrated
on a synthetic test system and gives a speedup of about 10 times compared to a crude simulation.
1. Introduction

The modern power system is facing increased uncertainty and varia-
tion in both production and load patterns due to integration of intermit-
tent renewable energy resources and new power intensive technologies
such as electrification of transport and process industry. At the same
time, digital solutions for continuous monitoring and control offer
possibilities for smarter and more flexible system operation. Having
robust and flexible methods for reliability evaluation is a necessary
prerequisite to succeed in maintaining a rational level of reliability in a
developing and increasingly complex power system. Current techniques
for power system reliability analysis can be classified in two main
categories [1]; analytical methods and Monte Carlo simulation (MCS).
Monte Carlo techniques are usually computationally faster and less
cumbersome to implement for systems with complex generation and
demand patterns. However, analytical methods may have an advantage
in dealing with rare events for systems subject to simpler operating con-
ditions. Monte Carlo techniques can again be divided in non-sequential
simulation and sequential simulation. In the non-sequential approach,
samples of the system state are drawn from a stationary distribution,
while the sequential approach simulates the system state in a chrono-
logical manner. In addition, there exists hybrid approaches [2]. Monte
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Carlo simulation has proven to be extremely useful in dealing with
large and complex systems with a high number of random variables,
and sequential Monte Carlo simulation (SMCS) is the natural candi-
date for modelling time dependent systems. The SMCS approach has
been used to model various time dependent, stochastic mechanisms
influencing power system reliability such as generation from wind
power [3–5], EV charging [6], component failures linked to adverse
weather [7], and failure mechanisms linked to time development of
technical condition [8].

Power system reliability analysis by SMCS poses a major computa-
tional challenge, and the computational burden is usually substantially
higher than for non-sequential methods. The high computational cost
can be explained by two factors. The first challenge relates to rare event
sampling. In this work, we limit the analysis to consider permanent
component outages in the transmission grid. Interruptions caused by
such outages are rare, but can have severe consequences. This makes
it necessary to draw a large number of samples to estimate reliability
indices with sufficient precision since most samples will not contain
an interruption event. The second challenge is related to contingency
analysis, i.e. determining the system response to failure states which
usually involves power flow, or optimal power flow (OPF) calculations.
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These calculations can be time consuming and may exhibit challeng-
ing convergence properties, especially for large systems. Challenges
related to contingency analysis applies to both Monte Carlo based and
analytical reliability analysis.

Variance reduction (VR) techniques can be applied to accelerate
the convergence of Monte Carlo simulations. VR techniques have in
common that they exploit some prior knowledge of the system to
reduce the variance of the Monte Carlo estimator [9]. Different VR
techniques which have been applied to power system reliability anal-
ysis include Latin hypercube sampling [10], subset simulation [11],
and the cross entropy (CE) algorithm. The CE algorithm or CE method,
first described in [12], has proven to achieve great variance reduction
for many types of systems. The CE method is based on importance
sampling and uses an iterative procedure to search for an importance
sampling distribution (ISD) which is close to the theoretically optimal
distribution. Variations of the CE method has been adapted to differ-
ent simulation models for reliability evaluation. Notably it has been
applied to sequential simulations [3,5,13]. Other applications include
non-sequential models for composite transmission and generation sys-
tems [14], generation adequacy [15], and later a non-sequential model
for generating adequacy in multi-area power system with correlated
wind power generation [16]. Apart from reliability evaluation, the CE
method has also been adapted to other probabilistic power system cal-
culations such as probabilistic load flow [17] and security constrained
optimal power flow [18].

The CE method must be tailored to search for a close-to-optimal
ISD for a specific type of parametric distribution. To the best of the
author’s knowledge, previous applications of the CE method to SMCS
have assumed that the component states follow a two-state Markov-
process. That is, a component which can be in either a functioning state
or a failure state where the times spent in each state are exponential
random variables with some mean time to failure (MTTF) and mean
time to repair (MTTR). Since a Markov-process is memoryless by defi-
nition [19], this puts considerable restrictions on how time dependent
influencing factors can be included. One of the main strengths of SMCS
is that in addition to obtaining expected values, the distribution of the
reliability index can be estimated. A caveat with the CE method and
importance sampling in general is that although expected values of
reliability indices can be estimated with high accuracy, the distribution
of the reliability indices gets distorted. The motivation for assessing
the output distribution is to gain information about the consequence
of power interruptions beyond the expectation value.

This paper addresses the abovementioned drawbacks with the CE
method applied to time dependent systems, namely the limited ability
to model general time dependent stochastic processes, and the distor-
tion of the probability distribution. The main contributions of the work
are:

(i) A novel cross entropy technique based on importance resampling
which does not rely on information about the underlying stochas-
tic processes and thus can be applied to a general set of reliability
models.

(ii) A demonstration of how the cumulative distribution (CDF) of the
target function can be restored after importance sampling with
the CE method.

The remainder of the article is structured as follows: Section 2.1
describes the sequential Monte Carlo Simulation, Section 2.2 explains
the resampling technique, 2.3 gives a short introduction to the CE
method, and 2.4 explains how these concepts are combined in the
proposed method. Simulation results are presented and discussed in
Section 3.
2

Fig. 1. Illustration of SMCS for a hypothetical system with 3 components. The
component states are combined to generate a time series of the system’s available
capacity (SAC) in the bottom figure. The interrupted power is the difference between
SAC and the load 𝐿. Energy not supplied (ENS) is the time integral of interrupted
power.

2. Method

2.1. Sequential Monte Carlo simulation

The following subsection briefly describes the main principles of
the SMCS which was implemented. The simulation is divided in two
main processes, namely random sampling of component states and con-
sequence analysis of the resulting contingencies. The contingency state
is represented by a binary stochastic vector 𝐗(𝑡) = [𝑋1(𝑡),… , 𝑋𝑛(𝑡)],
where each variable 𝑋𝑖 ∈ {0, 1} represents the state of a power system
component. A component is functioning when 𝑋𝑖 = 0 and is out of oper-
ation when 𝑋𝑖 = 1. The evolution of the contingency state is simulated
chronologically by drawing the time to failure (TTF) and time to repair
(TTR) from the respective probability distributions (PDFs) for each
component. When the TTF or TTR is drawn, the time is incremented
and the simulation stops when the time exceeds the simulation period
𝑇 which is set in advance. The component states are assumed to be
conditionally independent, therefore each component is simulated in
parallel to improve the run time. In addition, only samples which
contain a component failure are stored in memory. The evolution of the
component states is illustrated in Fig. 1. In principle the sojourn times,
TTF and TTR, can be random variables with arbitrary distributions, and
generally the contingency state follows a semi-Markov process [19]. In
the special case where sojourn times are exponential random variables,
the contingency state follows a Markov process.

The overall system state is defined by a contingency state and an
operating state. The operating state is specified by a combination of
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load demand 𝐋(𝑡) and generation 𝐆(𝑡) on all buses in the system. The
operating state also includes the topological state (breaker positions
etc.). For each combination of operating state and contingency state
we calculate the amount of interrupted power 𝑃interr , and we use the
methodology for contingency analysis by [20,21] for this purpose. The
contingency analysis is based on an AC-OPF which minimizes the costs
of power generation and load shedding.

2.2. Resampling

The cross entropy method we use is based on a resampling tech-
nique which increases the possible number of outcomes for the system
evolution. Each sample is a trajectory of the contingency state 𝐉 =
[𝐽1,… , 𝐽𝑛], where 𝐽𝑖 is the trajectory of a single component state.
Component state trajectories are illustrated in Fig. 1. The component
state trajectory can be represented mathematically as a collection of
tuples

𝐽𝑖 =
[

(𝑥𝑖0, 𝑡𝑖0), (𝑥𝑖1, 𝑡𝑖1), …
]

, (1)

where 𝑥𝑖𝑗 ∈ {0, 1} are the component states, and 𝑡𝑖𝑗 ∈ {0, 𝑇 } are the
corresponding transition times from one state to the next. Note that the
relation to the contingency state vector is 𝑋𝑖(𝑡𝑖𝑗 ) = 𝑥𝑖𝑗 . Having sampled
𝑁 state trajectories 𝐽𝑖1,… , 𝐽𝑖𝑁 , for a component 𝑖, we can write the
empirical distribution [22] for the trajectory as

𝑓𝑖(𝑗𝑖) =
1
𝑁

𝑁
∑

𝑘=1
𝐼{𝑗𝑖 = 𝐽𝑖𝑘}. (2)

where 𝐼 is the indicator function, and the hat notation is used to
distinguish it from the true PDF of the trajectory, 𝑓 . Notice that the
true distribution 𝑓 is continuous, while the empirical counterpart (2) is
a discrete distribution. The empirical distribution can also be expressed
as a product

𝑓𝑖(𝑗𝑖) =
𝑁
∏

𝑘=1
𝑁−𝐼{𝑗𝑖=𝐽𝑖𝑘}, 𝑗𝑖 ∈ {𝐽𝑖𝑘}. (3)

(3) is not normalized unless we specify that the sample space consists
of the observed trajectories only. The advantage of rewriting (2) to a
product will be apparent when we later solve the cross entropy problem
in (12) which involves the logarithm of 𝑓 .

The idea of using resampling is to exploit the fact that the compo-
nents are statistically independent to construct a joint distribution for
the system as the product of the marginal distributions, that is

𝑓 (𝐣) =
𝑛
∏

𝑖=1
𝑓𝑖(𝑗𝑖). (4)

Note that 𝑓 is not an empirical distribution in the normal sense because
the sample space contains contingency state trajectories which are
not present in the non-permuted set of component state trajectories.
Having simulated 𝑁 state trajectories for 𝑛 components, 𝑓 is defined
on a state space consisting of all 𝑁𝑛 permutations of the component
state trajectories. A random permutation of component trajectories is
obtained by resampling from (4). Let 𝐉† denote a resampled system
state trajectory, that is

𝐉† = [𝐽 †
1 ,… , 𝐽 †

𝑛 ],
𝐽 †
𝑖 ∈ {𝐽𝑖𝑘}, 𝑘 = 1,… , 𝑁,

𝐉† ∼ 𝑓 (𝐣).
(5)

The permutation principle is shown in Fig. 2. To provide an example,
the topmost system trajectory in Fig. 2 corresponds to the vector 𝐉† =
[𝑗11, 𝑗21], the second topmost trajectory corresponds to 𝐉† = [𝑗11, 𝑗22]
and so on. The hypothesis is that all the possible permutations of the
component trajectories contain more information about the system than
the original samples without permutation. However, it is not feasible
to estimate reliability indices by summing the contribution from all
permutations since the number of permutations is extremely large for
any relevant number of 𝑁 . Therefore we want to use importance
resampling to sample the ‘‘important’’ permutations more frequently.
3

Fig. 2. Permutation of component state trajectories (left) to form new system state
time series (right). The example illustrates 𝑁 = 2 simulations of a hypothetical system
with 𝑛 = 2 components. The number of possible permutations is 𝑁𝑛 = 4.

2.3. Importance sampling and the CE method

To aid the following discussion we introduce some concepts and
notation related to the general problem of Monte Carlo integration. Let
𝐗 be a random vector with PDF 𝑓 (𝐱)

𝐗 ∼ 𝑓 (𝐱). (6)

Suppose we want to compute the expected value 𝜃 of some target
function ℎ(𝐗).

𝜃 ≡ 𝐸[ℎ(𝐗)] = ∫ ℎ(𝐱) 𝑓 (𝐱) 𝑑𝑛𝑥. (7)

Monte Carlo integration is the method of approximating 𝜃 by random
sampling. We sample 𝑁 independent random vectors from 𝑓 and
approximate 𝜃 by the sample average

�̂� = 1
𝑁

𝑁
∑

𝑗=1
ℎ(𝐗𝑗 ). (8)

�̂� is also called the crude Monte Carlo estimate.
Importance sampling [9] is a variance reduction technique where

samples are drawn from a distribution 𝑔, different from the true distri-
bution 𝑓 . The importance sampling estimator can be found by rewriting
the expected value in (7) as

𝜃 = ∫ ℎ(𝐱) 𝑓 (𝐱)
𝑔(𝐱)

𝑔(𝐱) = 𝐸𝑔

[

ℎ(𝐗) 𝑓 (𝐗)
𝑔(𝐗)

]

, (9)

where 𝐸𝑔 denotes the expected value under 𝑔. Thus, the importance
sampling estimator is

𝜃 = 1
𝑁

𝑁
∑

𝑗=1
ℎ(𝐗𝑗 )

𝑓 (𝐗𝑗 )
𝑔(𝐗𝑗 )

. (10)

For a smart choice of ISD, the variance of 𝜃 can be much smaller
than that of the crude estimate, and finding a suitable ISD is the main
challenge of importance sampling. In fact there exists a theoretically
optimal ISD, 𝑔∗, resulting in identically zero variance of 𝜃. The optimal
ISD is given by

𝑔∗(𝐱) = ℎ(𝐱) 𝑓 (𝐱)
. (11)
𝜃
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Fig. 3. Top: Hypothetical sketch of the theoretically optimal ISD 𝑔∗. Bottom: A close-
to-optimal ISD 𝑔 formed by dividing the sample space in two, and forcing uniform
likelihood in each subspace.

This can easily be verified by inserting 𝑔∗ into (10). The problem is of
course that we do not know the value of 𝜃 in advance.

The cross entropy algorithm [9,12,23] presents an automatic
method to find an ISD that is as close as possible to 𝑔∗ under the
constraint that the ISD must belong to the same type of parametric
distribution as 𝑓 . This is done by minimizing the Kullback–Leibler
distance, also called cross entropy, between the ISD and 𝑔∗. It can
be shown [23] that an unbiased estimator for the parameters that
minimize the cross entropy is obtained by solving the maximization
program

argmax
𝐯

𝑁
∑

𝑗=1
ℎ(𝐗𝑗 ) 𝑊 (𝐗𝑗 ;𝐮,𝐰) ln 𝑓 (𝐗𝑗 ; 𝐯). (12)

where 𝐮 is the parameter vector for the reference distribution, 𝑓 =
𝑓 (𝐱;𝐮), 𝐯 are the parameters for the ISD, 𝑔 = 𝑓 (𝐱; 𝐯), and 𝐗𝑗 ∼ 𝑓 (𝐱;𝐰)
where 𝐰 is arbitrary. 𝑊 denotes the likelihood ratio as 𝑊 (𝐗;𝐮,𝐰) ≡
𝑓 (𝐗;𝐮)
𝑓 (𝐗;𝐰) .

2.4. Combining resampling and the CE method

In the following subsection we introduce a novel method com-
bining resampling and the CE algorithm, and a solution of the cross
entropy problem (12) will be derived. The derivation was originally
presented in the first author’s masters thesis [24]. The idea of using
importance resampling was inspired from previous applications of im-
portance resampling to estimate bootstrap distribution tails [25,26],
but bootstrap resampling is fundamentally different from the proposed
sampling method where observations are permuted. The resampling
4

distribution 𝑓 defined in (4) is a multivariate finite support discrete
distribution. Each marginal distribution 𝑓𝑖 is parameterized by 𝑁 prob-
ability weights, and thus the joint distribution 𝑓 has 𝑛×𝑁 parameters.
Although the solution to the cross entropy problem (12) is known for
finite support discrete distributions, there are far too many parameters
𝑣𝑖𝑘 that needs to be estimated in this case. Since 𝑁 is the number of
initial simulations, the number of parameters increases with the sample
size which is clearly an unfavourable property. Therefore we introduce
an alternative parametrization such that each marginal distribution is
specified by a single parameter. We do this by dividing all observed
component state trajectories 𝐽𝑖 defined in (1) in two sub-spaces, and
then constrain the ISD to have uniform likelihood in each subspace.
The first subspace 𝛺1 contains all observed trajectories that visit the
failure state at some point, and all other observed trajectories belong
to the complementing subspace 𝛺0 = 𝛺𝑐

1. The hypothesis is that trajec-
tories that visit the failure state are more important when estimating
reliability indices, and thus should have a higher likelihood under the
theoretically optimal ISD on average. This idea is illustrated in Fig. 3.
Now, a formal derivation of the CE solution for this parametrization
follows, and for the sake of clarity we repeat that 𝑛 denotes the number
of components, and 𝑁 denotes the number of samples. The resampling
distribution can be written as

𝑓 (𝐣;𝐮) =
𝑛
∏

𝑖=1

1
∏

𝑘=0
𝑢𝐼{𝑗𝑖𝑘∈𝛺𝑖𝑘}
𝑖𝑘 . (13)

Note that when the value of all parameters is 𝑢𝑖𝑘 = 𝑁−1, this reduces
to the same distribution as defined in (4). Inserting the expression for
𝑓 into (12), the CE problem reads

argmax
𝐯

𝑀
∑

𝑙=1
ℎ(𝐉†𝑙 )𝑊 (𝐉†𝑙 ;𝐮,𝐰)

𝑛
∑

𝑖=1

1
∑

𝑘=0
𝐼{𝐽 †

𝑙𝑖 ∈ 𝛺𝑖𝑘} ln 𝑣𝑖𝑘, (14)

where 𝑀 is the number of resampled system trajectories, which may
be smaller or larger than 𝑁 . Problem (14) can be solved by Lagrange
multipliers. The maximization problem (14) is subject to the 𝑛 con-
straints that the marginal distributions 𝑓𝑖 must be normalized. The
normalization criteria can be expressed as
1
∑

𝑘=0
𝑁𝑖𝑘 𝑣𝑖𝑘 − 1 = 0, (15)

where 𝑁𝑖𝑘 denotes the number of trajectories in each subspace 𝑁𝑖0 +
𝑁𝑖1 = 𝑁 . From (14) and (15), the Lagrange function can be defined as

(𝐯, 𝜆1,… , 𝜆𝑛) ≡
𝑀
∑

𝑙=1
ℎ(𝐉†𝑙 ) 𝑊 (𝐉†𝑙 ;𝐮,𝐰)

𝑛
∑

𝑖=1

1
∑

𝑘=0
𝐼{𝐽 †

𝑙𝑖 ∈ 𝛺𝑖𝑘} ln 𝑣𝑖𝑘

−
𝑛
∑

𝑖=1
𝜆𝑖

( 1
∑

𝑖=0
𝑁𝑖𝑘 𝑣𝑖𝑘 − 1

)

(16)

The solution of the CE problem is given by the critical point of the
Lagrange function.

𝜕
𝜕𝑣𝑖𝑘

= 0, (17)

𝜕
𝜕𝜆𝑖

= 0. (18)

From (17) we find that

𝑣𝑖𝑘 = 1
𝜆𝑖𝑁𝑖𝑘

𝑀
∑

𝑙=1
ℎ(𝐉†𝑙 ) 𝑊 (𝐉†𝑙 ;𝐮,𝐰) 𝐼{𝐽

†
𝑙𝑖 ∈ 𝛺𝑖𝑘}. (19)

And from (18) it follows by inserting (19) that

𝜆𝑖 = 𝜆 =
𝑀
∑

ℎ(𝐉†𝑙 ) 𝑊 (𝐉†𝑙 ;𝐮,𝐰). (20)

𝑙=1
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Combining (19) and (20) we finally obtain the estimator for the optimal
parameters

𝑣𝑖𝑘 = 1
𝑁𝑖𝑘

∑𝑀
𝑙=1 ℎ(𝐉

†
𝑙 ) 𝑊 (𝐉†𝑙 ;𝐮,𝐰) 𝐼{𝐽

†
𝑙𝑖 ∈ 𝛺𝑖𝑘}

∑𝑀
𝑙=1 ℎ(𝐉

†
𝑙 ) 𝑊 (𝐉†𝑙 ;𝐮,𝐰)

. (21)

Note that there is only one free parameter per component, since when
the value of one of the two parameters is set, the other one follows
from normalization according to (15).

In the following, we describe how this result was implemented in a
CE algorithm to estimate expected energy not supplied (EENS). Energy
not supplied is the time integral of interrupted power 𝑃interr over a
given period, and EENS is as the name suggests the expected value of
ENS [20]. In this paper, all values of ENS and EENS are annual values.
As target function we use ℎ(𝐉) = 𝐼{ENS(𝐉) > 0}. Note that the expected
value of ℎ gives the probability of non-zero ENS, 𝐸 [𝐼{ENS(𝐉) > 0}] =
𝑃 (ENS > 0), which is a rare event. The following enumerated steps
describe how the CE algorithm was implemented using the solution of
the CE problem in (21). The reader is directed to Refs. [9,23] for a
comprehensive explanation and motivation of the iterative procedure
described in the steps 0–3. The portion of samples 𝜌 with non-zero
ENS in each iteration is used to determine when the algorithm has
converged,

0. (Preparation). Sample 𝑁 state trajectories 𝐽𝑖 for each power
system component 𝑖 via SMCS as described in Section 2.1. These
trajectories form the resampling distribution 𝑓 defined in (4). Set
the iteration count 𝑡 ← 0, and choose a moderately small value
for the parameter 𝜌, e.g. 𝜌 ← 0.05. Initialize the parameter vector
to the same value as the reference parameters 𝑣(0)𝑖𝑘 ← 𝑢𝑖𝑘 = 𝑁−1.

1. Resample 𝑀 system state trajectories according to 𝑓 (𝐣; 𝐯(𝑡)) and
estimate the parameter vector by

𝑣(𝑡+1)𝑖𝑘 = 1
𝑁𝑖𝑘

∑𝑀
𝑙=1 ℎ(𝐉

†
𝑙 ) 𝑊 (𝐉†𝑙 ;𝐮, 𝐯

(𝑡)) 𝐼{𝐽 †
𝑙𝑖 ∈ 𝛺𝑖𝑘}

∑𝑀
𝑙=1 ℎ(𝐉

†
𝑙 ) 𝑊 (𝐉†𝑙 ;𝐮, 𝐯(𝑡))

, (22)

Update the parameter vector to

𝑣(𝑡+1)𝑖𝑘 ← 𝛼 𝑣(𝑡+1)𝑖𝑘 + (1 − 𝛼) 𝑣(𝑡)𝑖𝑘 , (23)

where 𝛼 < 1 is a tuning parameter which improves convergence
by limiting the increments in parameter values.

2. Determine the portion 𝜌(𝑡) of the 𝑀 resampled system trajectories
that give nonzero ENS. If 𝜌(𝑡) ≥ 𝜌, the CE algorithm has converged
and we proceed to step 3. If not, increment the iteration count
𝑡 ← 𝑡 + 1 and repeat steps 1–2.

3. Use the final parameter vector to construct the ISD, 𝑓 (𝐱; 𝐯), and
use importance resampling to estimate the system EENS.

In addition to estimating EENS, we estimate the cumulative distri-
bution of ENS. Assume that we have resampled 𝐾 system trajectories
𝐉†1,… , 𝐉†𝐾 in step 3, and calculated the corresponding energy not sup-
plied by contingency analysis ENS1,… ,ENS𝐾 . This set of ENS values
is not representative for the system since these originate from system
trajectories sampled from the ISD, and thus give a distorted ENS
distribution. However, we can evaluate the cumulative distribution on
chosen points by importance sampling with the same set of ENS values.
This is done as follows. For a value 𝑥 of ENS, estimate 𝑃 (𝐸𝑁𝑆 ≤ 𝑥) by

𝑃 (ENS ≤ 𝑥) = 1
𝐾

𝐾
∑

𝑙=1
𝐼{ENS(𝐉𝑙) ≤ 𝑥} 𝑊 (𝐉𝑙;𝐮, 𝐯). (24)

The estimator in (24) should have lower variance than the correspond-
ing crude estimator since the CE algorithm finds an ISD that better
resolves the part of sample space where ENS > 0. This approach is
not limited to a specific importance sampling scheme. Note that this
calculation can be performed efficiently on a computer since we only
need to evaluate the identity function and calculate the inner product
of two vectors. Thus the cumulative distribution can be evaluated for
a range of values 𝑥 with a low computational cost.
5

Fig. 4. Single-line diagram of the test system. The system is a 132/66 kV meshed
transmission grid with: 6 bus bars, 2 transformers, 4 lines, 2 generators, and 2 delivery
points (load points).

Table 1
Comparison of performance for the CE method and crude Monte Carlo (CMC).

EENS [kWh] 𝑃 (ENS > 0) 𝑁 CPU time [s]
(std. error [%])

CE 1250.4 (4.7) 6.28 ⋅ 10−4 2 ⋅ 105 41.1
CMC 1195.1 (4.8) 6.21 ⋅ 10−4 3 ⋅ 106 398.2
Analytical 1262.9 – – –

3. Results and discussion

The method is demonstrated on a reliable 6-bus test system shown
in Fig. 4. Failure rates and repair rates are chosen from [27], which are
in turn obtained from the Norwegian standardized system for collection
and calculation of disturbance and reliability data [28]. The test system
is described in greater detail, and is openly available at [29]. The
component states are modelled by a two-state Markov process with
MTTF and MTTR set to the inverse of the failure and repair rate. The
Markov process is chosen because the analytical EENS value can be
calculated by integrating the known stationary distribution [21], using
the common two-state Markov model also improves reproducibility
of results. To simplify validation and comparison with the analytical
method, the study is limited to consider a single operating state of
demand and generation. As the sampling procedure only applies to
component states, scale up to multiple operating states should be
unproblematic. The stop criterion used for the simulation is that the
relative standard error 𝛽 of EENS must be lower than 5% and a
crude simulation was run for comparison of performance. The relative
standard error is given by 𝛽 = �̂�∕�̂�, where �̂� is empirical standard error
and �̂� is the EENS estimator. The results are reported in Table 1. When
using the CE method, the same number of samples 𝑁 was used both in
the initial simulation stage, and for resampling. The analytical result is
calculated using the methodology from [20]. The convergence plots for
the two simulations is shown in Fig. 5, and the estimated cumulative
distributions are shown in Fig. 6.

Compared to the crude simulation, the sample size needed to reach
sufficient accuracy, i.e. that the relative standard error is less than
5%, is reduced by 93% with the CE approach. And the total run time
of the CE simulation is 10% of the crude simulation. The cumulative
distributions obtained with the CE method and the crude simulation
are hard to distinguish, which shows that the CE method can be used
to estimate distribution tails with significantly fewer samples. And in
the case of ENS, the tail is the only interesting part of the distribution
since most system trajectories are mapped to zero. The CDF shows that
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Fig. 5. Convergence plot of EENS for the crude estimator and the CE estimator. The
analytical value is plotted for reference. The x-axis is truncated at 𝑁 = 5 ⋅ 105, but the
crude simulation converged at 𝑁 = 3 ⋅ 106.

Fig. 6. Estimated cumulative distribution for ENS, using the CE method and CMC. The
graphs show the conditional probability given nonzero ENS.

the distribution of ENS is highly skewed, and resembles a log-normal
distribution. The median nonzero ENS value obtained from the CDF
is 0.71GWh, which is 2–3 orders of magnitude larger than the EENS.
And the 95th percentile is 6.8GWh, i.e. 3–4 orders of magnitude larger
than EENS. The expected value holds limited information about the
distribution of ENS since the distribution is skewed and a major part of
the probability is at 0, which means the probability of experiencing
ENS values close to EENS is often close to zero. This demonstrates
how reliability indices in terms of expectation values give limited
information on system risk on their own since they do not properly
communicate the vulnerability to severe, and possibly catastrophic
interruptions. In this case double outage of transformers.

Since the purpose of this article is to present a new computational
method, the test case was kept relatively simple and the proposed
method was demonstrated on a small test system with constant load
demand. However, the method is applicable to systems with variable
load and production resulting in a large number of operating states.
This is especially relevant for reliability analysis of power systems
with a high share of intermittent renewable energy production. The
Monte Carlo simulation also has potential to include stochastic load
and production in an importance sampling scheme to efficiently capture
the contribution from operating states associated with high system risk.
As mentioned, the proposed CE resampling scheme does not assume
a specific stochastic process governing component failures and can
therefore be used to assess the system risk due to component failures
dependent on influencing factors such as weather, load, or technical
condition and maintenance strategies.
6

Computational issues were encountered in initial experiments to ap-
ply the proposed CE resampling method to larger, reliable test systems.
To elaborate, the suggested cross entropy scheme is limited to search
within the space of distributions with independent sample paths. With
increasing dimension two issues arise, first this set of distributions may
not contain a good ISD and second, it becomes difficult to estimate the
optimal parameters 𝐯 and thus obtain convergence with the CE algo-
rithm. Both issues can lead to high variance of the importance sampling
estimator due to extreme skewness of the resulting distribution of the
likelihood ratio. This problem is sometimes referred to as degeneracy of
the importance sampling estimator [9]. The authors suggest that further
development of the proposed method should focus on enhancing the
convergence of the CE algorithm for larger systems.

4. Concluding remarks

This paper has presented a novel method for calculating reliability
indices via SMCS which significantly increases the accuracy of the
Monte Carlo estimator, and alleviates the computational cost related
to rare event simulation. The only assumption required to use the
suggested variance reduction technique is that component states are
conditionally independent. The reliability analysis is extended by as-
sessing the cumulative distribution of ENS. The cumulative distribution
gives information about the risk of severe interruption events, and
this information is not contained in conventional reliability indices.
The CDF is recovered from the distorted distribution resulting from
importance sampling.
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