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Abstract. Ideally, optimum power for a single turbine is obtained when the wind-turbine is
aligned with the wind direction. However in multi-turbine wind-farm set-up, wake effects lead to
decreased power production from downstream turbine [1, 2, 3, 4, 5]. Hence, a control strategy
based on wake steering involves misalignment of upstream turbines with the wind direction
causing their wakes to deflect away from downstream wind turbines needs to be investigated.
A great deal of work has been put into dynamically controlling the orientation of the individual
wind turbines to maximize the power output of the farm [6, 7, 8, 9]. In the wake-steering
based control, the misaligned wind turbines produce less power, while the performance of
downstream turbines gets enhanced which increases overall net power gain for the wind power
plant. Traditionally, the benefits of wake steering have been demonstrated assuming fixed wind
directions (e.g., using high-fidelity modeling). Amongst the most recent techniques, particularly
promising is the use of Reinforcement learning (RL), which is a branch of machine learning
where models are trained to make decisions based on observations of their environment. It is a
flexible framework for devising strategies for solving optimal control problems in a broad range
of applications across the sciences. Early attempts at using Reinforcement learning for wake
steering have been carried out [7, 8, 9], and show promising results. In practice, however, wake-
steering controllers must operate in dynamic wind environments in which the wind conditions
are estimated from imperfect measurements. Hence, a reinforcement learning framework is
developed in this work for dynamic wind conditions. The results show that the framework is
promising, and we compare the deep reinforcement learning approach against a considerably
more expensive traditional optimization approach which serves as a good baseline. Future
work could include looking at more realistic wake models, steering in the presence of noisy
observations, and incorporating weather predictions.

1. Introduction
In this paper we develop a novel deep-reinforcement learning algorithm for optimal yaw-
misalignment of wind turbines to maximize total power output of a wind turbine farm.

Traditionally it has been common to align the wind turbines with the wind direction, as
depicted in Figure 1. This will create a local optimum for each turbine. However, aligning each
turbine with the wind direction will create a significant drop in wind velocity in the downwind
direction of the turbine, known as wake effects [1, 2, 3, 4, 5]. Due to these wake effects, aligning
each turbine with the wind direction may yield sub-optimal power generation for the wind farm
as a whole.

Recent works have therefore focused on misaligning the turbines with the wind direction,
also known as yaw misalignment, to steer the wakes in such a way that a maximum overall farm
power production is reached [10, 7, 8, 9].
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Figure 1: Yaw alignment of wind turbines with the wind direction.
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Figure 2: Yaw misalignment angles.

Early attempts at wake steering involved using a simplified, analytic wake model and finding
critical points in this wake model to obtain optimal yaw misalignment angles [10]. In theory such
an approach can be extended to more complex wake models or even direct numerical simulations,
but in practice the run-time of even a single realization of one set of yaw misalignment angles
can be prohibitively large in an operational setting.

Deep reinforcement learning (DRL) [11, 12, 13] has shown great promise in multiple fields,
most notably in beating a series of Atari games [14]. While it is possible to run DRL on
operational systems, due to its slow convergence, it usually performs best when a ample amount
of simulation data is available. Due to this reason, one usually needs to train on very simplified
simulation data in order to get reasonable training times. Preliminary studies of DRL for
optimal wake steering of wind turbines have also shown great promise [7, 8, 9]. However, little is
so far known of the optimality of the DRL results compared to a best case scenario optimization
algorithm.

In this paper, we compare DRL against a traditional optimization algorithm knowing the full
model. We introduce a new, randomized wind field through an Karuhnen-Loeve expansion to
maximize coverage in the training phase. To achieve tractable run-times, we run a simplified
engineering wake model and power output calculation. We rigorously test the proposed
algorithm against two sound baseline models through alignment and traditional optimization.

2. Problem formulation
We use the PyWake python library [15] version 2.4.0 for understanding the wake from turbines
and its influence on power production. We use a Gaussian based wind deficit model [16],
specifically the BastankhahGaussian class in PyWake. The deflection model is based on large
eddy simulations [17], and uses the JimenezWakeDeflection class in PyWake.

Concretely, we consider a wind farm with N turbines. For simplicity, we consider only two-
dimensional placement in this paper and neglect any variation in the vertical direction. We
assume background wind field u : [0,∞) → R2 varying in time but uniform in space, in both
magnitude and direction. We let γi(t) denote the yaw displacement angle for wind turbine i
against the background wind field u(t) at time t, see Figure 2. We collect the yaw displacement
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angles into a vector γ⃗(t) := (γ1(t), . . . , γN (t)). For each turbine i = 1, . . . , N , we let Pi(t, γ⃗(t))
be the power generated by wind-turbine i at time t given the background wind field u(t), and
the collective yaw displacement vector γ⃗i(t). We furthermore let P (t, γ⃗) denote the total power
output of the wind farm, that is

P (t, γ⃗) :=
∑
i

Pi(t, γ⃗) (1)

In this paper, we try to find optimal yaw displacement angles γ1, . . . , γN as a function of time
for a given time-varying background wind field. To make the problem numerically tractable, we
choose M ∈ N control times t1, . . . , tM for which we optimize the power output. We estimate
the power of the wind turbine to be according to a steady-state power production estimate
proportional to the local wind speed cubed multiplied by the cosine of the yaw misalignment
angle. In the pure optimization setting, we seek to solve

γ⃗(tj) = arg maxγ⃗ {P (tj , γ⃗)} . (2)

3. Deep reinforcement learning
In reinforcement learning, one considers a so-called Markov decision process (MDP) consisting
of state space S, an action space A, paired with a transition function T : S × A × S → [0, 1]
giving the conditional probabilities of transitioning from one state to another given an action,
and the reward function R : S × A × S → [0, Rmax], where R(s1, a, s2) denotes the reward for
going from state s1 to s2 through the action a.

In a reinforcement learning setting we typically seek an optimal policy π : S × A → [0, 1]
which selects an action given a state. π(s, a) gives the probability of selecting an action a given
an observed state s.

We will let the state space be S := [0, 1]4N+2 where we remind the reader that N is the
number of turbines present. A state s ∈ S is defined to be a tuple consisting of normalized
values of:

(i) Wind direction (1 value).

(ii) Wind speed (1 value).

(iii) Power production per turbine (N values).

(iv) Placement of turbines (2N values),

(v) Current yaw of turbines (N values),

We note that the placement of turbines is relevant for transfer learning, where one could envision
training the policy for one placement of turbines and using it on another placement.

We define our action space be A := [−10, 10]N , where an action (a1, . . . , aN ) = a ∈ A denotes
the change in angle for each wind turbine. The evaluation of the reward function is given by
(1), which again is computed by the simplified wake model described in the introduction.

We use the proximal policy optimization (PPO) algorithm to find the optimal policy [18].
We use the implementation found in the Stable Baseline python library [19].

4. Experiments and Results
4.1. Model setup
We show two experiments comparing three strategies for finding the optimal yaw misalignment
angle as a function of time:

(i) DRL : The DRL framework described in the previous section,

(ii) PSO : A particle swarm optimization (PSO) procedure using PySwarm [20] to solve (2),

(iii) Align : Aligning the turbine with the wind direction (corresponds to setting γ⃗ = 0 in (1)).
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We test with a time varying wind field given as

u⃗(t) =

(
r(t) cos(θ(t))
r(t) sin(θ(t))

)
(3)

where we in the test setup set

r(t) = 5 cos(
t

60 · 60
+ 0.2) + 7,

and

θ(t) = 80 sin(
t

60 · 60
) + 80.

In the case of the DRL algorithm, we first we first train the DRL algorithm with 1 000 000
timesteps of length 1 minute. We draw random wind velocities u⃗ by (3) with r and θ given
through a Karhunen–Loève expansion given as

r(ω; t) := 5
100∑
m=1

m−2 sin(mπ
t

60× 60)
)(2Xm(ω)− 1) + 7 t ∈ [0, 1], ω ∈ Ω

and

θ(ω; t) := 80
100∑
m=1

m−2 sin(mπ
t

60× 60)
)(2Xm(ω)− 1) + 80 t ∈ [0, 1], ω ∈ Ω

where Xi
1, . . . , X

i
100 for i = 1, 2 are uniformly independently distributed random variables over

the probability space Ω. At an interval of 24 hours (1440 steps) we redraw X1, . . . , X100. We
note that the training data from the Karhunen–Loève data is not meant to match the test setup,
and does for instance not carry with it a phase shift. We stress that this is a strength rather
than a weakness of the test: the training data is explictly different from the test data, which is
what one would expect in a real-world scenario.

We note that the runtime in both experiments for the PSO optimization uses approximately
100 seconds per iteration on a single CPU core on a AMD Ryzen 9 5950X, while the DRL (once
trained) uses roughly 0.02 seconds on the same CPU core. The results from two experiments
for which the above-listed three strategies are compared are as below :

4.2. Experiment one: Closely spaced turbines for strong wake effects
In order to stress test our DRL approach, we place five wind turbines on a line with 100
meters distance apart (0.77 turbine diameter), see Figure 3. Wake effects are dominating in
this example, and we expect the DRL approach to clearly beat the simple alignment procedure.
We measure the accumulated energy production in Figure 4, and note that the DRL approach
beat both the alignment procedure but also the particle swarm optimization. We believe that
the reason for the PSO being beat by the DRL is two-fold in this case: 1) The PSO could be
given more resources (particles) to obtain a better optimum (at the expense of a longer runtime),
and more importantly 2) while the PSO optimizes (2), the DRL algorithm also takes expected
future gains into account in the sense that it actually optimizes a reward function of the form∑

j

qjP̃ (tj , γ⃗),

where qj are discounting factors (so that one can weigh short-term, certain reward higher than

longer term rewards) and P̃ is the approximate (learned) power output of the wind farm. While
the first point is possible to remedy for the PSO algorithm, we do note that giving the PSO
algorithm more particles would render it useless in an operational setting even with this very
simple wake model.
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Figure 3: Closely spaced turbines with a pairwise distance of 100 meters.
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Figure 4: Overall power output for the closely spaced turbines with a pairwise distance of 100
meters.

4.3. Experiment two : Turbines spatially distributed in x and y for milder wake effects
In this experiment we distribute 16 turbines uniformly with an average minimum spacing of 500
meters (5 turbine diameters), see Figure 5 for an illustration. The results are plotted in Figure 6.
We expect wake effects to have a lesser impact on this setup, simply due to the spacing of the
turbines, but nevertheless verify that the DRL approach is able to match the results of both
the PSO algorithm and the alignment procedure. Since the PSO and alignment procedure is
so close in performance, we suspect the alignment procedure is already close to optimal for this
configuration, and one can not expect any better results from the DRL approach.

5. Conclusion
In this work we developed a Deep reinforcement learning algorithm for optimal yaw angle
misalignment for increasing the power production of wind farms. We compared the DRL
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Figure 5: Uniformly spaced turbines with an average pairwise distance of 500 meter.
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Figure 6: Overall power output for the uniformly spaced turbines with an average pairwise
distance of 500 meters.
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algorithm against a simple alignment algorithm and a traditional optimization algorithm. We
saw that in extreme wake cases, the DRL algorithm easily beats the other approaches, and in less
wake-dominated cases the DRL algorithm is able to match the other approaches. We conclude
that the DRL shows great promise being able to match and beat state of the art algorithms for
the wake steering problem. This DRL methodology can now be further developed by testing it
with realistic wind farms and with complex wake models, and examining wake steering in the
presence of noisy observations.
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[16] Bastankhah M and Porté-Agel F 2014 Renewable Energy 70 116–123 ISSN 0960-1481 special issue

on aerodynamics of offshore wind energy systems and wakes URL https://www.sciencedirect.com/

science/article/pii/S0960148114000317
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