
Learned multiphysics inversion with differentiable
programming and machine learning

Abstract
We present the Seismic Laboratory for Imaging and Modeling/

Monitoring open-source software framework for computational
geophysics and, more generally, inverse problems involving the
wave equation (e.g., seismic and medical ultrasound), regularization
with learned priors, and learned neural surrogates for multiphase
flow simulations. By integrating multiple layers of abstraction,
the software is designed to be both readable and scalable, allowing
researchers to easily formulate problems in an abstract fashion
while exploiting the latest developments in high-performance
computing. The design principles and their benefits are illustrated
and demonstrated by means of building a scalable prototype for
permeability inversion from time-lapse crosswell seismic data,
which, aside from coupling of wave physics and multiphase flow,
involves machine learning.

Motivation
Advancements in high-performance computing techniques

have led to giant leaps in computational (exploration) geophysics
over the past decades. These developments have led, for instance,
to the adoption of wave-equation-based inversion technologies
such as full-waveform inversion (FWI) and reverse time migration
(RTM) that, due to their adherence to wave physics, have resulted
in superior imaging in complex geologies. While these techniques
rank among the most sophisticated imaging technologies, their
implementation relies with few exceptions — most notably
iWave++ (Sun and Symes, 2010), Julia Devito Inversion framework
(JUDI.jl) of the Seismic Laboratory for Imaging and Modeling
(SLIM) (Witte et al., 2019a; Louboutin et al., 2023), and Chevron’s
COFII (Washbourne et al., 2021) — on monolithic low-level (C/
Fortran) implementations. As a consequence, due to their lack of
abstraction and modern programming constructs, these low-level
implementations are difficult and costly to maintain, especially
when performance considerations prevail over best software
practices. A noteworthy attempt at modernizing wave-equation
inversion frameworks is Deepwave (Richardson, 2018), which
implements FWI using PyTorch (Paszke et al., 2019). Despite
state-of-the-art examples and applications for 2D inversion, this
work is limited by the aforementioned pitfalls as it relies on

Mathias Louboutin1*, Ziyi Yin2*, Rafael Orozco3, Thomas J. Grady II3, Ali Siahkoohi3, Gabrio Rizzuti4, Philipp A. Witte5, Olav Møyner 6,
Gerard J. Gorman7, and Felix J. Herrmann1

handwritten low-level C/Cuda code, reducing the flexibility and
extensibility to new physics and three-dimensional problems. It
also does not integrate machine learning with FWI as advocated
in this work. While these implementation design choices lead to
performant code for specific problems, such as FWI, they often
hinder the implementation of new algorithms, e.g., based on
different objective functions or constraints, as well as coupling
existing code bases with external software libraries. For instance,
combining wave-equation-based inversion with machine learning
frameworks or coupling wave physics with multiphase fluid-flow
solvers is considered challenging and costly. Thus, our industry
runs the risk of losing its ability to innovate, a situation exacerbated
by the challenges we face due to the energy transition.

In this work, we present a flexible and agile software framework
that aims to resolve these challenges and is designed to be scalable,
differentiable, and interoperable. We first introduce the design
principles of our software framework, followed by a concrete usage
scenario for time-lapse seismic monitoring of geologic carbon
storage. This illustrative and didactic example involves the integra-
tion of multiple software modules for different types of physics
with machine learning techniques such as learned deep priors
and neural surrogates. For each module, we explain the choices
we made and how these modules are connected through software
abstractions and overarching high-level programming language
constructs. The advocacy of our proposed framework is demon-
strated on a preliminary 2D case study involving the realistic
Compass model (Jones et al., 2012). We conclude by discussing
remaining challenges and future work directions.

Design principles
To address the shortcomings of current software implementa-

tions that impede progress, we have embarked on the development
of a performant software framework. For instance, our wave
propagators, implemented in Devito (Louboutin et al., 2019;
Luporini et al., 2020), are used in production by contractors and
oil and gas majors while enabling rapid, low-cost, scalable, and
interoperable algorithm development for multiphysics and machine
learning problems that run on a variety of chipsets (e.g., ARM,
Intel, POWER) and graphics accelerators (e.g., NVIDIA, AMD,

*The first and second authors contributed equally to this work.
1Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, Georgia, USA. E-mail: mlouboutin3@gatech.edu; felix.her-

rmann@gatech.edu.
2Georgia Insitute of Technology, School of Computational Science and Engineering, Atlanta, Georgia, USA. E-mail: ziyi.yin@gatech.edu.
3Georgia Institute of Technology, College of Computing, Atlanta, Georgia, USA. E-mail: rorozco@gatech.edu; tgrady@gatech.edu; ali.siahkoohi@

gmail.com.
4Utrecht University, Utrecht, Netherlands. E-mail: g.rizzuti@uu.nl.
5Microsoft Corp., Redmond, Washington, USA. E-mail: pwitte@microsoft.com.
6SINTEF, Trondheim, Norway. E-mail: olav.moyner@sintef.no.
7Imperial College London, Department of Earth Science and Engineering, London, UK. E-mail: g.gormam@imperial.ac.uk.

https://doi.org/10.1190/tle42070474.1

Special Section: Digitalization in energy 474 The Leading Edge July 2023	 		

Downloaded from http://pubs.geoscienceworld.org/tle/article-pdf/42/7/474/5932418/tle42070474.1.pdf
by guest
on 27 May 2024

Intel). To achieve this, we adopt contemporary software design
practices that include high-level abstractions, software design
principles, and utilization of modern programming languages such
as Python (Rossum and Drake, 2009) and Julia (Bezanson et al.,
2017). We also make use of abstractions provided by domain-
specific languages (DSLs) such as the Rice Vector Library (Padula
et al., 2009) and the Unified Form Language (Alnaes et al., 2015;
Rathgeber et al., 2016) and adopt reproducible research practices
introduced by the trailblazing open-source initiative Madagascar
(Fomel et al., 2013), which made use of version control and an
abstraction based on the software construction tool SCons.

To meet the challenges of modern software design in a per-
formance-critical environment, we adhere to three key principles
— in addition to the fundamental principle of separation of
concerns. First, we adopt mathematical language to inform our
abstractions. Mathematics is concise, unambiguous, well under-
stood, and leads to natural abstractions for the

•	 wave physics, through partial differential equations as put to
practice by Devito, which relies on Symbolic Python (SymPy)
(Meurer et al., 2017) to define partial differential equations.
Given the symbolic expressions, Devito automatically generates
highly optimized, possibly domain-decomposed, parallel C
code that targets the available hardware with near-optimal
performance for 3D acoustic, tilted-transverse-isotropic, or
elastic wave equations;

•	 linear algebra, through matrix-free linear operators, as in
JUDI.jl (Witte et al., 2019a; Louboutin et al., 2023) — a
high-level linear algebra DSL for wave-equation-based model-
ing and inversion. These ideas date back to SPOT (van den
Berg and Friedlander, 2009) with more recent implementations
JOLI.jl (Modzelewski et al., 2023) in Julia and PyLops in
Python (Ravasi and Vasconcelos, 2020); and

•	 optimization, through definition of objective functions, also
known as loss functions, that need to be minimized — via
SlimOptim.jl (Louboutin et al., 2022c) — subject to math-
ematical constraints, which can be imposed through
SetIntersectionProjection.jl (Peters and Herrmann, 2019;
Peters et al., 2022).

Second, we exploit hierarchy within wave-equation-based
inversion problems that naturally leads to a separation of concerns.
At the highest level, we deal with linear operators, specifically
matrix-free Jacobians of wave-based inversion, with JUDI.jl and
parallel file input/output with SegyIO.jl (Lensink et al., 2023) on
premise, or in the cloud (Azure) via JUDI4Cloud.jl (Louboutin
et al., 2022b) and CloudSegyIO.jl (Modzelewski and Louboutin,
2022). At the intermediate and lower level, we make extensive
use of Devito (Louboutin et al., 2019; Luporini et al., 2020) — a
just-in-time compiler for stencil-based time-domain finite-
difference calculations, the development of which SLIM has been
involved in over the years.

Third, we build on the principles of differentiable programming
as advocated by Innes et al. (2019) and intrusive automatic dif-
ferentiation introduced by D. Li et al. (2020) to integrate wave
physics with machine learning frameworks and multiphase flow.
Specifically, we employ automatic differentiation (AD) through
the use of the chain rule, including abstractions that allow the
user to add derivative rules, as in ChainRules.jl (White et al.,
2022, 2023).

During the Federal University of Rio Grande do Norte’s
inaugural FWI workshop in 2015, we at SLIM started articulating
these design principles (Lin and Herrmann, 2015), which over
the years cumulated in scalable parallel software frameworks for
time-harmonic FWI (Silva and Herrmann, 2019), for time-domain
RTM and FWI (Witte et al., 2018, 2019a; Louboutin et al.,
2023), and for abstracted FWI (Louboutin et al., 2022a) allowing
for connections with machine learning. Aside from developing
software for wave-equation-based inversion, we have been involved
more recently in the development of scalable machine learning
solutions, including the Julia package InvertibleNetworks.jl (Witte
et al., 2023), which implements memory-efficient invertible deep
neural networks such as (conditional) normalizing flows (NFs)
(Rezende and Mohamed, 2015), and scalable distributed Fourier
neural operators (FNOs) (Z. Li et al., 2020) in the dfno software
package (Grady et al., 2022a, 2022b). All of these will be described
in more detail later in this paper.

To illustrate how these design principles can lead to solutions
of complex learned coupled inversions, we consider in the ensuing

Figure 1. The multiphysics forward model. The permeability, K, is generated from Gaussian noise with a pretrained NF, G, followed by two-phase flow simulations through S, rock physics
denoted by R, and time-lapse seismic data simulations via wave physics, F.

Special Section: Digitalization in energy July 2023 The Leading Edge 475

Downloaded from http://pubs.geoscienceworld.org/tle/article-pdf/42/7/474/5932418/tle42070474.1.pdf
by guest
on 27 May 2024

sections end-to-end inversion of time-
lapse seismic data for the spatial perme-
ability distribution (D. Li et al., 2020).
As can be seen from Figure 1, this
inversion problem is rather complex,
and its solution arguably benefits from
our three design principles listed earlier.
In this formulation, the latent repre-
sentation for the permeability is taken
via a series of nonlinear operations all
the way to the time-lapse seismic data.
In the remainder of this exposition, we
will detail how the different compo-
nents in this learned inversion problem
are implemented so that the coupled
inversion can be carried out. The results
presented are preliminary, representing
a snapshot on how research is conducted
according to the design principles.

Learned time-lapse end-to-
end permeability inversion

Combating climate change and
dealing with the energy transition call
for solutions to problems of increasing
complexity. Building seismic monitor-
ing systems for geologic CO2 and/or
H2 storage falls in this category. To
demonstrate how math-inspired
abstractions can help, we consider
inversion of permeability from cross-
well time-lapse data (see Figure 2 for
experimental setup) involving (1) cou-
pling of wave physics with two-phase
(brine/CO2) f low using Jutul.jl
(Møyner et al., 2023) state-of-the-art
reservoir modeling software in Julia;
(2) learned regularization with NFs
with InvertibleNetworks.jl; and
(3) learned surrogates for the fluid-flow
simulations with FNOs. This type of
inversion problem is especially chal-
lenging because it involves different
types of physics to estimate the past,
current, and future saturation and pres-
sure distributions of CO2 plumes from
crosswell data in saline aquifers. In the
subsequent sections, we demonstrate
how we invert time-lapse data using
the separate software packages listed
in Figure 1.

Wave-equation-based inversion.
Due to its unmatched ability to resolve
CO2 plumes, active-source time-lapse
seismic is arguably the preferred imag-
ing modality when monitoring geologic

storage (Ringrose, 2020). In its simplest form for a single time-lapse vintage, FWI involves
minimizing the ℓ2-norm misfit/loss function between observed and synthetic data — i.e.,
we have

​​minimize​ 
m​  ​  ​ 1 _ 2 ​∥ F​(m)​q − d ​∥​ 2​ 2​  where  F​(m)​  =  ​P​ r​​ ​A​(m)​​​ −1​ ​P​ s ​ ⊤​.   ​(1)​​

In this formulation, the symbol F(m) represents the forward modeling operator (wave
physics), parameterized by the squared slowness m. This forward operator acting on the
sources consists of the composition of source injection operator Ps

⊤, with ⊤ denoting the
transpose operator, solution of the discretized wave equation via A(m)–1, and restriction to
the receivers via the linear operator Pr. The vector q represents the seismic sources, and the
vector d contains single-vintage seismic data collected at the receiver locations. Thanks to
our adherence to the math, the corresponding Julia code to invert for the unknown squared
slowness m with JUDI.jl reads

Forward modeling to generate seismic data.

Pr = judiProjection(recGeometry) # setup receiver

Ps = judiProjection(srcGeometry) # setup sources

Ainv = judiModeling(model) # setup wave-equation solver

F = Pr * Ainv * Ps' # forward modeling operator

d = F(m_true) * q # generate observed data

Gradient descent to invert for the unknown squared slowness.

for it = 1:maxiter

 d0 = F(m) * q # generate synthetic data

 J = judiJacobian(F(m), q) # setup the Jacobian operator of F

 g = J' * (d0 - d) # gradient w.r.t. squared slowness

 m = m - t * g # gradient descent with steplength t

end

To obtain this concise and abstract formulation for FWI, we utilized hierarchical
abstractions for propagators in Devito and linear algebra tools in JUDI.jl, including
matrix-free implementations for F and its Jacobian J. While the preceding stand-alone
implementation allows for (sparsity-promoting) seismic (Louboutin and Herrmann, 2017;
Louboutin et al., 2018; Herrmann et al., 2019; Witte et al., 2019b; Rizzuti et al., 2020,
2021; Siahkoohi et al., 2020a, 2020b, 2020c; Yang et al., 2020; Yin et al., 2021, 2023)
and medical (Yin et al., 2020; Orozco et al., 2021, 2023a, 2023b) inversions, it relies on
hand-derived implementations for the adjoint of the Jacobian J' and for the derivative
of the loss function. Although this approach is viable, relying solely on hand-derived
derivatives can become cumbersome when we want to utilize machine learning models
or when we need to couple the wave equation to the multiphase flow equations.

Figure 2. Experimental setup. The black X symbol in the middle of the model indicates the CO2 injection location. The seismic
sources are on the left-hand side of the model (shown as yellow X symbols) and receivers are on the right-hand side of the model
(shown as red dots). Overlaid in gray is the compressional wavespeed with simulated CO2 saturation modeled for 18 years.

Special Section: Digitalization in energy 476 The Leading Edge July 2023	 		

Downloaded from http://pubs.geoscienceworld.org/tle/article-pdf/42/7/474/5932418/tle42070474.1.pdf
by guest
on 27 May 2024

Deep priors and NFs. NFs are gen-
erative models that take advantage of
invertible deep neural network archi-
tectures to learn complex distributions
from training examples (Dinh et al.,
2016). The term “flow” refers to the
transformation of data from a complex
distribution to a simple one. The term
“normalizing” refers to the standard
Gaussian (normal) target distribution
that the network learns to map images
to. For example, in seismic inversion
applications, we are interested in
approximating the distribution of earth
models to use as priors in downstream
tasks. NFs learn to map samples from
the target distribution (i.e., earth mod-
els) to zero-mean unit standard devia-
tion Gaussian noise using a sequence of
trainable nonlinear invertible layers.
Once trained, one can resample new
Gaussian noise and pass it through the
inverse sequence of layers to obtain new
generative samples from the target
distribution. NFs are an attractive choice
for generative models in seismic applica-
tions (Zhang and Curtis, 2020, 2021;
Siahkoohi and Herrmann, 2021;
Siahkoohi et al., 2021, 2022, 2023; Zhao
et al., 2021) because they provide fast
sampling and allow for memory-efficient
training due to their intrinsic invert-
ibility, which eliminates the need to
store intermediate activations during
backpropagation. Memory efficiency is
particularly important for seismic appli-
cations due to the 3D volumetric nature
of the seismic models. Thus, our meth-
ods need to scale well in this regime.

To illustrate the practical use of NFs
as priors in seismic inverse problems,
we trained an NF on slices from the
Compass model (Jones et al., 2012). The
training of an NF is laid out in Figure 5
where, for illustrative purposes, we
demonstrate a training run on small
(64 × 64) slices of the Compass model.
Each row shows the normalization
(image m transformed to Zm intended
to be white zero-mean standard devia-
tion one Gaussian noise) during training
and its generative inverse (white noise ​
z  ∼  𝒩​(0, 1)​​ to image ​​̃  m​​) during each
epoch. From Figure 5, we clearly
observe the intended behavior. As the
training proceeds, the NFs transform

To allow for this situation, we make use of Julia’s differentiable programming ecosystem
that includes tools to use AD and to add differentiation rules via ChainRules.jl. Using
this tool, the AD system can be taught how to differentiate JUDI.jl via the following
differentiation rule for the forward propagator:

Custom AD rule for wave modeling operator.

function rrule(::typeof(*), F::judiModeling, q)

 y = F * q # forward modeling

 # The pullback function for gradient calculations.

 pullback(dy) = NoTangent(), judiJacobian(F, q)' * dy, F' * dy

 return y, pullback

end

In this rule, the pullback function takes as input the data residual, dy, and outputs the
gradient of F * q with respect to the operator * (no gradient), the model parameters, and
the source distribution. With this differentiation rule, the above gradient descent algorithm
can be implemented as follows:

Define the loss function.

loss(m) = .5f0 * norm(F(m) * q - d)^2f0

Gradient descent to invert for the squared slowness.

for it = 1:maxiter

 g = gradient(loss, m)[1] # gradient computation via AD

 m = m - t * g # gradient descent with steplength t

end

Compared to the original implementation, this code only needs F(m) and the function
loss(m). With the help of the above rrule, Julia’s AD system8 is capable of computing the
gradients (line 5). Aside from remaining performant — i.e., we still make use of the adjoint-
state method to compute the gradients — the advantage of this approach is that it allows for
much more flexibility, e.g., in situations where the squared slowness is parameterized in terms
of a pretrained neural network or in terms of the output of multiphase flow simulations. In
the next section, we show how trained NFs can serve as priors to improve the quality of FWI.

8In this case, we used reverse AD provided by Zygote.jl, the AD system provided by Julia machine learn-
ing package Flux.jl. Because ChainRules.jl is AD system agnostic, another choice could have been made.

Figure 3. Demonstration of Gaussianization of Compass slices during training of an NF. The data used for this didactic example
are openly available and this figure is in the InvertibleNetworks.jl repository.

Special Section: Digitalization in energy July 2023 The Leading Edge 477

Downloaded from http://pubs.geoscienceworld.org/tle/article-pdf/42/7/474/5932418/tle42070474.1.pdf
by guest
on 27 May 2024

the true model better toward white noise while its inverse progressively generates more
realistic looking generative velocity models. To perform a comparison with traditional FWI,
we train an NF on full model size slices (512 × 256 grid points). In Figure 5, we compare
generative samples from the NF with the slices used to train the model shown in Figure 4.
Although there are still irregularities, the model has learned important qualitative aspects
of the model that will be useful in inverse problems. To demonstrate this usefulness, we
test our prior on an FWI inverse problem. Because our NF prior is trained independently,
it is flexible and can be plugged into different inverse problems easily.

Our FWI experiment includes ocean-bottom nodes, Ricker wavelet with no energy
below 4 Hz, and additive colored Gaussian noise that has the same bandwidth as the noise-
free data. For FWI with our learned prior, we minimize

​minimize​ 
z
​  ​ ​ 1  _ 2  ​∥F​(​𝒢​ ​θ​​ *​​​​(z)​)​q − d ​∥​ 2​ 2​ +  ​ λ  _ 2 ​ ∥z ​∥​ 2 ​ 2 ​,  ​(2)​

where ​​𝒢​ ​θ​​ *​​​​ is a pretrained NF with weights θ*. After training, the inverse of the NF maps realistic
Compass-like earth samples to white noise — i.e., ​​𝒢​ ​θ​​ *​​ −1​​(m)​  = z  ∼  𝒩​(0, I)​​. Because the NFs are
designed to be invertible, the action of the pretrained NF, ​​𝒢​ ​θ​​ *​​​​, on Gaussian noise z produces
realistic samples of earth models (see Figure 5). We use this capability in equation 2 where the
unknown model parameters in m are reparameterized by ​​𝒢​ ​θ​​ *​​​​(z)​​. The regularization term, ​​ λ _ 2​  ∥ z ​∥​ 2​ 2​​,
penalizes the latent variable z with large ℓ2-norm, where λ balances the misfit and regularization
terms. Consequently, this learned regularizer encourages FWI results that are more likely to be
realistic earth models (Asim et al., 2020). However, notice that the optimization routine now
requires differentiation through both the physical operator (wave physics, F) and the pretrained
NF (​​𝒢​ ​θ​​ *​​​​), and only a true invertible implementation like ours, with minimal memory imprint
for both training and inference, can provide scalability.

Due to the JUDI.jl’s rrule for F and InvertibleNetworks.jl’s rrule for G, integration of
machine learning with FWI becomes straightforward involving replacement of m by G(z)
on line 6. Minimizing the objective function in equation 2 now translates to

Load the pretrained NF and weights.

G = NetworkGlow(nc, nc_hidden, depth, nscales)

set_params!(G, θ)

Set up the ADAM optimizer.

opt = ADAM()

Define the reparameterized loss function including penalty term.

loss(z) = .5f0 * norm(F(G(z)) * q - d)^2f0 + .5f0 * λ * norm(z)^2f0

ADAM iterations.

for it = 1:maxiter

 g = gradient(loss, z)[1] # gradient computation with AD

 update!(opt, z, g) # update z with ADAM

end

Convert latent variable to squared slowness.

m = G(z)

In Figure 6, we compare the results
of FWI with our learned prior against
unregularized FWI. Because our prior
regularizes the solution toward realistic
models, we obtain a velocity estimate
that is closer to the ground truth. To
measure the performance of our
method, we use peak signal-to-noise
ratio (PS/N) and see an increase from
12.98 dB with traditional FWI to
14.77 dB with the learned prior.

Through this simple example, we
demonstrated the ability to easily
integrate our state-of-the-art wave-
equation propagators with Julia’s dif-
ferentiable programming system. By
applying these design principles to
other components of the end-to-end
inversion, we design a seismic monitor-
ing framework for real-world applica-
tions in subsurface reservoirs.

Fluid-flow simulation and perme-
ability inversion. As stated earlier,
our goal is to estimate the permeabil-
ity from time-lapse crosswell moni-
toring data collected at a CO2 injec-
tion site (cf. Figure 2). Compared to
conventional seismic imaging, time-
lapse monitoring of geologic storage
differs because it aims to image time-
lapse changes in the CO2 plume while
obtaining estimates for the reservoir’s
f luid-f low properties. This involves
coupling wave modeling operators to
f luid-f low physics to track the CO2
plumes underground. The f luid-f low
physics models the slow process of
CO2 partly replacing brine in the pore
space of the reservoir, which involves
solving the multiphase f low equa-
tions. For this purpose, we need
access to reservoir simulation soft-
ware capable of modeling two-phase

Figure 4. Examples of Compass 2D slices used to train an NF prior.

Special Section: Digitalization in energy 478 The Leading Edge July 2023	 		

Downloaded from http://pubs.geoscienceworld.org/tle/article-pdf/42/7/474/5932418/tle42070474.1.pdf
by guest
on 27 May 2024

(brine/CO2) f low. While several
proprietary and open-source reservoir
simulators exist, including MRST
(Lie and Møyner, 2021), GEOSX
(Settgast et al., 2022), and Open
Porous Media (Rasmussen et al.,
2021), few support differentiation of
the simulator’s output (CO2 satura-
tion) with respect to its input (the
spatial permeability distribution K in
Figure 1). We use the recently devel-
oped externa l Ju l ia package
JutulDarcy.jl that supports Darcy f low
and serves as a front-end to Jutul.jl
(Møyner et al., 2023), which provides
accurate Jacobians with respect to K.
Jutul.jl is an implicit solver for finite-
volume discretizations that internally
uses AD to calculate the Jacobian. It
has a performance and feature set
comparable to commercial multiphase
f low simulators and accounts for real-
istic effects (e.g., dissolution, inter-
phase mass exchange, compressibility,
capillary effects) and residual trapping
mechanisms. It also provides accurate
sensitivities through an adjoint for-
mulation of the subsurface multiphase
f low equations. To integrate the
Jacobian of this software package into
Julia’s differentiable programming
system, we wrote the light “wrapper
package” JutulDarcyRules.jl (Yin and
Louboutin, 2023) that adds an rrule
for the nonlinear operator ​​𝒮​(​​K​)​​​​,
which maps the permeability distribu-
tion, K, to the spatially varying CO2
concentration snapshots, ​​c = ​{​​ ​c​​ i​ ​​}​​​ i=1​ 

​n​ v​​ ​​​,
over nv monitoring time steps (cf.
Figure 1). Addition of this rrule
allows these packages to interoperate
with other packages in Julia’s AD
ecosystem. The following shows a

basic example where the ADAM algorithm is used to invert for subsurface permeability
given the full history of CO2 concentration snapshots:

Generate CO2 concentration.

c = S(K_true)

Set up ADAM optimizer.

opt = ADAM()

Define the loss function.

loss(K) = .5f0 * norm(S(K) - c)^2f0

ADAM iterations.

for it = 1:maxiter

 g = gradient(loss, K)[1] # gradient computed with AD

 update!(opt, K, g) # update K with ADAM

end

During each iteration of the preceding loop, Julia’s machine learning package Flux.jl
(Innes et al., 2018; Innes, 2018b) uses the custom gradient defined by the aforementioned
rrule, calling the high-performance adjoint code from JutulDarcy.jl. Our adaptable software
framework also facilitates effortless substitution of deep learning models in lieu of the
numerical fluid-flow simulator. In the next section, we introduce distributed FNOs and
discuss how this neural surrogate contributes to our inversion framework.

Fourier neural operator surrogates. While the integration of multiphase flow modeling
into the Julia differentiable programming ecosystem opens the way to carry out end-to-end
inversions (as explained later), fluid-flow simulations are computationally expensive — a
notion compounded by the fact that these simulations have to be done many times during
inversion. For this reason, we switch to a data-driven approach where a neural operator is first
trained on simulation examples, pairs ​​​{​​K, 𝒮​(K)​​}​​​​, to learn the mapping from permeability
models, K, to the corresponding CO2 snapshots, ​c : = 𝒮​(K)​​. After incurring initial offline
training costs, this neural surrogate provides a fast alternative to numerical solvers with
acceptable accuracy. FNOs (Z. Li et al., 2020), a neural network architecture based on spectral
convolutions that capture the long-range correlations rather than localized spatial convolutions,
have been introduced recently as a surrogate for elliptic partial differential equations such as
the Darcy or Burgers equation. This spectral architecture has been applied successfully to
simulate two-phase flow during geologic CO2 storage projects (Wen et al., 2022). Independently,
Yin et al. (2022) used a trained FNO to replace the fluid-flow simulations as part of end-to-end
inversion and showed that AD of Julia’s machine learning package can be used to compute
gradients with respect to the permeability using Flux.jl’s reverse-mode AD system Zygote.jl
(Innes, 2018a). After training, the above permeability inversion from concentration snapshots,
c, is carried out by simply replacing ​𝒮​ by ​​𝒮​ ​w​​ *​​​​ with w* being the weights of the pretrained
FNO. Thanks to the AD system, the gradient with respect to K is computed automatically.
Thus, after loading the trained FNO and redefining the operator ​𝒮​, the aforementioned code
remains exactly the same. For implementation details on the FNO and its training, we refer
to Yin et al. (2022) and Grady et al. (2022b).

Figure 5. Generative samples from our trained prior. Their similarity to the training samples in Figure 4 suggests that our NF has learned a useful prior.

Special Section: Digitalization in energy July 2023 The Leading Edge 479

Downloaded from http://pubs.geoscienceworld.org/tle/article-pdf/42/7/474/5932418/tle42070474.1.pdf
by guest
on 27 May 2024

 Putting it all together
As a final step in our end-to-end permeability inversion, we introduce a nonlinear rock-physics model, denoted by ​ℛ​. Based on the

patchy saturation model (Avseth et al., 2010), this model nonlinearly maps the time-lapse CO2 saturations to decreases in the seismic
properties (compressional wavespeeds, ​​v  = ​{​​ ​v​​ i​ ​​}​​​ i=1​ 

​n​ v​​  ​​​) within the reservoir with the Julia code

Patchy saturation function.

Input: CO2 saturation, velocity, density, porosity.

Optional: bulk modulus of mineral, brine, CO2; density of CO2, brine.

Output: velocity, density.

function Patchy(sw, vp, rho, phi;

 bulk_min=36.6f9, bulk_fl1=2.735f9, bulk_fl2=0.125f9,

 ρw=7f2, ρo=1f3) where T

 # Relate vp to vs, set modulus properties.

 vs = vp ./ sqrt(3f0)

 bulk_sat1 = rho .* (vp.^2f0 .- 4f0/3f0 .* vs.^2f0)

 shear_sat1 = rho .* (vs.^2f0)

 # Calculate bulk modulus if filled with 100% CO2.

 patch_temp = bulk_sat1 ./ (bulk_min .- bulk_sat1)

 .- bulk_fl1 ./ phi ./ (bulk_min .- bulk_fl1)

 .+ bulk_fl2 ./ phi ./ (bulk_min .- bulk_fl2)

 bulk_sat2 = bulk_min ./ (1f0 ./ patch_temp .+ 1f0)

 # Calculate new bulk modulus as weighted harmonic average.

 bulk_new = 1f0 / ((1f0 .- sw) ./ (bulk_sat1 .+ 4f0/3f0 * shear_sat1)

 + sw ./ (bulk_sat2 + 4f0/3f0 * shear_sat1)) - 4f0/3f0 * shear_sat1

 # Calculate new density and velocity.

 rho_new = rho + phi .* sw * (ρw - ρo)

 vp_new = sqrt.((bulk_new .+ 4f0/3f0 * shear_sat1) ./ rho_new)

 return vp_new, rho_new

end

We map the changes in the wavespeeds to time-lapse seismic data, ​​d  =  ​{​​ ​d​​ i​ ​​}​​​ i=1​ ​n​ v​​ ​​​, via the blockdiagonal seismic modeling9 operator ​
ℱ​(v)​  = diag​(​​{​F​​ i​​(​v​​ i​)​ ​q​​ i​}​​ i=1​ 

​n​ v​​ ​)​​. In this formulation, the single-vintage forward operators Fi and corresponding sources, qi, are allowed
to vary between vintages.

With the fluid-flow (surrogate) solver, ​𝒮​, the rock-physics module, ​ℛ​, and wave-physics module, ​ℱ​, in place, along with regu-
larization via reparametrization using ​​𝒢​ ​θ​​ *​​​​, we are now in a position to formulate the desired end-to-end inversion problem as

​​minimize ​ 
z
​  ​  ​ 1  _ 2 ​ ∥ ℱ ∘ ℛ ∘ 𝒮​(​𝒢​ ​θ​​ *​​​​(z)​)​ − d ​∥​ 2​ 2 ​ +  ​ λ _ 2 ​ ∥ z ​∥​ 2​ 2 ​,   ​(3)​​

where the inverted permeability can be calculated by ​​K​​ *​  =  ​𝒢​ ​θ​​ *​​​​(​z​​ *​)​​ with z* the latent space minimizer of equation 3. As illustrated in
Figure 1, we obtain the nonlinear end-to-end map by composing the fluid-flow, rock, and wave physics, according to ​ℱ ∘ ℛ ∘ 𝒮​.
The corresponding Julia code reads

Set up ADAM optimizer.

opt = ADAM()

Define the reparameterized loss function including penalty term.

loss(z) = .5f0 * norm(F ° R ° S(G(z)) - d)^2f0 + .5f0 * λ * norm(z)^2f0

ADAM iterations.

for it = 1:maxiter

 g = gradient(loss, z)[1] # gradient computed by AD

 update!(opt, z, g) # update z by ADAM

end

Convert latent variable to permeability.

K = G(z)

9Note, we parameterized this forward modeling in terms of the compressional wavespeed.

Special Section: Digitalization in energy 480 The Leading Edge July 2023	 		

Downloaded from http://pubs.geoscienceworld.org/tle/article-pdf/42/7/474/5932418/tle42070474.1.pdf
by guest
on 27 May 2024

This end-to-end inversion procedure, which utilizes a learned
deep prior and a pretrained FNO surrogate, was successfully
employed by Yin et al. (2022) on a simple stylistic blocky high-low
permeability model. The procedure involves using AD, with rrule
for the wave and fluid physics, in combination with innate AD
capabilities to compute the gradient of the objective in equation 3,
which incorporates fluid-flow, rock, and wave physics. To follow,
we share early results from applying the proposed end-to-end
inversion in a more realistic setting derived from real data
(cf. Figure 2).

Preliminary inversion results
While initial results by Yin et al. (2022) were encouraging and

showed strong benefits from the learned prior, the permeability
model and fluid-flow simulations considered in their study were
too simplistic. To evaluate the proposed end-to-end inversion
methodology in a more realistic setting, we consider the permeability
model plotted in Figure 7a, which we derived from a slice of the
Compass model (Jones et al., 2012) shown in Figure 2. To generate
realistic CO2 plumes in this model, we generate immiscible and
compressible two-phase flow simulations with JutulDarcy.jl over a
period of 18 years with five snapshots plotted at years 10, 15, 16,
17, and 18. These CO2 snapshots are shown in the first row of
Figure 8. Next, given the fluid-flow simulation, we use the patchy
saturation model (Avseth et al., 2010) to convert each CO2 con-
centration snapshot, ci, i = 1 … nv to corresponding wavespeed
model, vi, i = 1 … nv with ​v  =  ℛ​(c)​​. We then use JUDI.jl to generate
synthetic time-lapse data, di, i = 1 … nv, for each vintage.

During the inversion, the first 15 years of time-lapse data,
di, i = 1 … 15, from the aforementioned synthetic experiment are

Figure 7. (a) Ground truth permeability. (b) Initial permeability with homogeneous values in the reservoir, with a 7.06 dB S/N. (c) Inverted permeability from physics-based inversion, with a
7.26 dB S/N. (d) Inverted permeability with neural surrogate approximation, with a 7.10 dB S/N.

Figure 6. (a) Ground truth. (b) Traditional FWI without prior resulting in 12.98 dB PS/N.
(c) Our FWI result with learned prior resulting in 14.77 dB PS/N.

Special Section: Digitalization in energy July 2023 The Leading Edge 481

Downloaded from http://pubs.geoscienceworld.org/tle/article-pdf/42/7/474/5932418/tle42070474.1.pdf
by guest
on 27 May 2024

inverted with permeabilities within the reservoir initialized by a
single reasonable value as shown in Figure 7b. Inversion results
obtained after 25 passes through the data for the physics-driven
two-phase flow solver and its learned neural surrogate approxima-
tion are included in Figure 7c and Figure 7d, respectively. Both
results were obtained with 200 iterations of the preceding code
block. Each time-lapse vintage consist of 960 receivers and 32
shots. To limit the number of wave-equation solves, gradients
were calculated for only four randomly selected shots with replace-
ment per iteration. While these results obtained without learned
regularization are somewhat preliminary, they lead to the following
observations. First, both inversion results for the permeability
follow the inverted cone shape of the CO2. This is to be expected
because permeability can only be inverted where CO2 has flown
over the first 15 years. Second, the inverted permeability follows
trends of this strongly heterogeneous model. Third, as expected,
details and continuity of the results obtained with the two-phase
flow solver are better. In part, this can be explained by the fact
that there are no guarantees that the model iterations remain with
the statistical distribution on which the FNO was trained. Fourth,
the implementation of this workflow benefited greatly from the
aforementioned software design principles. For instance, the use
of abstractions made it trivial to replace physics-driven two-phase
flow solvers with their learned counterparts.

Despite being preliminary, the inversion results show that
this framework is conducive to producing current CO2 plume
estimates and near-future forecasts. As described by Yin et al.
(2022), these capabilities can be
achieved through use of the physics
simulator or the trained FNO surrogate.
The 18-year CO2 simulations in both
inverted permeability models are rea-
sonable when comparing the true plume
development plotted in the top row of
Figure 8 with plumes simulated from
the inverted models plotted in rows
three and four of Figure 8. While cer-
tain details are missing in the estimates
for the past, current, and predicted CO2
concentrations, the inversion constitutes
a considerable improvement compared
to plumes generated in the starting
model for the permeability plotted in
the second row of Figure 8. An early
version of the presented workflow can
be found in the Julia package
Seis4CCS.jl. As the project matures,
updated workflows and codes will be
pushed to GitHub.

Remaining challenges
We hope we have been able to con-

vince the reader that working with
abstractions has its benefits. Due to the
math-inspired abstractions, which
naturally lead to modularity and

separation of concerns, we were able to accelerate the research
and development cycle for the end-to-end inversion. As a result,
we created a development environment that allowed us to include
machine learning techniques. Relatively late in the development
cycle, it also gave us the opportunity to swap out the original 2D
reservoir simulation code for a much more powerful and fully
featured industry-strength 3D code developed by a national lab.
What we unfortunately have not yet been able to do is demonstrate
our ability to scale this end-to-end inversion to 3D, while both
the Devito-based propagators and Jutul.jl’s fluid-flow simulations
both have been demonstrated on industry-scale problems.
Unfortunately, lack of access to large-scale computational resources
makes it challenging in an academic environment to validate the
proposed methodology on 4D synthetic and field data, even though
the computational toolchain presented in this paper is fully dif-
ferentiable and, in principle, capable of scale-up. Most components
have been tested separately and verified on realistic 3D examples
(Grady et al., 2022b; Louboutin and Herrmann, 2022, 2023;
Møyner and Bruer, 2023) and efforts are underway to remove
fundamental memory and other bottlenecks.

Scale-up NFs. Generative models, and NFs included, call
for relatively large training sets and large computational resources
for training. While efforts have been made to create training
sets for more traditional machine learning tasks, no public-
domain training set exists that contains realistic 3D examples.
A positive is that NFs (Rezende and Mohamed, 2015) have a
small memory footprint compared to diffusion models

Figure 8. CO2 plume estimation and prediction. The first two columns are the CO2 concentration snapshots at year 10 and year
15 of the first 15 years of simulation monitored seismically. The last three columns are forecasted snapshots at years 16, 17,
and 18, where no seismic data are available. The first row corresponds to the ground truth CO2 plume simulated by the unseen
ground truth permeability model. The second row contains plume simulations in the starting model, with a 10.99 dB S/N on
the first 15 years of CO2 snapshots and 8.51 dB on the last 3 years. Rows three and four contain estimated and predicted
CO2 plumes for the physics-based and surrogate-based permeability inversion. The S/N values of the first 15 years of the
estimated CO2 plume are 17.72 and 16.17 dB for the physics-based inversion and the surrogate-based inversion, respectively.
The S/N values for the CO2 plume forecasts for the last 3 years are 15.69 and 14.05 dB for the physics-based inversion and the
surrogate-based inversion, respectively.

Special Section: Digitalization in energy 482 The Leading Edge July 2023	 		

Downloaded from http://pubs.geoscienceworld.org/tle/article-pdf/42/7/474/5932418/tle42070474.1.pdf
by guest
on 27 May 2024

(Song et al., 2020), so training this type of network will be
feasible when training sets and compute become available. In
our laboratory, we were already able to successfully train and
evaluate NFs on 256 × 256 × 64 models. In some cases where
geophysicists might not have enough samples for velocity/
permeability models, one could use in-house legacy models to
train the NFs as a preparation step for inverting the seismic
data. We leave the potential investigation to future studies.

Scale-up neural operators. Since the seminal paper by Z. Li
et al. (2020), there has been a flurry of publications on the use of
FNOs as neural surrogates for expensive multiphase fluid-flow
solvers used to simulate CO2 injection as part of geologic storage
projects (Wen et al., 2022, 2023). While there is good reason for
this excitement, challenges remain when scaling this technique
to realistic 3D problems. In that case, additional measures must
be taken. For instance, by nesting FNOs Wen et al. (2023) were
able to divide 3D domains into smaller hierarchical subdomains
centered around the wells — an approach that is only viable when
certain assumptions are met. Because of this nested decomposition,
these authors avoid the large memory footprint of 3D FNOs and
report a speedup of many orders of magnitude. Given the potential
impact of irregular CO2 flow, e.g., leakage, we try as much as
possible to avoid making assumptions on the flow behavior and
propose an accurate distributed FNO structure based on a domain
decomposition of the network’s input and network weights (Grady
et al., 2022b). By using DistDL (Hewett and Grady II, 2020), a
software package that supports “model parallelism” in machine
learning, our dfno software package partitions the input data and
network weights across multiple GPUs such that each partition
is able to fit in the memory of a single GPU. As reported by Grady
et al. (2022b), our work demonstrated validity of dfno on a realistic
problem and reasonable training set (permeability/CO2 concentra-
tion pairs) sizes for permeability models derived from the Sleipner
benchmark model (Furre et al., 2017). On 16 timesteps and models
of size 64 × 118 × 263, we reported from our perspective a more
realistic speedup of more than 1300× compared to the simulation
time on Open Porous Media (Rasmussen et al., 2021), one of the
leading open-source reservoir simulators. These results confirm
a similar indepedent approach advocated by Witte et al. (2022).
Even though we are working with our industrial partners and
Extreme Scale Solutions to further improve these numbers, we
are confident that distributed FNOs are able to scale to 3D with
a high degree of parallel efficiency.

Toward scalable open-source software. In addition to allowing
for reproduction of published results, we are advocates of pushing
out scalable open-source software to help with the energy transition
and with combating climate change. As observed in other fields,
most notably in machine learning, open-source software leads to

accelerated rates of innovation, a feature
needed in industries faced with major
challenges. Despite the exposition on
our experiences implementing end-to-
end permeability inversion, this work
constitutes a snapshot of an ongoing
project. However, many of the software
components listed in Table 1 are in an
advanced stage of development and to
a large degree are ready to be tested in
3D and ultimately on field data. For
instance, all of our software supports
large-scale 3D simulation and AD. In
addition, we are in an advanced state of
development to support GPU for all
codes. For those curious about future

Table 1. Current state of SLIM’s software stack. To underline collaboration and active participation in other open-source projects,
we included the external software packages (denoted by *) as well as how these are integrated into our software framework.

Package 3D GPU AD Parallelism

Devito* yes yes no Domain decomposition via MPI, multithreading via OpenMP

JUDI.jl yes yes yes Multithreading via OpenMP, task parallel

JUDI4Cloud.jl yes yes yes Multithreading via OpenMP, task parallel

InvertibleNetworks.jl yes yes yes Julia-native multithreading

dfno yes yes yes Domain decomposition via MPI

Jutul.jl* yes soon yes Julia-native multithreading

JutulDarcyRules.jl yes soon yes Julia-native multithreading

Seis4CCS.jl yes yes yes Julia-native multithreading

ParametricOperators.jl yes yes yes Domain decomposition via MPI, Julia-native multithreading

Software mentioned in this article (in order of first mention)
JUDI.jl 	 https://github.com/slimgroup/JUDI.jl

COFII https://github.com/ChevronETC/Examples

Devito	 https://github.com/devitocodes/devito

Julia https://julialang.org/

SymPy	 https://www.sympy.org/en/index.html

SPOT https://github.com/mpf/spot

JOLI.jl https://github.com/slimgroup/JOLI.jl

PyLops	 https://pylops.readthedocs.io/en/stable/

SlimOptim.jl https://github.com/slimgroup/SlimOptim.jl

SetIntersectionProjection.jl https://github.com/slimgroup/SetIntersectionProjection.jl

SegyIO.jl https://github.com/slimgroup/SegyIO.jl

JUDI4Cloud.jl https://github.com/slimgroup/JUDI4Cloud.jl

CloudSegyIO.jl https://github.com/slimgroup/CloudSegyIO.jl

ChainRules.jl https://github.com/JuliaDiff/ChainRules.jl

InvertibleNetworks.jl https://github.com/slimgroup/InvertibleNetworks.jl

dfno https://github.com/slimgroup/dfno

Jutul.jl https://github.com/sintefmath/Jutul.jl

Zygote.jl https://github.com/FluxML/Zygote.jl

Flux.jl https://github.com/FluxML/Flux.jl

JutulDarcy.jl https://github.com/sintefmath/JutulDarcy.jl

Jutul.jl https://github.com/sintefmath/Jutul.jl

JutulDarcyRules.jl https://github.com/slimgroup/JutulDarcyRules.jl

Flux.jl https://github.com/FluxML/Flux.jl

Seis4CCS.jl https://github.com/slimgroup/Seis4CCS.jl

ParametricOperators.jl https://github.com/slimgroup/ParametricOperators.jl

Special Section: Digitalization in energy July 2023 The Leading Edge 483

Downloaded from http://pubs.geoscienceworld.org/tle/article-pdf/42/7/474/5932418/tle42070474.1.pdf
by guest
on 27 May 2024

developments, we also include the Julia package
ParametricOperators.jl, which is designed to allow for high-
dimensional parallel tensor manipulations in support of future
Julia-native implementations of distributed FNOs.

The work presented in this paper would not have been possible
without open-source efforts from other groups, most notably by
researchers at the UK’s Imperial College London, who spearheaded
the development of Devito, and researchers at Norway’s SINTEF.
By integrating these packages into Julia’s agile differentiable
programming environment, we believe that we are well on our
way to arrive at a software environment that is much more viable
than the sum of its parts. We welcome readers to check https://
github.com/slimgroup for the latest developments.

Conclusions
In this work, we introduced a software framework for geo-

physical inverse problems and machine learning that provides a
scalable, portable, and interoperable environment for research
and development at scale. We showed that through carefully
chosen design principles, software with math-inspired abstractions
can be created that naturally leads to desired modularity and
separation of concerns without sacrificing performance. We
achieve this by combining Devito’s automatic code generation
for wave propagators with Julia’s modern highly performant and
scalable programming capabilities, including differentiable pro-
gramming. These features enabled us to quickly implement a
prototype, in principle scalable to 3D, for permeability inversion
from time-lapse crosswell seismic data. Aside from the use of
proper abstractions, our approach to solving this relatively complex
multiphysics problem relied extensively on Julia’s innate algo-
rithmic differentiation capabilities, supplemented by auxiliary
performant derivatives for the wave/fluid-flow physics and for
components of the machine learning. Because of these design
choices, we developed an agile and relatively easy to maintain
compact software stack where low-level code is hidden through
a combination of math-inspired abstractions, modern program-
ming practices, and automatic code generation.

Acknowledgments
This research was carried out with the support of the Georgia

Research Alliance and industrial partners of the ML4Seismic
Center. The authors thank Henryk Modzelewski (University of
British Columbia) and Rishi Khan (Extreme Scale Solutions) for
constructive discussions. This work was supported in part by the
U.S. National Science Foundation grant OAC 2203821 and
Department of Energy grant no. DE-SC0021515.

Data and materials availability
Our software framework is organized into registered Julia

packages, all of which can be found on the SLIM GitHub page
(https://github.com/slimgroup). The software packages described
in this paper are all open source and released under the MIT
license for use by the community.

Corresponding author: mlouboutin3@gatech.edu

References
Alnaes, M. S., J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg,

C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, 2015, The
FEniCS project version 1.5: Archive of Numerical Software, 3,
no. 100, https://doi.org/10.11588/ans.2015.100.20553.

Asim, M., M. Daniels, O. Leong, A. Ahmed, and P. Hand, 2020,
Invertible generative models for inverse problems: Mitigating repre-
sentation error and dataset bias: Proceedings of the 37th International
Conference on Machine Learning, PMLR, http://proceedings.mlr.
press/v119/asim20a.html, accessed 2 June 2023.

Avseth, P., T. Mukerji, and G. Mavko, 2010, Quantitative seismic
interpretation: Applying rock physics tools to reduce interpretation
risk: Cambridge University Press.

Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah, 2017, Julia: A
fresh approach to numerical computing: SIAM Review, 59, no. 1,
65–98, https://doi.org/10.1137/141000671.

Dinh, L., J. Sohl-Dickstein, and S. Bengio, 2016, Density estimation
using Real NVP: arXiv preprint, https://doi.org/10.48550/
arXiv.1605.08803.

Fomel, S., P. Sava, I. Vlad, Y. Liu, and V. Bashkardin, 2013, Madagascar:
Open-source software project for multidimensional data analysis and
reproducible computational experiments: Journal of Open Research
Software, 1, no. 1, e8, https://doi.org/10.5334/jors.ag.

Furre, A.-K., O. Eiken, H. Alnes, J. N. Vevatne, and A. F. Kiær, 2017,
20 years of monitoring CO2-injection at Sleipner: Energy Procedia,
114, 3916–3926, https://doi.org/10.1016/j.egypro.2017.03.1523.

Grady, T., Infinoid, and M. Louboutin, 2022a, slimgroup/dfno: Optimal
comm: Zenodo, https://doi.org/10.5281/zenodo.6981516.

Grady II, T. J., R. Khan, M. Louboutin, Z. Yin, P. A. Witte, R. Chandra,
R. J. Hewett, and F. J. Herrmann, 2022b, Model-parallel Fourier
neural operators as learned surrogates for large-scale parametric
PDEs: arXiv preprint, https://doi.org/10.48550/arXiv.2204.01205.

Herrmann, F. J., A. Siahkoohi, and G. Rizzuti, 2019, Learned imaging
with constraints and uncertainty quantification: arXiv preprint,
https://doi.org/10.48550/arXiv.1909.06473.

Hewett, R. J., and T. J. Grady II, 2020, A linear algebraic approach to
model parallelism in deep learning: arXiv preprint, https://doi.
org/10.48550/arXiv.2006.03108.

Innes, M., 2018a, Don’t unroll adjoint: Differentiating SSA-form pro-
grams: arXiv preprint, https://doi.org/10.48550/arXiv.1810.07951.

Innes, M., 2018b, Flux: Elegant machine learning with Julia: Journal of
Open Source Software, 3, no. 25, 602, https://doi.org/10.21105/
joss.00602.

Innes, M., A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V. B. Shah,
and W. Tebbutt, 2019, A differentiable programming system to bridge
machine learning and scientific computing: arXiv preprint, https://
doi.org/10.48550/arXiv.1907.07587.

Innes, M., E. Saba, K. Fischer, D. Gandhi, M. C. Rudilosso, N. M. Joy,
T. Karmali, A. Pal, and V. Shah, 2018, Fashionable modelling with
Flux: arXiv preprint, https://doi.org/10.48550/arXiv.1811.01457.

Jones, C. E., J. A. Edgar, J. I. Selvage, and H. Crook, 2012, Building
complex synthetic models to evaluate acquisition geometries and
velocity inversion technologies: 74th Conference and Exhibition,
EAGE, Extended Abstracts, https://doi.org/10.3997/2214-
4609.20148575.

Lensink, K., H. Modzelewski, M. Louboutin, yzhang3198, and Z. Yin,
2023, slimgroup/SegyIO.jl: v0.8.3: Zenodo, https://doi.org/10.5281/
zenodo.7502671.

Li, D., K. Xu, J. M. Harris, and E. Darve, 2020, Coupled time-lapse
full-waveform inversion for subsurface flow problems using intrusive
automatic differentiation: Water Resources Research, 56, no. 8,
e2019WR027032, https://doi.org/10.1029/2019WR027032.

Li, Z., N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya,
A. Stuart, and A. Anandkumar, 2020, Fourier neural operator for
parametric partial differential equations: arXiv preprint, https://doi.
org/10.48550/arXiv.2010.08895.

Lie, K.-A., and O. Møyner, eds., 2021, Advanced modelling with the
MATLAB reservoir simulation toolbox: Cambridge University Press,
https://doi.org/10.1017/9781009019781.

Special Section: Digitalization in energy 484 The Leading Edge July 2023	 		

Downloaded from http://pubs.geoscienceworld.org/tle/article-pdf/42/7/474/5932418/tle42070474.1.pdf
by guest
on 27 May 2024

Lin, T. T. Y., and F. J. Herrmann, 2015, The student-driven HPC
environment at SLIM: Presented at the Inaugural Full-Waveform
Inversion Workshop, https://slim.gatech.edu/Publications/Public/
Conferences/IIPFWI/lin2015IIPFWIsdh/lin2015IIPFWIsdh_pres.
pdf, accessed 2 June 2023.

Louboutin, M., and F. J. Herrmann, 2017, Extending the search space
of time-domain adjoint-state FWI with randomized implicit time
shifts: 79th Conference and Exhibition, EAGE, Extended Abstracts,
https://doi.org/10.3997/2214-4609.201700831.

Louboutin, M., and F. J. Herrmann, 2022, Enabling wave-based inversion
on GPUs with randomized trace estimation: 83rd Annual conference
and Exhibition, EAGE, Extended Abstracts, https://doi.
org/10.3997/2214-4609.202210531.

Louboutin, M., and F. J. Herrmann, 2023, Wave-based inversion at scale
on GPUs with randomized trace estimation, https://slim.gatech.edu/
Publications/Public/Submitted/2023/louboutin2023rte/paper.html,
accessed 2 June 2023.

Louboutin, M., M. Lange, F. Luporini, N. Kukreja, P. A. Witte, F. J.
Herrmann, P. Velesko, and G. J. Gorman, 2019, Devito (v3.1.0): An
embedded domain-specific language for finite differences and geo-
physical exploration: Geoscientific Model Development, 12, no. 3,
1165–1187, https://doi.org/10.5194/gmd-12-1165-2019.

Louboutin, M., P. Witte, and F. J. Herrmann, 2018, Effects of wrong
adjoints for RTM in TTI media: 88th Annual International Meeting,
SEG, Expanded Abstracts, 331–335, https://doi.org/10.1190/
segam2018-2996274.1.

Louboutin, M., P. Witte, A. Siahkoohi, G. Rizzuti, Z. Yin, R. Orozco,
and F. J. Herrmann, 2022a, Accelerating innovation with software
abstractions for scalable computational geophysics: Second
International Meeting for Applied Geoscience & Energy, SEG/
APPG, Expanded Abstracts, 1482–1486, https://doi.org/10.1190/
image2022-3750561.1.

Louboutin, M., P. Witte, Z. Yin, H. Modzelewski, Kerim, C. da Costa,
and P. Nogueira, 2023, slimgroup/JUDI.jl: v3.2.3: Zenodo, https://
doi.org/10.5281/zenodo.7785440.

Louboutin, M., Z. Yin, and F. J. Herrmann, 2022b, slimgroup/
JUDI4Cloud.jl: First public release: Zenodo, https://doi.org/10.5281/
zenodo.6386831.

Louboutin, M., Z. Yin, and F. J. Herrmann, 2022c, slimgroup/
SlimOptim.jl: v0.2.0: Zenodo, https://doi.org/10.5281/
zenodo.7019463.

Luporini, F., M. Louboutin, M. Lange, N. Kukreja, P. Witte, J.
Hückelheim, C. Yount, P. H. J. Kelly, F. J. Herrmann, and G. J.
Gorman, 2020, Architecture and performance of devito, a system
for automated stencil computation: ACM Transactions on
Mathematical Software, 46, no. 1, 6, https://doi.org/10.1145
/3374916.

Meurer, A., C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev,
M. Rocklin, A. M. T. Kumar, et al., 2017, SymPy: Symbolic comput-
ing in Python: PeerJ Computer Science, 3, e103, https://doi.
org/10.7717/peerj-cs.103.

Modzelewski, H., and M. Louboutin, 2022, slimgroup/CloudSegyIO.
jl: v1.0.1: Zenodo, https://doi.org/10.5281/zenodo.7434854.

Modzelewski, H., M. Louboutin, Z. Yin, D. Karrasch, and R. Orozco,
2023, slimgroup/JOLI.jl: v0.8.5: Zenodo, https://doi.org/10.5281/
zenodo.7752660.

Møyner, O., and G. Bruer, 2023, sintefmath/JutulDarcy.jl: v0.2.2:
Zenodo, https://doi.org/10.5281/zenodo.7775738.

Møyner, O., M. Johnsrud, H. M. Nilsen, X. Raynaud, K. O. Lye, and
Z. Yin, 2023, sintefmath/jutul.jl: v0.2.5: Zenodo, https://doi.
org/10.5281/zenodo.7775759.

Orozco, R., M. Louboutin, A. Siahkoohi, G. Rizzuti, T. van Leeuwen,
and F. J. Herrmann, 2023a, Amortized normalizing flows for tran-
scranial ultrasound with uncertainty quantification, https://openre-
view.net/forum?id=LoJG-lUIlk, accessed 5 June 2023.

Orozco, R., A. Siahkoohi, G. Rizzuti, T. van Leeuwen, and F. J. Herrmann,
2021, Photoacoustic imaging with conditional priors from normalizing
flows, https://openreview.net/forum?id=woi1OTvROO1, accessed
2 June 2023.

Orozco, R., A. Siahkoohi, G. Rizzuti, T. van Leeuwen, and F. J.
Herrmann, 2023b, Adjoint operators enable fast and amortized
machine learning based Bayesian uncertainty quantification:
Proceedings SPIE 12464, Medical Imaging 2023: Image Processing,
124641L, https://doi.org/10.1117/12.2651691.

Padula, A. D., S. D. Scott, and W. W. Symes, 2009, A software framework
for abstract expression of coordinate-free linear algebra and optimiza-
tion algorithms: ACM Transactions on Mathematical Software, 36,
no. 2, 8, https://doi.org/10.1145/1499096.1499097.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, 2019, PyTorch: An imperative style, high-performance deep
learning library: Proceedings of the 33rd International Conference
on Neural Information Processing Systems, 8026–8037.

Peters, B., and F. J. Herrmann, 2019, Algorithms and software for projec-
tions onto intersections of convex and non-convex sets with applica-
tions to inverse problems: arXiv preprint, https://doi.org/10.48550/
arXiv.1902.09699.

Peters, B., M. Louboutin, and H. Modzelewski, 2022, slimgroup/
SetIntersectionProjection.jl: v0.2.4: Zenodo, https://doi.org/10.5281/
zenodo.7257913.

Rasmussen, A. F., T. H. Sandve, K. Bao, A. Lauser, J. Hove, B. Skaflestad,
R. Klöfkorn, et al., 2021, The Open Porous Media Flow reservoir
simulator: Computers & Mathematics with Applications, 81, 159–185,
https://doi.org/10.1016/j.camwa.2020.05.014.

Rathgeber, F., D. A. Ham, L. Mitchell, M. Lange, F. Luporini,
A. T. T. Mcrae, G.-T. Bercea, G. R. Markall, and P. H. J. Kelly,
2016, Firedrake: Automating the finite element method by composing
abstractions: ACM Transactions on Mathematical Software, 43, no.
3, Article 24, https://doi.org/10.1145/2998441.

Ravasi, M., and I. Vasconcelos, 2020, PyLops — A linear-operator
Python library for scalable algebra and optimization: SoftwareX, 11,
100361, https://doi.org/10.1016/j.softx.2019.100361.

Rezende, D., and S. Mohamed, 2015, Variational inference with normal-
izing flows: Proceedings of the 32nd International Conference on
Machine Learning, 1530–1538, http://proceedings.mlr.press/v37/
rezende15.html, accessed 2 June 2023.

Richardson, A., 2018, Seismic full-waveform inversion using deep
learning tools and techniques: arXiv preprint, https://doi.org/10.48550/
arXiv.1801.07232.

Ringrose, P., 2020, How to store CO2 underground: Insights from early-mover
CCS projects: Springer, https://doi.org/10.1007/978-3-030-33113-9.

Rizzuti, G., M. Louboutin, R. Wang, and F. J. Herrmann, 2021, A dual
formulation of wavefield reconstruction inversion for large-scale
seismic inversion: Geophysics, 86, no. 6, R879–R893, https://doi.
org/10.1190/geo2020-0743.1.

Rizzuti, G., A. Siahkoohi, P. A. Witte, and F. J. Herrmann, 2020,
Parameterizing uncertainty by deep invertible networks: An applica-
tion to reservoir characterization: 90th Annual International Meeting,
SEG, Expanded Abstracts, 1541–1545, https://doi.org/10.1190/
segam2020-3428150.1.

Settgast, R., C. Sherman, B. Corbett, S. Klevtsov, F. Hamon, A. Mazuyer,
A. Vargas, et al., 2022, GEOSX/GEOSX: v0.2.1-alpha: Zenodo,
https://doi.org/10.5281/zenodo.7151032.

Siahkoohi, A., and F. J. Herrmann, 2021, Learning by example: Fast
reliability-aware seismic imaging with normalizing flows: First
International Meeting for Applied Geoscience & Energy, SEG/
AAPG, Expanded Abstracts, 1580–1585, https://doi.org/10.1190/
segam2021-3581836.1.

Siahkoohi, A., G. Rizzuti, and F. Herrmann, 2020a, A deep-learning
based Bayesian approach to seismic imaging and uncertainty quan-
tification: 82nd Conference and Exhibition, EAGE, Extended
Abstracts, https://doi.org/10.3997/2214-4609.202010770.

Siahkoohi, A., G. Rizzuti, and F. J. Herrmann, 2020b, Uncertainty
quantification in imaging and automatic horizon tracking — A
Bayesian deep-prior based approach: 90th Annual International
Meeting, SEG, Expanded Abstracts, 1636–1640, https://doi.
org/10.1190/segam2020-3417560.1.

Siahkoohi, A., G. Rizzuti, and F. J. Herrmann, 2020c, Weak deep priors
for seismic imaging: 90th Annual International Meeting, SEG,

Special Section: Digitalization in energy July 2023 The Leading Edge 485

Downloaded from http://pubs.geoscienceworld.org/tle/article-pdf/42/7/474/5932418/tle42070474.1.pdf
by guest
on 27 May 2024

Expanded Abstracts, 2998–3002, https://doi.org/10.1190/
segam2020-3417568.1.

Siahkoohi, A., G. Rizzuti, and F. J. Herrmann, 2022, Deep Bayesian
inference for seismic imaging with tasks: Geophysics, 87, no. 5,
S281–S302, https://doi.org/10.1190/geo2021-0666.1.

Siahkoohi, A., G. Rizzuti, M. Louboutin, P. A. Witte, and F. J.
Herrmann, 2021, Preconditioned training of normalizing flows for
variational inference in inverse problems: arXiv preprint, https://doi.
org/10.48550/arXiv.2101.03709.

Siahkoohi, A., G. Rizzuti, R. Orozco, and F. J. Herrmann, 2023, Reliable
amortized variational inference with physics-based latent distribution
correction: Geophysics, 88, no. 3, R297–R322, https://doi.
org/10.1190/geo2022-0472.1.

Silva, C. D., and F. Herrmann, 2019, A unified 2D/3D large scale
software environment for nonlinear inverse problems: ACM
Transactions on Mathematical Software, 45, no. 1, 7, https://doi.
org/10.1145/3291042.

Song, Y., J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and
B. Poole, 2020, Score-based generative modeling through stochastic
differential equations: arXiv preprint, https://doi.org/10.48550/
arXiv.2011.13456.

Sun, D., and W. W. Symes, 2010, IWAVE implementation of adjoint
state method: Technical Report 10-06, Department of Computational;
Applied Mathematics: Rice University, https://pdfs.semanticscholar.
org/6c17/cfe41b76f6b745c435891ea6ba6f4e2c2dbf.pdf, accessed
5 June 2023.

van den Berg, E., and M. P. Friedlander, 2009, Spot: A linear-operator
toolbox for Matlab: Presented at SCAIM Seminar.

van Rossum, G., and F. L. Drake, 2009, Python 3 reference manual:
CreateSpace.

Washbourne, J., S. Kaplan, M. Merino, U. Albertin, A. Sekar, C. Manuel,
S. Mishra, M. Chenette, and A. Loddoch 2021, Chevron optimization
framework for imaging and inversion (COFII) — An open source
and cloud friendly Julia language framework for seismic modeling
and inversion: First International Meeting for Applied Geoscience
& Energy, SEG/AAPG, Expanded Abstracts, 792–796, https://doi.
org/10.1190/segam2021-3594362.1.

Wen, G., Z. Li, K. Azizzadenesheli, A. Anandkumar, and S. M. Benson,
2022, U-FNO — An enhanced Fourier neural operator-based deep-
learning model for multiphase flow: Advances in Water Resources,
163, 104180, https://doi.org/10.1016/j.advwatres.2022.104180.

Wen, G., Z. Li, Q. Long, K. Azizzadenesheli, A. Anandkumar, and S.
Benson, 2023, Real-time high-resolution CO2 geological storage
prediction using nested Fourier neural operators: Energy &
Environmental Science, 16, no. 4, 1732–1741, https://doi.org/10.1039/
D2EE04204E.

White, F. C., M. Abbott, M. Zgubic, J. Revels, S. Axen, A. Arslan,
S. Schaub, et al., 2023, JuliaDiff/ChainRules.jl: v1.47.0: Zenodo,
https://doi.org/10.5281/zenodo.7628788.

White, F. C., M. Zgubic, M. Abbott, J. Revels, N. Robinson, A. Arslan,
D. Widmann, et al., 2022, JuliaDiff/ChainRulesCore.jl: v1.15.6:
Zenodo, https://doi.org/10.5281/zenodo.7107911.

Witte, P., M. Louboutin, K. Lensink, M. Lange, N. Kukreja, F. Luporini,
G. Gorman, and F. J. Herrmann, 2018, Full-waveform inversion,
part 3: Optimization: The Leading Edge, 37, no. 2, 142–145, https://
doi.org/10.1190/tle37020142.1.

Witte, P., M. Louboutin, R. Orozco, G. Rizzuti, A. Siahkoohi, F.
Herrmann, B. Peters, P. Haraldsson, and Z. Yin, 2023, slimgroup/
InvertibleNetworks.jl: v2.2.4: Zenodo, https://doi.org/10.5281/
zenodo.7693048.

Witte, P. A., R. J. Hewett, K. Saurabh, A. Sojoodi, and R. Chandra,
2022, SciAI4Industry — Solving PDEs for industry-scale problems
with deep learning: arXiv preprint, https://doi.org/10.48550/
arXiv.2211.12709.

Witte, P. A., M. Louboutin, N. Kukreja, F. Luporini, M. Lange, G.
J. Gorman, and F. J. Herrmann, 2019a, A large-scale framework
for symbolic implementations of seismic inversion algorithms in
Julia: Geophysics, 84, no. 3, F57–F71, https://doi.org/10.1190/
geo2018-0174.1.

Witte, P. A., M. Louboutin, F. Luporini, G. J. Gorman, and F. J.
Herrmann, 2019b, Compressive least-squares migration with on-
the-fly fourier transforms: Geophysics, 84, no. 5, R655–R672, https://
doi.org/10.1190/geo2018-0490.1.

Yang, M., Z. Fang, P. A. Witte, and F. J. Herrmann, 2020, Time-domain
sparsity promoting least-squares reverse time migration with source
estimation: Geophysical Prospecting, 68, no. 9, 2697–2711, https://
doi.org/10.1111/1365-2478.13021.

Yin, Z., H. T. Erdinc, A. P. Gahlot, M. Louboutin, and F. J. Herrmann,
2023, Derisking geologic carbon storage from high-resolution time-
lapse seismic to explainable leakage detection: The Leading Edge,
42, no. 1, 69–76, https://doi.org/10.1190/tle42010069.1.

Yin, Z., and M. Louboutin, 2023, slimgroup/JutulDarcyRules.jl: v0.2.4:
Zenodo, https://doi.org/10.5281/zenodo.7762154.

Yin, Z., M. Louboutin, and F. J. Herrmann, 2021, Compressive time-
lapse seismic monitoring of carbon storage and sequestration with
the joint recovery model: First International Meeting for Applied
Geoscience & Energy, SEG/AAPG, Expanded Abstracts, 3434–3438,
https://doi.org/10.1190/segam2021-3569087.1.

Yin, Z., R. Orozco, P. A. Witte, M. Louboutin, G. Rizzuti, and F. J.
Herrmann, 2020, Extended source imaging — A unifying framework
for seismic and medical imaging: 90th Annual International Meeting,
SEG, Expanded Abstracts, 3502–3506, https://doi.org/10.1190/
segam2020-3426999.1.

Yin, Z., A. Siahkoohi, M. Louboutin, and F. J. Herrmann, 2022, Learned
coupled inversion for carbon sequestration monitoring and forecasting
with Fourier neural operators: Second International Meeting for
Applied Geoscience & Energy, SEG/AAPG, Expanded Abstracts,
467–472, https://doi.org/10.1190/image2022-3722848.1.

Zhang, X., and A. Curtis, 2020, Seismic tomography using variational
inference methods: Journal of Geophysical Research: Solid Earth,
125, no. 4, e2019JB018589, https://doi.org/10.1029/2019JB018589.

Zhang, X., and A. Curtis, 2021, Bayesian geophysical inversion using
invertible neural networks: Journal of Geophysical Research: Solid
Earth, 126, no. 7, e2021JB022320, https://doi.org/10.1029/2021JB022320.

Zhao, X., A. Curtis, and X. Zhang, 2021, Bayesian seismic tomography
using normalizing flows: Geophysical Journal International, 228,
no. 1, 213–239, https://doi.org/10.1093/gji/ggab298.

© 2023 The Authors. Published by the Society of Exploration Geophysicists.All article
content, except where otherwise noted (including republished material), is licensed
under a Creative Commons Attribution 4.0 International (CC BY) license. See https://
creativecommons.org/licenses/by/4.0/. Distribution or reproduction of this work in
whole or in part commercially or noncommercially requires full attribution of the original
publication, including its digital object identifier (DOI).

Special Section: Digitalization in energy 486 The Leading Edge July 2023	 		

Downloaded from http://pubs.geoscienceworld.org/tle/article-pdf/42/7/474/5932418/tle42070474.1.pdf
by guest
on 27 May 2024

