
Learned multiphysics inversion with differentiable 
programming and machine learning

Abstract
We present the Seismic Laboratory for Imaging and Modeling/

Monitoring open-source software framework for computational 
geophysics and, more generally, inverse problems involving the 
wave equation (e.g., seismic and medical ultrasound), regularization 
with learned priors, and learned neural surrogates for multiphase 
flow simulations. By integrating multiple layers of abstraction, 
the software is designed to be both readable and scalable, allowing 
researchers to easily formulate problems in an abstract fashion 
while exploiting the latest developments in high-performance 
computing. The design principles and their benefits are illustrated 
and demonstrated by means of building a scalable prototype for 
permeability inversion from time-lapse crosswell seismic data, 
which, aside from coupling of wave physics and multiphase flow, 
involves machine learning.

Motivation
Advancements in high-performance computing techniques 

have led to giant leaps in computational (exploration) geophysics 
over the past decades. These developments have led, for instance, 
to the adoption of wave-equation-based inversion technologies 
such as full-waveform inversion (FWI) and reverse time migration 
(RTM) that, due to their adherence to wave physics, have resulted 
in superior imaging in complex geologies. While these techniques 
rank among the most sophisticated imaging technologies, their 
implementation relies with few exceptions — most notably 
iWave++ (Sun and Symes, 2010), Julia Devito Inversion framework 
(JUDI.jl) of the Seismic Laboratory for Imaging and Modeling 
(SLIM) (Witte et al., 2019a; Louboutin et al., 2023), and Chevron’s 
COFII (Washbourne et al., 2021) — on monolithic low-level (C/
Fortran) implementations. As a consequence, due to their lack of 
abstraction and modern programming constructs, these low-level 
implementations are difficult and costly to maintain, especially 
when performance considerations prevail over best software 
practices. A noteworthy attempt at modernizing wave-equation 
inversion frameworks is Deepwave (Richardson, 2018), which 
implements FWI using PyTorch (Paszke et al., 2019). Despite 
state-of-the-art examples and applications for 2D inversion, this 
work is limited by the aforementioned pitfalls as it relies on 
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handwritten low-level C/Cuda code, reducing the flexibility and 
extensibility to new physics and three-dimensional problems. It 
also does not integrate machine learning with FWI as advocated 
in this work. While these implementation design choices lead to 
performant code for specific problems, such as FWI, they often 
hinder the implementation of new algorithms, e.g., based on 
different objective functions or constraints, as well as coupling 
existing code bases with external software libraries. For instance, 
combining wave-equation-based inversion with machine learning 
frameworks or coupling wave physics with multiphase fluid-flow 
solvers is considered challenging and costly. Thus, our industry 
runs the risk of losing its ability to innovate, a situation exacerbated 
by the challenges we face due to the energy transition. 

In this work, we present a flexible and agile software framework 
that aims to resolve these challenges and is designed to be scalable, 
differentiable, and interoperable. We first introduce the design 
principles of our software framework, followed by a concrete usage 
scenario for time-lapse seismic monitoring of geologic carbon 
storage. This illustrative and didactic example involves the integra-
tion of multiple software modules for different types of physics 
with machine learning techniques such as learned deep priors 
and neural surrogates. For each module, we explain the choices 
we made and how these modules are connected through software 
abstractions and overarching high-level programming language 
constructs. The advocacy of our proposed framework is demon-
strated on a preliminary 2D case study involving the realistic 
Compass model (Jones et al., 2012). We conclude by discussing 
remaining challenges and future work directions.

Design principles
To address the shortcomings of current software implementa-

tions that impede progress, we have embarked on the development 
of a performant software framework. For instance, our wave 
propagators, implemented in Devito (Louboutin et al., 2019; 
Luporini et al., 2020), are used in production by contractors and 
oil and gas majors while enabling rapid, low-cost, scalable, and 
interoperable algorithm development for multiphysics and machine 
learning problems that run on a variety of chipsets (e.g., ARM, 
Intel, POWER) and graphics accelerators (e.g., NVIDIA, AMD, 
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Intel). To achieve this, we adopt contemporary software design 
practices that include high-level abstractions, software design 
principles, and utilization of modern programming languages such 
as Python (Rossum and Drake, 2009) and Julia (Bezanson et al., 
2017). We also make use of abstractions provided by domain-
specific languages (DSLs) such as the Rice Vector Library (Padula 
et al., 2009) and the Unified Form Language (Alnaes et al., 2015; 
Rathgeber et al., 2016) and adopt reproducible research practices 
introduced by the trailblazing open-source initiative Madagascar 
(Fomel et al., 2013), which made use of version control and an 
abstraction based on the software construction tool SCons.

To meet the challenges of modern software design in a per-
formance-critical environment, we adhere to three key principles 
— in addition to the fundamental principle of separation of 
concerns. First, we adopt mathematical language to inform our 
abstractions. Mathematics is concise, unambiguous, well under-
stood, and leads to natural abstractions for the

•	 wave physics, through partial differential equations as put to 
practice by Devito, which relies on Symbolic Python (SymPy) 
(Meurer et al., 2017) to define partial differential equations. 
Given the symbolic expressions, Devito automatically generates 
highly optimized, possibly domain-decomposed, parallel C 
code that targets the available hardware with near-optimal 
performance for 3D acoustic, tilted-transverse-isotropic, or 
elastic wave equations;

•	 linear algebra, through matrix-free linear operators, as in 
JUDI.jl (Witte et al., 2019a; Louboutin et al., 2023) — a 
high-level linear algebra DSL for wave-equation-based model-
ing and inversion. These ideas date back to SPOT (van den 
Berg and Friedlander, 2009) with more recent implementations 
JOLI.jl (Modzelewski et al., 2023) in Julia and PyLops in 
Python (Ravasi and Vasconcelos, 2020); and

•	 optimization, through definition of objective functions, also 
known as loss functions, that need to be minimized — via 
SlimOptim.jl (Louboutin et al., 2022c) — subject to math-
ematical constraints, which can be imposed through 
SetIntersectionProjection.jl (Peters and Herrmann, 2019; 
Peters et al., 2022).

Second, we exploit hierarchy within wave-equation-based 
inversion problems that naturally leads to a separation of concerns. 
At the highest level, we deal with linear operators, specifically 
matrix-free Jacobians of wave-based inversion, with JUDI.jl and 
parallel file input/output with SegyIO.jl (Lensink et al., 2023) on 
premise, or in the cloud (Azure) via JUDI4Cloud.jl (Louboutin 
et al., 2022b) and CloudSegyIO.jl (Modzelewski and Louboutin, 
2022). At the intermediate and lower level, we make extensive 
use of Devito (Louboutin et al., 2019; Luporini et al., 2020) — a 
just-in-time compiler for stencil-based time-domain finite-
difference calculations, the development of which SLIM has been 
involved in over the years.

Third, we build on the principles of differentiable programming 
as advocated by Innes et al. (2019) and intrusive automatic dif-
ferentiation introduced by D. Li et al. (2020) to integrate wave 
physics with machine learning frameworks and multiphase flow. 
Specifically, we employ automatic differentiation (AD) through 
the use of the chain rule, including abstractions that allow the 
user to add derivative rules, as in ChainRules.jl (White et al., 
2022, 2023).

During the Federal University of Rio Grande do Norte’s 
inaugural FWI workshop in 2015, we at SLIM started articulating 
these design principles (Lin and Herrmann, 2015), which over 
the years cumulated in scalable parallel software frameworks for 
time-harmonic FWI (Silva and Herrmann, 2019), for time-domain 
RTM and FWI (Witte et al., 2018, 2019a; Louboutin et al., 
2023), and for abstracted FWI (Louboutin et al., 2022a) allowing 
for connections with machine learning. Aside from developing 
software for wave-equation-based inversion, we have been involved 
more recently in the development of scalable machine learning 
solutions, including the Julia package InvertibleNetworks.jl (Witte 
et al., 2023), which implements memory-efficient invertible deep 
neural networks such as (conditional) normalizing flows (NFs) 
(Rezende and Mohamed, 2015), and scalable distributed Fourier 
neural operators (FNOs) (Z. Li et al., 2020) in the dfno software 
package (Grady et al., 2022a, 2022b). All of these will be described 
in more detail later in this paper.

To illustrate how these design principles can lead to solutions 
of complex learned coupled inversions, we consider in the ensuing 

Figure 1. The multiphysics forward model. The permeability, K, is generated from Gaussian noise with a pretrained NF, G, followed by two-phase flow simulations through S, rock physics 
denoted by R, and time-lapse seismic data simulations via wave physics, F.
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sections end-to-end inversion of time-
lapse seismic data for the spatial perme-
ability distribution (D. Li et al., 2020). 
As can be seen from Figure 1, this 
inversion problem is rather complex, 
and its solution arguably benefits from 
our three design principles listed earlier. 
In this formulation, the latent repre-
sentation for the permeability is taken 
via a series of nonlinear operations all 
the way to the time-lapse seismic data. 
In the remainder of this exposition, we 
will detail how the different compo-
nents in this learned inversion problem 
are implemented so that the coupled 
inversion can be carried out. The results 
presented are preliminary, representing 
a snapshot on how research is conducted 
according to the design principles.

Learned time-lapse end-to-
end permeability inversion

Combating climate change and 
dealing with the energy transition call 
for solutions to problems of increasing 
complexity. Building seismic monitor-
ing systems for geologic CO2 and/or 
H2 storage falls in this category. To 
demonstrate how math-inspired 
abstractions can help, we consider 
inversion of permeability from cross-
well time-lapse data (see Figure 2 for 
experimental setup) involving (1) cou-
pling of wave physics with two-phase 
(brine/CO2) f low using Jutul.jl 
(Møyner et al., 2023) state-of-the-art 
reservoir modeling software in Julia; 
(2) learned regularization with NFs 
with InvertibleNetworks.jl; and 
(3) learned surrogates for the fluid-flow 
simulations with FNOs. This type of 
inversion problem is especially chal-
lenging because it involves different 
types of physics to estimate the past, 
current, and future saturation and pres-
sure distributions of CO2 plumes from 
crosswell data in saline aquifers. In the 
subsequent sections, we demonstrate 
how we invert time-lapse data using 
the separate software packages listed 
in Figure 1.

Wave-equation-based inversion. 
Due to its unmatched ability to resolve 
CO2 plumes, active-source time-lapse 
seismic is arguably the preferred imag-
ing modality when monitoring geologic 

storage (Ringrose, 2020). In its simplest form for a single time-lapse vintage, FWI involves 
minimizing the ℓ2-norm misfit/loss function between observed and synthetic data — i.e., 
we have

​​minimize​ 
m​  ​   ​ 1 _ 2 ​∥ F​(m)​q − d ​∥​ 2​ 2​  where  F​(m)​  =  ​P​ r​​ ​A​(m)​​​ −1​ ​P​ s ​ ⊤​.                             ​(1)​​

In this formulation, the symbol F(m) represents the forward modeling operator (wave 
physics), parameterized by the squared slowness m. This forward operator acting on the 
sources consists of the composition of source injection operator Ps

⊤, with ⊤ denoting the 
transpose operator, solution of the discretized wave equation via A(m)–1, and restriction to 
the receivers via the linear operator Pr. The vector q represents the seismic sources, and the 
vector d contains single-vintage seismic data collected at the receiver locations. Thanks to 
our adherence to the math, the corresponding Julia code to invert for the unknown squared 
slowness m with JUDI.jl reads

# Forward modeling to generate seismic data. 

Pr = judiProjection(recGeometry)  # setup receiver 

Ps = judiProjection(srcGeometry)  # setup sources 

Ainv = judiModeling(model)        # setup wave-equation solver 

F = Pr * Ainv * Ps'               # forward modeling operator 

d = F(m_true) * q                 # generate observed data 

# Gradient descent to invert for the unknown squared slowness. 

for it = 1:maxiter 

    d0 = F(m) * q                 # generate synthetic data 

    J = judiJacobian(F(m), q)     # setup the Jacobian operator of F 

    g = J' * (d0 - d)             # gradient w.r.t. squared slowness 

    m = m - t * g                 # gradient descent with steplength t 

end

To obtain this concise and abstract formulation for FWI, we utilized hierarchical 
abstractions for propagators in Devito and linear algebra tools in JUDI.jl, including 
matrix-free implementations for F and its Jacobian J. While the preceding stand-alone 
implementation allows for (sparsity-promoting) seismic (Louboutin and Herrmann, 2017; 
Louboutin et al., 2018; Herrmann et al., 2019; Witte et al., 2019b; Rizzuti et al., 2020, 
2021; Siahkoohi et al., 2020a, 2020b, 2020c; Yang et al., 2020; Yin et al., 2021, 2023) 
and medical (Yin et al., 2020; Orozco et al., 2021, 2023a, 2023b) inversions, it relies on 
hand-derived implementations for the adjoint of the Jacobian J' and for the derivative 
of the loss function. Although this approach is viable, relying solely on hand-derived 
derivatives can become cumbersome when we want to utilize machine learning models 
or when we need to couple the wave equation to the multiphase flow equations.

Figure 2. Experimental setup. The black X symbol in the middle of the model indicates the CO2 injection location. The seismic 
sources are on the left-hand side of the model (shown as yellow X symbols) and receivers are on the right-hand side of the model 
(shown as red dots). Overlaid in gray is the compressional wavespeed with simulated CO2 saturation modeled for 18 years.
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Deep priors and NFs. NFs are gen-
erative models that take advantage of 
invertible deep neural network archi-
tectures to learn complex distributions 
from training examples (Dinh et al., 
2016). The term “flow” refers to the 
transformation of data from a complex 
distribution to a simple one. The term 
“normalizing” refers to the standard 
Gaussian (normal) target distribution 
that the network learns to map images 
to. For example, in seismic inversion 
applications, we are interested in 
approximating the distribution of earth 
models to use as priors in downstream 
tasks. NFs learn to map samples from 
the target distribution (i.e., earth mod-
els) to zero-mean unit standard devia-
tion Gaussian noise using a sequence of 
trainable nonlinear invertible layers. 
Once trained, one can resample new 
Gaussian noise and pass it through the 
inverse sequence of layers to obtain new 
generative samples from the target 
distribution. NFs are an attractive choice 
for generative models in seismic applica-
tions (Zhang and Curtis, 2020, 2021; 
Siahkoohi and Herrmann, 2021; 
Siahkoohi et al., 2021, 2022, 2023; Zhao 
et al., 2021) because they provide fast 
sampling and allow for memory-efficient 
training due to their intrinsic invert-
ibility, which eliminates the need to 
store intermediate activations during 
backpropagation. Memory efficiency is 
particularly important for seismic appli-
cations due to the 3D volumetric nature 
of the seismic models. Thus, our meth-
ods need to scale well in this regime.

To illustrate the practical use of NFs 
as priors in seismic inverse problems, 
we trained an NF on slices from the 
Compass model (Jones et al., 2012). The 
training of an NF is laid out in Figure 5 
where, for illustrative purposes, we 
demonstrate a training run on small 
(64 × 64) slices of the Compass model. 
Each row shows the normalization 
(image m transformed to Zm intended 
to be white zero-mean standard devia-
tion one Gaussian noise) during training 
and its generative inverse (white noise ​
z  ∼  𝒩​(0, 1)​​ to image ​​̃  m​​) during each 
epoch. From Figure 5, we clearly 
observe the intended behavior. As the 
training proceeds, the NFs transform 

To allow for this situation, we make use of Julia’s differentiable programming ecosystem 
that includes tools to use AD and to add differentiation rules via ChainRules.jl. Using 
this tool, the AD system can be taught how to differentiate JUDI.jl via the following 
differentiation rule for the forward propagator:

# Custom AD rule for wave modeling operator. 

function rrule(::typeof(*), F::judiModeling, q) 

    y = F * q                     # forward modeling 

    # The pullback function for gradient calculations. 

    pullback(dy) = NoTangent(), judiJacobian(F, q)' * dy, F' * dy  

    return y, pullback 

end

In this rule, the pullback function takes as input the data residual, dy, and outputs the 
gradient of  F * q with respect to the operator  * (no gradient), the model parameters, and 
the source distribution. With this differentiation rule, the above gradient descent algorithm 
can be implemented as follows:

# Define the loss function. 

loss(m) = .5f0 * norm(F(m) * q - d)^2f0 

# Gradient descent to invert for the squared slowness. 

for it = 1:maxiter

    g = gradient(loss, m)[1]      # gradient computation via AD 

    m = m - t * g               # gradient descent with steplength t 

end

Compared to the original implementation, this code only needs F(m) and the function 
loss(m). With the help of the above rrule, Julia’s AD system8 is capable of computing the 
gradients (line 5). Aside from remaining performant — i.e., we still make use of the adjoint-
state method to compute the gradients — the advantage of this approach is that it allows for 
much more flexibility, e.g., in situations where the squared slowness is parameterized in terms 
of a pretrained neural network or in terms of the output of multiphase flow simulations. In 
the next section, we show how trained NFs can serve as priors to improve the quality of FWI.

8In this case, we used reverse AD provided by Zygote.jl, the AD system provided by Julia machine learn-
ing package Flux.jl. Because ChainRules.jl is AD system agnostic, another choice could have been made.

Figure 3. Demonstration of Gaussianization of Compass slices during training of an NF. The data used for this didactic example 
are openly available and this figure is in the InvertibleNetworks.jl repository.
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the true model better toward white noise while its inverse progressively generates more 
realistic looking generative velocity models. To perform a comparison with traditional FWI, 
we train an NF on full model size slices (512 × 256 grid points). In Figure 5, we compare 
generative samples from the NF with the slices used to train the model shown in Figure 4. 
Although there are still irregularities, the model has learned important qualitative aspects 
of the model that will be useful in inverse problems. To demonstrate this usefulness, we 
test our prior on an FWI inverse problem. Because our NF prior is trained independently, 
it is flexible and can be plugged into different inverse problems easily.

Our FWI experiment includes ocean-bottom nodes, Ricker wavelet with no energy 
below 4 Hz, and additive colored Gaussian noise that has the same bandwidth as the noise-
free data. For FWI with our learned prior, we minimize

​minimize​ 
z
​  ​ ​ 1  _ 2  ​∥F​(​𝒢​ ​θ​​ *​​​​(z)​)​q − d ​∥​ 2​ 2​ +  ​ λ  _ 2 ​ ∥z ​∥​ 2 ​ 2 ​,                              ​(2)​

where ​​𝒢​ ​θ​​ *​​​​ is a pretrained NF with weights θ*. After training, the inverse of the NF maps realistic 
Compass-like earth samples to white noise — i.e., ​​𝒢​ ​θ​​ *​​ −1​​(m)​  = z  ∼  𝒩​(0, I )​​. Because the NFs are 
designed to be invertible, the action of the pretrained NF, ​​𝒢​ ​θ​​ *​​​​, on Gaussian noise z produces 
realistic samples of earth models (see Figure 5). We use this capability in equation 2 where the 
unknown model parameters in m are reparameterized by ​​𝒢​ ​θ​​ *​​​​(z)​​. The regularization term, ​​ λ _ 2​  ∥ z ​∥​ 2​ 2​​, 
penalizes the latent variable z with large ℓ2-norm, where λ balances the misfit and regularization 
terms. Consequently, this learned regularizer encourages FWI results that are more likely to be 
realistic earth models (Asim et al., 2020). However, notice that the optimization routine now 
requires differentiation through both the physical operator (wave physics, F) and the pretrained 
NF (​​𝒢​ ​θ​​ *​​​​), and only a true invertible implementation like ours, with minimal memory imprint 
for both training and inference, can provide scalability.

Due to the JUDI.jl’s rrule for F and InvertibleNetworks.jl’s rrule for G, integration of 
machine learning with FWI becomes straightforward involving replacement of m by G(z) 
on line 6. Minimizing the objective function in equation 2 now translates to

# Load the pretrained NF and weights. 

G = NetworkGlow(nc, nc_hidden, depth, nscales) 

set_params!(G, θ) 

# Set up the ADAM optimizer. 

opt = ADAM() 

# Define the reparameterized loss function including penalty term. 

loss(z) = .5f0 * norm(F(G(z)) * q - d)^2f0 + .5f0 * λ * norm(z)^2f0 

# ADAM iterations. 

for it = 1:maxiter 

    g = gradient(loss, z)[1]      # gradient computation with AD 

    update!(opt, z, g)            # update z with ADAM 

end 

# Convert latent variable to squared slowness. 

m = G(z)

In Figure 6, we compare the results 
of FWI with our learned prior against 
unregularized FWI. Because our prior 
regularizes the solution toward realistic 
models, we obtain a velocity estimate 
that is closer to the ground truth. To 
measure the performance of our 
method, we use peak signal-to-noise 
ratio (PS/N) and see an increase from 
12.98 dB with traditional FWI to 
14.77 dB with the learned prior.

Through this simple example, we 
demonstrated the ability to easily 
integrate our state-of-the-art wave-
equation propagators with Julia’s dif-
ferentiable programming system. By 
applying these design principles to 
other components of the end-to-end 
inversion, we design a seismic monitor-
ing framework for real-world applica-
tions in subsurface reservoirs.

Fluid-flow simulation and perme-
ability inversion. As stated earlier, 
our goal is to estimate the permeabil-
ity from time-lapse crosswell moni-
toring data collected at a CO2 injec-
tion site (cf. Figure 2). Compared to 
conventional seismic imaging, time-
lapse monitoring of geologic storage 
differs because it aims to image time-
lapse changes in the CO2 plume while 
obtaining estimates for the reservoir’s 
f luid-f low properties. This involves 
coupling wave modeling operators to 
f luid-f low physics to track the CO2 
plumes underground. The f luid-f low 
physics models the slow process of 
CO2 partly replacing brine in the pore 
space of the reservoir, which involves 
solving the multiphase f low equa-
tions. For this purpose, we need 
access to reservoir simulation soft-
ware capable of modeling two-phase 

Figure 4. Examples of Compass 2D slices used to train an NF prior.
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(brine/CO2) f low. While several 
proprietary and open-source reservoir 
simulators exist, including MRST 
(Lie and Møyner, 2021), GEOSX 
(Settgast et al., 2022), and Open 
Porous Media (Rasmussen et al., 
2021), few support differentiation of 
the simulator’s output (CO2 satura-
tion) with respect to its input (the 
spatial permeability distribution K in 
Figure 1). We use the recently devel-
oped externa l Ju l ia package 
JutulDarcy.jl that supports Darcy f low 
and serves as a front-end to Jutul.jl 
(Møyner et al., 2023), which provides 
accurate Jacobians with respect to K. 
Jutul.jl is an implicit solver for finite-
volume discretizations that internally 
uses AD to calculate the Jacobian. It 
has a performance and feature set 
comparable to commercial multiphase 
f low simulators and accounts for real-
istic effects (e.g., dissolution, inter-
phase mass exchange, compressibility, 
capillary effects) and residual trapping 
mechanisms. It also provides accurate 
sensitivities through an adjoint for-
mulation of the subsurface multiphase 
f low equations. To integrate the 
Jacobian of this software package into 
Julia’s differentiable programming 
system, we wrote the light “wrapper 
package” JutulDarcyRules.jl (Yin and 
Louboutin, 2023) that adds an rrule 
for the nonlinear operator ​​𝒮​(​​K​)​​​​, 
which maps the permeability distribu-
tion, K, to the spatially varying CO2 
concentration snapshots, ​​c = ​{​​ ​c​​ i​ ​​}​​​ i=1​ 

​n​ v​​ ​​​, 
over nv monitoring time steps (cf. 
Figure 1). Addition of this rrule 
allows these packages to interoperate 
with other packages in Julia’s AD 
ecosystem. The following shows a 

basic example where the ADAM algorithm is used to invert for subsurface permeability 
given the full history of CO2 concentration snapshots:

# Generate CO2 concentration. 

c = S(K_true) 

# Set up ADAM optimizer. 

opt = ADAM() 

# Define the loss function. 

loss(K) = .5f0 * norm(S(K) - c)^2f0 

# ADAM iterations. 

for it = 1:maxiter 

    g = gradient(loss, K)[1]      # gradient computed with AD 

    update!(opt, K, g)            # update K with ADAM 

end

During each iteration of the preceding loop, Julia’s machine learning package Flux.jl 
(Innes et al., 2018; Innes, 2018b) uses the custom gradient defined by the aforementioned 
rrule, calling the high-performance adjoint code from JutulDarcy.jl. Our adaptable software 
framework also facilitates effortless substitution of deep learning models in lieu of the 
numerical fluid-flow simulator. In the next section, we introduce distributed FNOs and 
discuss how this neural surrogate contributes to our inversion framework.

Fourier neural operator surrogates. While the integration of multiphase flow modeling 
into the Julia differentiable programming ecosystem opens the way to carry out end-to-end 
inversions (as explained later), fluid-flow simulations are computationally expensive — a 
notion compounded by the fact that these simulations have to be done many times during 
inversion. For this reason, we switch to a data-driven approach where a neural operator is first 
trained on simulation examples, pairs ​​​{​​K, 𝒮​(K)​​}​​​​, to learn the mapping from permeability 
models, K, to the corresponding CO2 snapshots, ​c : = 𝒮​(K)​​. After incurring initial offline 
training costs, this neural surrogate provides a fast alternative to numerical solvers with 
acceptable accuracy. FNOs (Z. Li et al., 2020), a neural network architecture based on spectral 
convolutions that capture the long-range correlations rather than localized spatial convolutions, 
have been introduced recently as a surrogate for elliptic partial differential equations such as 
the Darcy or Burgers equation. This spectral architecture has been applied successfully to 
simulate two-phase flow during geologic CO2 storage projects (Wen et al., 2022). Independently, 
Yin et al. (2022) used a trained FNO to replace the fluid-flow simulations as part of end-to-end 
inversion and showed that AD of Julia’s machine learning package can be used to compute 
gradients with respect to the permeability using Flux.jl’s reverse-mode AD system Zygote.jl 
(Innes, 2018a). After training, the above permeability inversion from concentration snapshots, 
c, is carried out by simply replacing ​𝒮​ by ​​𝒮​ ​w​​ *​​​​ with w* being the weights of the pretrained 
FNO. Thanks to the AD system, the gradient with respect to K is computed automatically. 
Thus, after loading the trained FNO and redefining the operator ​𝒮​, the aforementioned code 
remains exactly the same. For implementation details on the FNO and its training, we refer 
to Yin et al. (2022) and Grady et al. (2022b).

Figure 5. Generative samples from our trained prior. Their similarity to the training samples in Figure 4 suggests that our NF has learned a useful prior.
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 Putting it all together
As a final step in our end-to-end permeability inversion, we introduce a nonlinear rock-physics model, denoted by ​ℛ​. Based on the 

patchy saturation model (Avseth et al., 2010), this model nonlinearly maps the time-lapse CO2 saturations to decreases in the seismic 
properties (compressional wavespeeds, ​​v  = ​{​​ ​v​​ i​ ​​}​​​ i=1​ 

​n​ v​​  ​​​) within the reservoir with the Julia code

# Patchy saturation function. 

# Input: CO2 saturation, velocity, density, porosity. 

# Optional: bulk modulus of mineral, brine, CO2; density of CO2, brine. 

# Output: velocity, density. 

function Patchy(sw, vp, rho, phi; 

    bulk_min=36.6f9, bulk_fl1=2.735f9, bulk_fl2=0.125f9, 

    ρw=7f2, ρo=1f3) where T 

    # Relate vp to vs, set modulus properties. 

    vs = vp ./ sqrt(3f0) 

    bulk_sat1 = rho .* (vp.^2f0 .- 4f0/3f0 .* vs.^2f0) 

    shear_sat1 = rho .* (vs.^2f0) 

    # Calculate bulk modulus if filled with 100% CO2. 

    patch_temp = bulk_sat1 ./ (bulk_min .- bulk_sat1) 

        .- bulk_fl1 ./ phi ./ (bulk_min .- bulk_fl1) 

        .+ bulk_fl2 ./ phi ./ (bulk_min .- bulk_fl2) 

    bulk_sat2 = bulk_min ./ (1f0 ./ patch_temp .+ 1f0) 

    # Calculate new bulk modulus as weighted harmonic average. 

    bulk_new = 1f0 / ((1f0 .- sw) ./ (bulk_sat1 .+ 4f0/3f0 * shear_sat1)  

    + sw ./ (bulk_sat2 + 4f0/3f0 * shear_sat1)) - 4f0/3f0 * shear_sat1 

    # Calculate new density and velocity. 

    rho_new = rho + phi .* sw * (ρw - ρo) 

    vp_new = sqrt.((bulk_new .+ 4f0/3f0 * shear_sat1) ./ rho_new) 

    return vp_new, rho_new 

end

We map the changes in the wavespeeds to time-lapse seismic data, ​​d  =  ​{​​ ​d​​ i​ ​​}​​​ i=1​ ​n​ v​​ ​​​, via the blockdiagonal seismic modeling9 operator ​
ℱ​(v)​  = diag​(​​{​F​​ i​​(​v​​ i​)​ ​q​​ i​}​​ i=1​ 

​n​ v​​ ​)​​. In this formulation, the single-vintage forward operators Fi and corresponding sources, qi, are allowed 
to vary between vintages.

With the fluid-flow (surrogate) solver, ​𝒮​, the rock-physics module, ​ℛ​, and wave-physics module, ​ℱ​, in place, along with regu-
larization via reparametrization using ​​𝒢​ ​θ​​ *​​​​, we are now in a position to formulate the desired end-to-end inversion problem as

​​minimize ​ 
z
​  ​  ​ 1  _ 2 ​ ∥ ℱ ∘ ℛ ∘ 𝒮​(​𝒢​ ​θ​​ *​​​​(z)​)​ − d ​∥​ 2​ 2 ​ +  ​ λ _ 2 ​ ∥ z ​∥​ 2​ 2 ​,                                                          ​(3)​​

where the inverted permeability can be calculated by ​​K​​ *​  =  ​𝒢​ ​θ​​ *​​​​(​z​​ *​)​​ with z* the latent space minimizer of equation 3. As illustrated in 
Figure 1, we obtain the nonlinear end-to-end map by composing the fluid-flow, rock, and wave physics, according to ​ℱ ∘ ℛ ∘ 𝒮​. 
The corresponding Julia code reads

# Set up ADAM optimizer. 

opt = ADAM() 

# Define the reparameterized loss function including penalty term. 

loss(z) = .5f0 * norm(F ° R ° S(G(z)) - d)^2f0 + .5f0 * λ * norm(z)^2f0 

# ADAM iterations. 

for it = 1:maxiter 

    g = gradient(loss, z)[1]      # gradient computed by AD 

    update!(opt, z, g)            # update z by ADAM 

end 

# Convert latent variable to permeability. 

K = G(z)

9Note, we parameterized this forward modeling in terms of the compressional wavespeed.

Special Section: Digitalization in energy 480      The Leading Edge      July 2023	 		     

Downloaded from http://pubs.geoscienceworld.org/tle/article-pdf/42/7/474/5932418/tle42070474.1.pdf
by guest
on 27 May 2024



This end-to-end inversion procedure, which utilizes a learned 
deep prior and a pretrained FNO surrogate, was successfully 
employed by Yin et al. (2022) on a simple stylistic blocky high-low 
permeability model. The procedure involves using AD, with rrule 
for the wave and fluid physics, in combination with innate AD 
capabilities to compute the gradient of the objective in equation 3, 
which incorporates fluid-flow, rock, and wave physics. To follow, 
we share early results from applying the proposed end-to-end 
inversion in a more realistic setting derived from real data 
(cf. Figure 2).

Preliminary inversion results
While initial results by Yin et al. (2022) were encouraging and 

showed strong benefits from the learned prior, the permeability 
model and fluid-flow simulations considered in their study were 
too simplistic. To evaluate the proposed end-to-end inversion 
methodology in a more realistic setting, we consider the permeability 
model plotted in Figure 7a, which we derived from a slice of the 
Compass model (Jones et al., 2012) shown in Figure 2. To generate 
realistic CO2 plumes in this model, we generate immiscible and 
compressible two-phase flow simulations with JutulDarcy.jl over a 
period of 18 years with five snapshots plotted at years 10, 15, 16, 
17, and 18. These CO2 snapshots are shown in the first row of 
Figure 8. Next, given the fluid-flow simulation, we use the patchy 
saturation model (Avseth et al., 2010) to convert each CO2 con-
centration snapshot, ci, i = 1 … nv to corresponding wavespeed 
model, vi, i = 1 … nv with ​v  =  ℛ​(c)​​. We then use JUDI.jl to generate 
synthetic time-lapse data, di, i = 1 … nv, for each vintage.

During the inversion, the first 15 years of time-lapse data, 
di, i = 1 … 15, from the aforementioned synthetic experiment are 

Figure 7. (a) Ground truth permeability. (b) Initial permeability with homogeneous values in the reservoir, with a 7.06 dB S/N. (c) Inverted permeability from physics-based inversion, with a 
7.26 dB S/N. (d) Inverted permeability with neural surrogate approximation, with a 7.10 dB S/N.

Figure 6. (a) Ground truth. (b) Traditional FWI without prior resulting in 12.98 dB PS/N. 
(c) Our FWI result with learned prior resulting in 14.77 dB PS/N.
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inverted with permeabilities within the reservoir initialized by a 
single reasonable value as shown in Figure 7b. Inversion results 
obtained after 25 passes through the data for the physics-driven 
two-phase flow solver and its learned neural surrogate approxima-
tion are included in Figure 7c and Figure 7d, respectively. Both 
results were obtained with 200 iterations of the preceding code 
block. Each time-lapse vintage consist of 960 receivers and 32 
shots. To limit the number of wave-equation solves, gradients 
were calculated for only four randomly selected shots with replace-
ment per iteration. While these results obtained without learned 
regularization are somewhat preliminary, they lead to the following 
observations. First, both inversion results for the permeability 
follow the inverted cone shape of the CO2. This is to be expected 
because permeability can only be inverted where CO2 has flown 
over the first 15 years. Second, the inverted permeability follows 
trends of this strongly heterogeneous model. Third, as expected, 
details and continuity of the results obtained with the two-phase 
flow solver are better. In part, this can be explained by the fact 
that there are no guarantees that the model iterations remain with 
the statistical distribution on which the FNO was trained. Fourth, 
the implementation of this workflow benefited greatly from the 
aforementioned software design principles. For instance, the use 
of abstractions made it trivial to replace physics-driven two-phase 
flow solvers with their learned counterparts.

Despite being preliminary, the inversion results show that 
this framework is conducive to producing current CO2 plume 
estimates and near-future forecasts. As described by Yin et al. 
(2022), these capabilities can be 
achieved through use of the physics 
simulator or the trained FNO surrogate. 
The 18-year CO2 simulations in both 
inverted permeability models are rea-
sonable when comparing the true plume 
development plotted in the top row of 
Figure 8 with plumes simulated from 
the inverted models plotted in rows 
three and four of Figure 8. While cer-
tain details are missing in the estimates 
for the past, current, and predicted CO2 
concentrations, the inversion constitutes 
a considerable improvement compared 
to plumes generated in the starting 
model for the permeability plotted in 
the second row of Figure 8. An early 
version of the presented workflow can 
be found in the Julia package 
Seis4CCS.jl. As the project matures, 
updated workflows and codes will be 
pushed to GitHub.

Remaining challenges
We hope we have been able to con-

vince the reader that working with 
abstractions has its benefits. Due to the 
math-inspired abstractions, which 
naturally lead to modularity and 

separation of concerns, we were able to accelerate the research 
and development cycle for the end-to-end inversion. As a result, 
we created a development environment that allowed us to include 
machine learning techniques. Relatively late in the development 
cycle, it also gave us the opportunity to swap out the original 2D 
reservoir simulation code for a much more powerful and fully 
featured industry-strength 3D code developed by a national lab. 
What we unfortunately have not yet been able to do is demonstrate 
our ability to scale this end-to-end inversion to 3D, while both 
the Devito-based propagators and Jutul.jl’s fluid-flow simulations 
both have been demonstrated on industry-scale problems. 
Unfortunately, lack of access to large-scale computational resources 
makes it challenging in an academic environment to validate the 
proposed methodology on 4D synthetic and field data, even though 
the computational toolchain presented in this paper is fully dif-
ferentiable and, in principle, capable of scale-up. Most components 
have been tested separately and verified on realistic 3D examples 
(Grady et al., 2022b; Louboutin and Herrmann, 2022, 2023; 
Møyner and Bruer, 2023) and efforts are underway to remove 
fundamental memory and other bottlenecks.

Scale-up NFs. Generative models, and NFs included, call 
for relatively large training sets and large computational resources 
for training. While efforts have been made to create training 
sets for more traditional machine learning tasks, no public-
domain training set exists that contains realistic 3D examples. 
A positive is that NFs (Rezende and Mohamed, 2015) have a 
small memory footprint compared to diffusion models 

Figure 8. CO2 plume estimation and prediction. The first two columns are the CO2 concentration snapshots at year 10 and year 
15 of the first 15 years of simulation monitored seismically. The last three columns are forecasted snapshots at years 16, 17, 
and 18, where no seismic data are available. The first row corresponds to the ground truth CO2 plume simulated by the unseen 
ground truth permeability model. The second row contains plume simulations in the starting model, with a 10.99 dB S/N on 
the first 15 years of CO2 snapshots and 8.51 dB on the last 3 years. Rows three and four contain estimated and predicted 
CO2 plumes for the physics-based and surrogate-based permeability inversion. The S/N values of the first 15 years of the 
estimated CO2 plume are 17.72 and 16.17 dB for the physics-based inversion and the surrogate-based inversion, respectively. 
The S/N values for the CO2 plume forecasts for the last 3 years are 15.69 and 14.05 dB for the physics-based inversion and the 
surrogate-based inversion, respectively.
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(Song et al., 2020), so training this type of network will be 
feasible when training sets and compute become available. In 
our laboratory, we were already able to successfully train and 
evaluate NFs on 256 × 256 × 64 models. In some cases where 
geophysicists might not have enough samples for velocity/
permeability models, one could use in-house legacy models to 
train the NFs as a preparation step for inverting the seismic 
data. We leave the potential investigation to future studies.

Scale-up neural operators. Since the seminal paper by Z. Li 
et al. (2020), there has been a flurry of publications on the use of 
FNOs as neural surrogates for expensive multiphase fluid-flow 
solvers used to simulate CO2 injection as part of geologic storage 
projects (Wen et al., 2022, 2023). While there is good reason for 
this excitement, challenges remain when scaling this technique 
to realistic 3D problems. In that case, additional measures must 
be taken. For instance, by nesting FNOs Wen et al. (2023) were 
able to divide 3D domains into smaller hierarchical subdomains 
centered around the wells — an approach that is only viable when 
certain assumptions are met. Because of this nested decomposition, 
these authors avoid the large memory footprint of 3D FNOs and 
report a speedup of many orders of magnitude. Given the potential 
impact of irregular CO2 flow, e.g., leakage, we try as much as 
possible to avoid making assumptions on the flow behavior and 
propose an accurate distributed FNO structure based on a domain 
decomposition of the network’s input and network weights (Grady 
et al., 2022b). By using DistDL (Hewett and Grady II, 2020), a 
software package that supports “model parallelism” in machine 
learning, our dfno software package partitions the input data and 
network weights across multiple GPUs such that each partition 
is able to fit in the memory of a single GPU. As reported by Grady 
et al. (2022b), our work demonstrated validity of dfno on a realistic 
problem and reasonable training set (permeability/CO2 concentra-
tion pairs) sizes for permeability models derived from the Sleipner 
benchmark model (Furre et al., 2017). On 16 timesteps and models 
of size 64 × 118 × 263, we reported from our perspective a more 
realistic speedup of more than 1300× compared to the simulation 
time on Open Porous Media (Rasmussen et al., 2021), one of the 
leading open-source reservoir simulators. These results confirm 
a similar indepedent approach advocated by Witte et al. (2022). 
Even though we are working with our industrial partners and 
Extreme Scale Solutions to further improve these numbers, we 
are confident that distributed FNOs are able to scale to 3D with 
a high degree of parallel efficiency.

Toward scalable open-source software. In addition to allowing 
for reproduction of published results, we are advocates of pushing 
out scalable open-source software to help with the energy transition 
and with combating climate change. As observed in other fields, 
most notably in machine learning, open-source software leads to 

accelerated rates of innovation, a feature 
needed in industries faced with major 
challenges. Despite the exposition on 
our experiences implementing end-to-
end permeability inversion, this work 
constitutes a snapshot of an ongoing 
project. However, many of the software 
components listed in Table 1 are in an 
advanced stage of development and to 
a large degree are ready to be tested in 
3D and ultimately on field data. For 
instance, all of our software supports 
large-scale 3D simulation and AD. In 
addition, we are in an advanced state of 
development to support GPU for all 
codes. For those curious about future 

Table 1. Current state of SLIM’s software stack. To underline collaboration and active participation in other open-source projects, 
we included the external software packages (denoted by *) as well as how these are integrated into our software framework.

Package 3D GPU AD Parallelism

Devito* yes yes no Domain decomposition via MPI, multithreading via OpenMP

JUDI.jl yes yes yes Multithreading via OpenMP, task parallel

JUDI4Cloud.jl yes yes yes Multithreading via OpenMP, task parallel

InvertibleNetworks.jl yes yes yes Julia-native multithreading

dfno yes yes yes Domain decomposition via MPI

Jutul.jl* yes soon yes Julia-native multithreading

JutulDarcyRules.jl yes soon yes Julia-native multithreading

Seis4CCS.jl yes yes yes Julia-native multithreading

ParametricOperators.jl yes yes yes Domain decomposition via MPI, Julia-native multithreading

Software mentioned in this article (in order of first mention)
JUDI.jl 	 https://github.com/slimgroup/JUDI.jl

COFII https://github.com/ChevronETC/Examples

Devito	 https://github.com/devitocodes/devito

Julia https://julialang.org/

SymPy	 https://www.sympy.org/en/index.html

SPOT https://github.com/mpf/spot

JOLI.jl https://github.com/slimgroup/JOLI.jl

PyLops	 https://pylops.readthedocs.io/en/stable/

SlimOptim.jl https://github.com/slimgroup/SlimOptim.jl

SetIntersectionProjection.jl https://github.com/slimgroup/SetIntersectionProjection.jl

SegyIO.jl https://github.com/slimgroup/SegyIO.jl

JUDI4Cloud.jl https://github.com/slimgroup/JUDI4Cloud.jl

CloudSegyIO.jl https://github.com/slimgroup/CloudSegyIO.jl

ChainRules.jl https://github.com/JuliaDiff/ChainRules.jl

InvertibleNetworks.jl https://github.com/slimgroup/InvertibleNetworks.jl

dfno https://github.com/slimgroup/dfno

Jutul.jl https://github.com/sintefmath/Jutul.jl

Zygote.jl https://github.com/FluxML/Zygote.jl

Flux.jl https://github.com/FluxML/Flux.jl

JutulDarcy.jl https://github.com/sintefmath/JutulDarcy.jl

Jutul.jl https://github.com/sintefmath/Jutul.jl

JutulDarcyRules.jl https://github.com/slimgroup/JutulDarcyRules.jl

Flux.jl https://github.com/FluxML/Flux.jl

Seis4CCS.jl https://github.com/slimgroup/Seis4CCS.jl

ParametricOperators.jl https://github.com/slimgroup/ParametricOperators.jl
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developments, we also include the Julia package 
ParametricOperators.jl, which is designed to allow for high-
dimensional parallel tensor manipulations in support of future 
Julia-native implementations of distributed FNOs.

The work presented in this paper would not have been possible 
without open-source efforts from other groups, most notably by 
researchers at the UK’s Imperial College London, who spearheaded 
the development of Devito, and researchers at Norway’s SINTEF. 
By integrating these packages into Julia’s agile differentiable 
programming environment, we believe that we are well on our 
way to arrive at a software environment that is much more viable 
than the sum of its parts. We welcome readers to check https://
github.com/slimgroup for the latest developments.

Conclusions
In this work, we introduced a software framework for geo-

physical inverse problems and machine learning that provides a 
scalable, portable, and interoperable environment for research 
and development at scale. We showed that through carefully 
chosen design principles, software with math-inspired abstractions 
can be created that naturally leads to desired modularity and 
separation of concerns without sacrificing performance. We 
achieve this by combining Devito’s automatic code generation 
for wave propagators with Julia’s modern highly performant and 
scalable programming capabilities, including differentiable pro-
gramming. These features enabled us to quickly implement a 
prototype, in principle scalable to 3D, for permeability inversion 
from time-lapse crosswell seismic data. Aside from the use of 
proper abstractions, our approach to solving this relatively complex 
multiphysics problem relied extensively on Julia’s innate algo-
rithmic differentiation capabilities, supplemented by auxiliary 
performant derivatives for the wave/fluid-flow physics and for 
components of the machine learning. Because of these design 
choices, we developed an agile and relatively easy to maintain 
compact software stack where low-level code is hidden through 
a combination of math-inspired abstractions, modern program-
ming practices, and automatic code generation. 
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