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Abstract
We discuss a nonlinear domain-decomposition preconditioning method for fully implicit simulations of multicomponent
porous media flow based on the additive Schwarz preconditioned exact Newton method (ASPEN). The method efficiently
accelerates nonlinear convergence by resolving unbalanced nonlinearities in a local stage and long-range interactions in a
global stage. ASPEN can improve robustness and significantly reduce the number of global iterations compared with standard
Newton, but extra work introduced in the local steps makes each global iteration more expensive. We discuss implementation
aspects for the local and global stages.We show how the global-stage Jacobian can be transformed to the same form as the fully
implicit system, so that one can use standard linear preconditioners and solvers. We compare the computational performance
of ASPEN to standard Newton on a series of test cases, ranging from conceptual cases with simplified geometry or flow
physics to cases representative of real assets. Our overall conclusion is that ASPEN is outperformed by Newton when this
method works well and converges in a few iterations. On the other hand, ASPEN avoids time-step cuts and has significantly
lower runtimes in time steps where Newton struggles. A good approach to computational speedup is therefore to adaptively
switch between Newton and ASPEN throughout a simulation. A few examples of switching strategies are outlined.

Keywords Fully implicit methods · Newton’s method · Additive Schwarz Preconditioned Exact Newton (ASPEN)

1 Introduction

Reservoir simulation models from commercial applications
are usually stiff in the sense that the flow equations contain

B Olav Møyner
olav.moyner@sintef.no

Atgeirr F. Rasmussen
atgeirr.rasmussen@sintef.no

Øystein Klemetsdal
oystein.klemetsdal@sintef.no

Halvor M. Nilsen
halvormoll.nilsen@sintef.no

Arthur Moncorgé
arthur.moncorge@totalenergies.com

Knut-Andreas Lie
knut-andreas.lie@sintef.no

1 SINTEF Digital, Mathematics & Cybernetics,
P.O. Box 124 Blindern, N-0314 Oslo, Norway

2 TotalEnergies, Reservoir Simulation Department,
BB3110, Avenue Larribau, 64018 Pau, France

terms that can lead to rapid variations in the solution. Most
reservoir simulators therefore rely on implicit formulations,
which give rise to large algebraic systems of nonlinear equa-
tions to be solved for each time step. The standard approach
is to use Newton’s method. At its best, the second-order
Newton method will converge within a few iterations, but
in practice, the Newton updates must be dampened and the
method applied in combination with strategies for cutting
the time step when iterations fail or converge too slowly.
This will typically happen because natural initial guesses
are too far from the solution or as a result of unbalanced
nonlinearities in space and time. Imbalanced nonlinearities
can have many different causes, including strongly coupled
flow equations with mixed elliptic–hyperbolic subcharacter
and time constants that vary largely throughout the domain
(and in time); coupling of well and reservoir equations;
rapid transients induced by (discontinuous) changes in well
controls; strong heterogeneities in petrophysical properties
amplified by unstructured, non-orthogonal grids with high
aspect ratios; non-smooth and hysteretic rock-fluid proper-
ties; etc. This not only leads to badly conditioned linear
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systems that are expensive to solve with standard iterative
solvers, but a lot of computational effort is often wasted on
iterations that are discarded as a result of time-step chops,
in particular when one tries to run the simulator with longer
time steps in prediction mode.

To more efficiently handle problems with unbalanced
nonlinearities, Cai and Keyes [1] proposed to use domain
decomposition as a nonlinear preconditioner, giving the
so-called additive Schwarz preconditioned exact Newton
method (ASPIN); a multiplicative version was developed
later [2]. In either case, the key idea is to replace some
of the global Newton iterations, which require the solution
of large and often ill-conditioned linear (Jacobian) systems
that are expensive to solve and do not parallelize well, by
iterations localized to smaller subdomains that give smaller
and better conditioned linear systems. Likewise, solving
in subdomains will introduce local control on the iteration
process and contribute to take some of the “stiffness” out
of the nonlinear algebraic problems. Variants of nonlinear
domain-decomposition preconditioning have been applied
for immiscible two-phase porous media flow [3–5], single-
phase Forchheimer flow [6], and to improve the convergence
of sequential fully implicit schemes [7, 8], for which other
acceleration strategies have also been studied [9–11]. In par-
ticular, Dolean et al. [6] were the first to point out that the
exact Jacobian is easy and inexpensive to compute after the
subdomain solves, and may well be used instead of the inex-
act one suggested in the original ASPIN formulation.

Recently, we extended ASPEN to three-phase composi-
tional flow, showed how to reformulate the associated global
Jacobianmatrix so that one can usewell-known, efficient iter-
ative linear solvers, and demonstrated significant reduction
in the number of nonlinear iterations for both fully implicit
and sequentially implicit formulations across a wide vari-
ety of cases [12]. In another paper [13], we showed how
the ASPEN formulation can be used to develop an adaptive
sequentially fully implicit solver that uses a sequential fully
implicit solution formulation in subdomains with weaker
coupling between flow and transport and a fully implicit for-
mulation in subdomains with strong coupling.

The disadvantage of ASPEN (and similar methods) is that
each iteration is more expensive than a single iteration with
Newton. Not only do we need to solve subdomain problems
but we also need a global step. In principle, this step is com-
parable in complexity to a standard Newton update, but is
usually larger in magnitude and will hence require more lin-
ear iterations to converge. To be more efficient than standard
Newton, ASPEN thus needs to provide a sufficient reduc-
tion in the number of nonlinear iterations to overcome the
increased cost of each iteration. The purpose of this paper
is to study the balance between reduced iteration count and
increased iteration cost in an optimized implementation of
ASPEN. We show how the cost of the global step can be

reduced by recasting it as a correction to the local updates.
We also discuss how one can improve efficiency and robust-
ness of the nonlinear solver by adaptively switching between
Newton and ASPEN steps throughout the simulation and/or
iteration process.

2 Nonlinear domain-decomposition
preconditioning

In the following, we consider a standard fully implicit, finite-
volume discretization of the flow equations for a multiphase,
multicomponent system

Mn+1
i − Mn

i

�tn
+div(V n+1

i )−Qn+1
i = 0, i = 1, . . . ,m. (1)

Here, the vectors Mi and Qi contain the conserved quantity
of component i and the corresponding source terms in all the
grid cells, and Vi holds the flow rates for component i across
each cell interface. Superscript n refers to the timestep and
div is a discrete analogue of the standard divergence oper-
ator; see, Lie [14, Section 4.4] for details. To advance the
solution, we thus have to solve an algebraic system of nonlin-
ear equations for each time step, which we write compactly
as R(u; x) = 0, where u is the set of primary unknown
states associated with a spatial position x in our computa-
tional domain� fromwhichMi , Vi and Qi can be computed.
For a basic two-phase model, these primary unknowns will
typically be chosen to be a fluid pressure p and a fluid satu-
ration S, so that u = (p, S).

Domain decomposition (DD)methods are basedon the old
divide-and-conquer idea and solve problems by first splitting
them into smaller problems solved on local subdomains with
fixed boundary conditions and then iterating to coordinate
the solutions across the subdomains. To present the nonlin-
ear domain decomposition idea, it is sufficient to consider
two non-overlapping1 subdomains �1 and �2 defined such
that �1 ∪ �2 = �, over which we decompose u so that
ui (x) = u(x) for x ∈ �i . We apply the same decomposi-
tion to the residual so that Ri (u1, u2) = R(u; x ∈ �i ). To be
clear, R1 here denotes the set of nonlinear algebraic equations
for the unknowns u1 in �1, which will also involve values
u2 from inside �2 since the discrete divergence operator div
is a stencil of finite width that also operates on neighboring
cells across the inter-domain boundary. The definition of R2

is symmetric. Now, letSi (u) denote the formal solution oper-
ators that solve each of these residual equations, which we
with a slight abuse of notation can write in fixed-point form

1 Notice that in this case, the one-level restricted ASPEN (RASPEN)
method of Dolean et al. [6] coincides with ASPEN.
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as ui = Si (u1, u2). We then write the additive nonlinear
domain decomposition method as

R1
(S1(u1, u2), u2

) = 0, R2
(
u1,S2(u1, u2)

) = 0. (2)

Ifwe collect the two local solution operators into one operator
S = (S1,S2), the equivalent nonlinear equation suitable for
fixed-point iterations reads

R(u) = 0 ⇐⇒ u = S(u) ⇐⇒ F(u) ≡ u − S(u) = 0.

(3)

Applying Newton’s method to solve this equation gives

uk+1 = uk + �u, −∂F

∂u
�u = F(uk), where

∂F

∂u
= I − ∂S

∂u
. (4)

Because F is defined in termsof the solution operatorS, com-
puting its Jacobian requires some consideration. Going back
to the definition of the residual equations and remembering
to compute partial derivatives with respect to all variables, it
follows that

∂R1

∂u
= ∂R1

∂u1

∂S1

∂u
+ ∂R1

∂u2

∂u2
∂u

= 0

⇒ ∂S1

∂u
= −

(
∂R1

∂u1

)−1
∂R1

∂u2

∂u2
∂u

, (5)

evaluated in (u1, u2) = (S1(u), u2). For an additive method,
we likewise have that

∂R2

∂u
= ∂R2

∂u1

∂u1
∂u

+ ∂R2

∂u2

∂S2

∂u
= 0

⇒ ∂S2

∂u
= −

(
∂R2

∂u2

)−1
∂R2

∂u1

∂u1
∂u

, (6)

evaluated in (u1, u2) = (u1,S2(u)). The method generalizes
naturally to N subdomains.

Thematrix ∂F/∂u is generally dense, expensive to assem-
ble, and challenging to solve efficiently with a standard
iterative linear solver. However, if we look at its block struc-
ture, it is easy to see that thematrix can be factored as follows
[12]:

∂F

∂u
=

[
I1

(
∂R1
∂u1

)−1 ∂R1
∂u2(

∂R2
∂u2

)−1 ∂R2
∂u1

I2

]

=
[(

∂R1
∂u1

)−1 0

0
(

∂R2
∂u2

)−1

] [
∂R1
∂u1

∂R1
∂u2

∂R2
∂u1

∂R2
∂u2

]

= D−1 ∂R

∂u
. (7)

The block matrix D is sparse, and if we insert this factor-
ization into the second equation of (4) and premultiply with

D, we end up with the following linearized problem for the
Newton increment �u

−∂R

∂u
�u = DF(u). (8)

This system has the same form as the Jacobian of our orig-
inal algebraic system, except for slight differences in the
off-diagonal blocks at the boundaries between subdomains
and a different right-hand side. The system can therefore be
solved with the same linear solvers as one would use for
the usual Newton iteration of fully implicit systems. The
ASPEN method can be applied to domain decomposition
in both physical and state space; all you need is a reliable
(and efficient) method to solve the residual equation in each
subdomain and then ASPEN gives systematic global cor-
rections. However, extra care is necessary to ensure correct
treatment for flowmodels that involve variable switching like
in black-oil models, and more research remains here.

2.1 Remarks on the implementation

To make a highly efficient implementation of ASPEN, it
is important to reuse as many computations from the local
stages as possible. We can summarize the overall algorithm
as follows:

1. Solve for uk+1/2
i in each subdomain (nonlinearly).

2. Compute the local ASPEN residual Di Fi = rai =
Ji (uki − uk+1/2

i ), where Ji = ∂Ri/∂ui is the Jacobian
in subdomain i .

3. Compute boundary fluxes with partial derivatives
between subdomains (∂R j/∂ui ).

4. Assemble the global Jacobian Ja from local Jacobians
and boundary fluxes.

5. Assemble the global ASPEN residual ra from local
ASPEN residuals.

6. Solve the global system −Ja�u = ra to obtain updates
such that uk+1 = uk + �u.

Written in this form, �u is the increment relative to the start
of the subdomain solves. Applying standard dampening tech-
niques (e.g., that restrict saturation or pressure increments) to
this update will generally be too restrictive. Instead, we only
dampen the part of the increment that has not passed through
similar “quality controls” in the subdomain iterations. We
can then define

δu = �u − (
uk+1/2 − uk

) = (
uk+1 − uk

) − (
uk+1/2 − uk

)

= uk+1 − uk+1/2.

Applying dampening only to δu should avoid too aggressive
“chopping” of the part of the update that has already proved
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to be safe during successful subdomain solves, which will
hopefully lead to improved performance. So, to summarize,
we implement the algorithm exactly as just outlined, except
that the global solve in Step 6 is replaced by

−Ja�u = −Ja
(
δu + (uk+1/2 − uk)

) = ra, (9)

which is equivalent to

−Jaδu = ra + Ja
(
uk+1/2 − uk

)
. (10)

Notice that Ja becomes the fully implicit Jacobian as the
iteration converges, and that the corrected right-hand side
residual can be used to check convergence in the nor-
mal way; i.e., compute mass-balance errors (MAT BAL in
ECLIPSE notation), maximum normalized residuals (CNV
inECLIPSEnotation), etc. This does not significantly change
the convergence behavior of the schemes in terms of num-
ber of required iterations, but removes the need for an extra
assembly of the Newton residual in each iteration to check
convergence. This additional assembly has significant cost,
and removing it improves computational performance sub-
stantially. Also, we no longer need as strict linear tolerance
for the ASPEN solve as we would use in a straightforward
implementation that solves for the full update.

For comparison, we will also consider a simple ad hoc
method that just concatenates local subdomain iterations and
a standard Newton step without making any attempt to con-
struct an overall fixed-point iteration as in (4). In lack of a
better name, we refer to this method as NLDD. This method
is less code-invasive than ASPEN and can thus be seen as
a first step in implementing ASPEN. We note in the pass-
ing that NLDD is similar to the inexact Newton nonlinear
elimination (INB-NE) method [15], with the difference that
instead of solving locally only for a selected subset of the
variables (determined “bad” in a suitable measure), NLDD
solves for all variables in the local stage.

3 Numerical examples

In previous work [12, 13], we have demonstrated the abil-
ity of ASPEN to reduce the number of nonlinear iterations
and improve the general robustness of the nonlinear solve
compared to Newton. For this, we have used the automatic
differentiation (AD-OO) simulator framework of MRST
[14]. In [12], we also presented a simplified complexity anal-
ysis which indicates that under ideal parallelization, the extra
cost incurred from the local solves is small compared to the
cost of the global correction stage. Use ofmemory-optimized
backends for automatic differentiation and high-performing
linear solvers written in complied languages has brought
the computational power of MRST to the level of compiled

simulators [16]. Implementations in native MATLAB will
nonetheless inevitably have a certain computational over-
head that will bias actual runtimes observed when comparing
nonlinear solvers. We could therefore not back up claims
regarding ASPEN’s computational efficiency with credible
observations of reduced runtime.

To do this, we will herein instead rely on a highly opti-
mized computational backend (Jutul) written in Julia, a
dynamic, open-source programming language for scientific
computing that aims to achieve the same performance as
Fortran or C++ with a high-level syntax similar to Python
or MATLAB. Jutul relies on MRST for preprocessing simu-
lation cases for immiscible, black-oil, and equation-of-state
compositional flow. Thanks to a highly efficient prototype
implementation with static, hard-coded stencils, the perfor-
mance of Jutul’s automatic differentiation library is a factor
3–5 times faster than in OPM Flow [17] and AD-GPRS [18,
19], which in turn gives significantly faster assembly. Linear
systems are solved with a standard Krylov method together
with a constrained-pressure residual (CPR) preconditioner
[20, 21] that uses AMG and block-ILU(0) for the first and
second stages, respectively. All wells are treated as multiseg-
ment wells. Jutul is open source software2, but our ASPEN
implementation is not yet public.

In the following, we present a total of five test cases.
The first test case is a conceptual example included to illus-
trate typical convergence of the different nonlinear solvers,
whereas the following four test cases compare computational
performance ofASPENandNewton in termsof both iteration
counts and actual runtimes observed. We will also discuss a
few strategies to hybridize the two methods for optimal per-
formance.

3.1 Case 0: Buckley–Leverett displacement

We start our examples with a small conceptual case that cor-
responds to Example 1 in [12]. A two-phase one-dimensional
Buckley–Leverett displacement is discretized into 1000 fine
cells and five coarse subdomains. Using 200 time steps gives
an approximate CFL number of 5. We remove the limits on
pressure and saturation changes that are standard in industry-
grade simulators so that the only limit in place is the physical
constraint that saturations should be within the unit interval.
Disabling update limits is generally not feasible for more
complex models. However, in this particular, simple case,
it allows us to test an unmodified Newton solver against
ASPEN, and test whether our modified ASPEN formulation
in (9) has significant impact on the convergence behavior.
Figure 1 reports the cumulative iteration counts together with
the error reduction in the L2 norm as function of iteration
steps for the first two time steps of the simulation. Com-

2 https://github.com/sintefmath/JutulDarcy.jl
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Fig. 1 The upper row shows error reduction for the first two steps
(upper left) and cumulative iteration counts for the full simulation
(upper right) for a simple Buckley–Leverett displacement with stan-
dard Newton, ASPEN, and the alternate ASPEN formulation (denoted
“ASPEN-improved”) as nonlinear solvers; the local stages use five uni-
formly sized subdomains. The first step is the initiation of the simulation

and requires 12 iterations to complete for Newton. The second step uses
less iterations and is representative of the remainder of the time steps.
Wehave plotted only the non-converged residuals. The same experiment
is repeated in the second row for varying number of coarse blocks. For
legibility, we have only plotted the error reduction for the first iteration

paring computational performance measured in runtime is
not especially meaningful for this very small example, as all
versions run in approximately a second with a direct linear
solver. We see the expected reduction in nonlinear iteration
count relative to Newton when ASPEN is used. The standard
and the improvedASPEN formulations shownearly identical
convergence. This is also confirmed in other cases. In the fol-
lowing, we thus only consider our improved version, which
has lower runtime because of fewer residual evaluations.

The lower row in Fig. 1 compares error reduction and
cumulative iteration count for various sizes of the local sub-
domains. Here, we clearly see that the larger the subdomains,
the better the convergence. On the other hand, larger subdo-
mains usually means higher computational costs for the local
stage, and in practice there is a trade-off between improved

convergence and increased computational cost. In the fol-
lowing, we will as a simple rule of thumb use partitions with
between 500 and 1000 cells per subdomain, which on our
hardware gives a good balance for the cost of the local solves
relative to the reduction in the global nonlinear iterations.

3.2 Case 1: fractured reservoir

Our first performance test case is a continuation of a test case
reported earlier by Klemetsdal et al. [12, Example 2], which
considers a horizontal reservoir cross-section consisting of
five bands with distinctly different petrophysical properties,
intersected by a pattern of thirteen fracture corridors. The
domain is described by a fully unstructured PEBI grid with
7,932 cells that adapt to the fracture corridors, represented as
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Fig. 2 Computational performance test for the compositional, fractured
case with a three-component fluid model, simulated by a fully implicit
method with either standard dampened Newton (“fully implicit” in the

legend) or ASPEN as nonlinear solver. The left plot shows cumulative
runtime and the right plot the cumulative number of global iterations
used per time step

volumetric cells with high permeability. The reservoir is ini-
tially found at 75 bar and 150 degrees C and is filled by
a mixture of methane (30%), carbon dioxide (10%), and
n-decane (60%). Hydrocarbons are produced by injecting
0.25 pore volumes of supercritical carbon dioxide, contain-
ing 10% methane.

During the first injection phase, Newton and ASPEN
converge steadily, using on average 3.7 and 2.0 nonlinear
iterations per timestep, respectively. After the injected CO2

has broken through at 900 days, Newton fails to converge
and must cut the timestep in half multiple times, wasting
many iterations. ASPEN, on the other hand, continues to
converge steadily. Averaged over all timesteps, Newton uses
18.6 nonlinear iterations, whereas ASPEN requires only 2.2.
However, each iteration step with ASPEN is more expensive
than with Newton because of the local assembly and solves
in the domain-decomposition preconditioner and the extra
work required to evaluate the modified right-hand side and
the Jacobian of the global step. A reduction in iteration num-
bers does therefore not necessarily translate to an equally big
saving in computational cost.

Figure 2 reports cumulative runtimes and cumulative iter-
ation count for the dampened Newton method and ASPEN.
Altogether, Newton required 2103 iterations, out of which
1280 were wasted, and consumed a total runtime of 6.2
minutes. In comparison, ASPEN did not suffer from any
time-step cuts and hence did not waste any iterations, requir-
ing a total of 814 global iterations and a total runtime of 5.1
minutes. With Newton, the majority of the runtime is con-
sumed in the linear assembly, whereas ASPEN uses most of
its time in the subdomain solves.

The test case is very challenging for Newton because large
pressure changes that result when the injected gas breaks

through in the producer, which causesNewton’s convergence
to deteriorate significantly. The setup is thus not necessar-
ily representative of what one would see in a well-tuned
model. However, it clearly demonstrates the advantage of
using ASPEN as a very robust solver for difficult time steps.

Given this insight, an ad-hoc remedywould be to useNew-
tonup to breakthrough andASPEN thereafter. Figure 3 shows
that this strategy is highly efficient measured in terms of iter-
ation count. In fact, the total iteration count is lower than
when ASPEN is applied to all time steps because Newton
uses slightly fewer iterations thanASPENup to breakthrough
and because ASPEN, in our implementation, is configured to
always solve one global step. In comparison, using ASPEN
only in the first iteration results in fewer iterations but slightly
higher runtime up to breakthrough. After breakthrough, the
scheme fails to converge several time steps and altogether
wastes 340 iterations, clocking in at 4.2 minutes and 972
iterations. The iteration count is higher than for ASPEN and
for the hybrid strategy with Newton up to breakthrough, but
the runtime is nonetheless slightly lower because the added
cost of using the more expensive ASPEN steps in 2/3 of
the simulation cancels the computational gain from reduced
iterations.

3.3 Case 2: olympus waterflooding

The Olympus reservoir from the ISAAP Optimization Chal-
lenge [22] consists of 50 model realizations inspired by a
North Sea reservoir. The reservoir covers an approximate
area of 9 × 3 km2, is bounded on one side by a major
fault, and contains six internal faults. An impermeable shale
divides the 50 m thick reservoir into two zones: an upper
zone consisting of high-permeability fluvial channel sands
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Fig. 3 Cumulative runtime and iteration count for two different hybrid
strategies applied to the three-component, fractured test case: the top
plots use Newton up to breakthrough and ASPEN thereafter, the lower

plots use ASPEN in the first iterations and Newton thereafter. (In the
legends: “fully implicit” refers to standard Newton, whereas “ASPEN”
are the hybrid solvers.)

(permeability 1 darcy, porosity 0.35) embedded in flood-
plain shales, and lower zone consisting of alternating layers
of coarse, medium, and fine sands with a predetermined dip
similar to a clinoformal stratigraphic sequence. The geol-
ogy is modelled on a 118× 181× 16 corner-point grid with
192749 active cells Fig. 4. The two-phase oil/water model
assumes compressible fluids with densities of 850 and 1020
kg/m3 and viscosities of 2.59 and 0.395 cp at standard con-
ditions, respectively. Herein, we simplify the model by using
the same relative permeability curves in all fluid regions and
by assuming that the reservoir initially is filled with pure
oil.

A standard dampened Newton method requires 5.8 non-
linear iterations per time step on average and wastes no
iterations in time-step cuts (see Table 1), which we con-
sider as acceptable computational performance. For ASPEN
with 67 subdomains (including one for each well), the total

number of global iterations is reduced by 43% and the auto-
matic time-step selection also gives one less time step. This is
not sufficient to counteract the added cost of the local solves
on a single core. If the subdomains are solved concurrently
on four cores, the overall runtime is the same as for Newton.
With NLDD, the local and global iterations do not work in
union in some time steps and the method ends up wasting
eighty global iterations.

To make the case more challenging for the Newton solver,
we reduce the compressibility of the oil. This causes a dra-
matic increase in the global iterations for Newton, which
now ends up wasting many iterations. ASPEN also needs
more iterations but does not waste any iterations and ends
up with a 46% reduction in runtime compared with Newton.
NLDD still wastes iterations, but less than in the more com-
pressible case, and all over gives a 38% reduction in runtime
compared with Newton.
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Table 1 Runtime statistics for
the Olympus model simulated
with Jutul; iterations wasted on
time-step cuts are given in
parenthesis.

Single core Four cores Modified
Method Glob.its Time Steps Glob.its Time Steps Glob.its Time

Newton 139 (0) 133 sec. 24 139 (0) 102 sec. 24 426 (160) 222 sec.

NLDD 147 (80) 222 sec. 29 147 (80) 136 sec. 29 126 (20) 138 sec.

ASPEN 79 (0) 144 sec. 23 79 (0) 102 sec. 23 111 (0) 120 sec.

(With OPM Flow, the same simulation with Newton as the nonlinear solver consumed 240 seconds.) Sim-
ulations for the modified model with reduced oil compressibility were performed using a single core on a
different computer

3.4 Case 3: Real asset model

Our next example is a real asset model consisting of a
58 × 145 × 40 corner-point grid with 141,756 active cells,
which together with a three-phase, seven-component fluid
model results in almost one million unknowns. A pattern
of 22 wells inject and extract fluids over two decades, dis-
cretized by timesteps ranging from 1 to 34 days. Injectors
operate at fixed total rates, and producers at fixed oil or liq-
uid rates. Here, we consider a slightly simplified version that
uses a simple separator instead of a complete separator tree,
disregards end-point scaling, and only considers the first 100
out of a total of 340 report steps.

Simulations are run with standard Newton, NLDD, and
ASPEN on a single core using the same linear solver and
somewhat relaxed convergence criteria chosen to enable the
fully implicit solver to use time steps of reasonable length
within the prescribed report steps. Newton resolves the 100
report steps in 333 substeps with an average length of 4.17
days and amedian length of 3.07 days. The length of individ-
ual time steps range from 0.04 days to 28 days. ASPEN and
NLDD can consistently take longer time steps, and NLDD
has a mean time-step length of 6.7 days, with median of 4
days. ASPEN has an average of 6.8 days and median of 6.0
days. The distribution of these time steps in Fig. 5 clearly

Fig. 4 The Olympus field model [22] has 192749 active and 18 wells.
Colors signify the logarithm of the lateral permeability

show how NLDD and ASPEN have a wider span of time-
step lengths compared with Newton.

In the plot of accumulated runtime and global iterations in
Fig. 6 the trend is as observed in other examples; NLDD and
ASPEN use significantly fewer iterations, but each iteration
is more costly in terms of runtime because of the local sub-
domain solves. In this case, the reduction in iteration count
clearly out-weights the increased step cost. The Newton base
case runs in 5.2 hours, whereas NLDD and ASPEN run in
2.3 and 1.66 hours, resulting in a speedup of 2.3 and 3.1,
respectively. ASPEN reuses results from the local subdomain
solves, including flash, for the global assembly. NLDD does
not, but this would be an obvious candidate for improvement
that would bring the global assembly costs for ASPEN and
NLDD close together.

3.5 Case 4: Sleipner CO2 storagemodel

The final example is a CO2 injection case based on the 2019
Sleipner benchmark model.3 The specific permeability and
porosity distribution is taken from the version distributed
by the Open Porous Media initiative (OPM).4 The model is
described by a 64×118×263 corner-point grid having a total
of 1 986 176 active cells. The model is layered both in per-
meability and grid resolution, with large flow compartments
of good sands with high permeability (1-3 Darcy), separated
by finely gridded layers of nearly impermeable shales with
permeabilities as low as 1 micro Darcy.

One megatonne of CO2 is injected annually over a time
horizon of 14.25 years fromawell perforated in the lower part
of the formation. The CO2 plume formed from the injection
migrates quickly upwards until it reaches a shale, at which
point the plume splits into a horizontally-migrating part that
remains within the flow compartment, and a small volume of
CO2 that penetrates the shale. The upwardmigration through
the shale is limited by the brine–gas capillary pressure. Once
the shale has been passed, the mobile CO2 continues to move
upward, and the same process is repeated inside this newflow

3 https://co2datashare.org/dataset/sleipner-2019-benchmark-model
4 https://github.com/OPM/opm-data
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Fully implicit
NLDD
ASPEN

0 10 20 30
∆t [day]

Fig. 5 Time-step lengths within the prescribed reports steps for the
real asset model with Newton (“fully implicit”), NLDD, and ASPEN
as nonlinear solvers

compartment,with a fraction of the plumemigrating horizon-
tally and a fraction penetrating into the overlying shale, and
so on.

The simulation model uses an immiscible, compressible
two-phase description of the CO2 brine system, but is other-
wise identical to the case released by OPM. To partition the
model, we subdivide it into a 7×13 coarse grid in the lateral
direction. This single-layered partition is then vertically split
by the flow compartments so that each new coarse block is
entirely made up of either shale or high permeable sands. In
total, this gives 1632 coarse blocks.

We simulate the case using standard Newton and ASPEN,
both using a single thread.We observe, in Fig. 8, that ASPEN
again gives significant improvements in the computational
performance by reducing the number of iterations by almost
a factor three.As before, eachASPEN iteration remainsmore
costly than the standard Newton counterpart, however, and
the total speedup factor is just over 1.8, going from27.6 hours
runtime for Newton to 15.2 hours for ASPEN.

Fig. 7 The 2019 Sleipner benchmark model. The colors show a struc-
tured partition made up of 1632 coarse blocks plotted as varying colors.
Note the thin black stripes, comprised of finely gridded shales that
impede vertical migration of CO2 and separate the rock volume into
different flow compartments

4 Concluding remarks and outlook

Through a large number of numerical experiments, some of
which are reported herein and in [12, 13], we have observed
that ASPEN is more robust and not only manages to reduce
the number of nonlinear iterations, especially in cases with
localized, strong, and unbalanced nonlinearities, but also
manages to solve time steps for which Newton struggles.
Through the use of ASPEN (or variants thereof), one can
therefore hope to use longer timesteps and reduce the number
of unwanted timestep cuts in the presence of severe nonlin-
earities.

Each step with ASPEN is on the other hand more expen-
sive and hybrid strategies that use ASPEN for “difficult”
steps and Newton for all other would be advantageous. We
presented two possible strategies in Case 2, but these are
mere illustrations of the possibilities that lie in combining
the robustness of ASPEN with the efficiency of Newton. It
is not difficult to imagine more sophisticated strategies that,
e.g., switch toASPEN instead of cutting the time step if New-
ton fails (with the upper iteration limit not set too high) or
start with one iteration with ASPEN, switch to Newton, but
then switch back to ASPEN if Newton does not work well,
etc. It is also possible to compare the convergence in nor-

Fig. 6 Computational
performance test for the real
asset model with standard
Newton, NLDD, or ASPEN as
nonlinear solvers. The left plot
shows cumulative run time and
the right plot the cumulative
number of global iterations used
per time step
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Fig. 8 Computational
performance test for the
Sleipner CO2 storage model,
simulated by a fully implicit
method with either standard
dampened Newton or ASPEN as
nonlinear solver. The left plot
shows cumulative runtime and
the right plot the cumulative
number of global iterations used
per time step

malized mass-balance and CNV residuals, and, e.g., use the
ratio between the two and the magnitude of the CNV resid-
ual to switch from Newton to ASPEN (or back). Switching
between the two methods within a single time step is not
problematic since the two use equivalent residuals.

We have yet not systematically investigated to what extent
the improved robustness of ASPEN (or similar methods)
can be used to take longer time steps to reduce computa-
tional time. For optimal performance, one needs to find the
sweet spot among the counteracting factors of reduced run-
time from fewer time steps and increased runtime frommore
iterations per step and reduced accuracy for longer steps.
Likewise, use of inexact methods to avoid “over-solving”,
i.e., wasting iterations by solving states that are far from a
converged solution with tight tolerances, has been discussed
by Jiang et al. [11] for the sequentially fully implicit method.
Similar considerations likely apply to other nonlinear decom-
position methods and should be investigated.
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