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On the Predictive Power of Objective Intelligibility
Metrics for the Subjective Performance of Deep

Complex Convolutional Recurrent Speech
Enhancement Networks

Femke B. Gelderblom, Tron V. Tronstad, Torbjørn Svendsen, Tor Andre Myrvoll

Abstract—Speech enhancement (SE) systems aim to improve
the quality and intelligibility of degraded speech signals ob-
tained from far-field microphones. Subjective evaluation of the
intelligibility performance of these SE systems is uncommon.
Instead, objective intelligibility measures (OIMs) are generally
used to predict subjective performance increases. Many recent
deep learning (DL) based SE systems, are expected to improve
the intelligibility of degraded speech as measured by OIMs.

However, validation of the ability of these OIMs to predict
subjective intelligibility when enhancing a speech signal using
DL-based systems is lacking. Therefore, in this study, we evaluate
the predictive performance of five popular OIMs. We compare
the metrics’ predictions with subjective results. For this purpose,
we recruited 50 human listeners, and subjectively tested both
single channel and multi-channel Deep Complex Convolutional
Recurrent Network (DCCRN) based speech enhancement sys-
tems.

We found that none of the OIMs gave reliable predictions,
and that all OIMs overestimated the intelligibility of ‘enhanced’
speech signals.

Index Terms—Speech enhancement, intelligibility, objective
metrics, subjective evaluation

I. INTRODUCTION

BUSINESSES have embraced online meetings at a never-
before-seen rate during the Covid-19 pandemic. As so-

cieties are opening up again, many organizations are adopting
combinations of remote and on-location work. So-called ‘hy-
brid’ meetings, with both in-office and remote participants, are
becoming increasingly common.

The quality and intelligibility of the audio is crucial to the
meeting experience, but those on the remote end often find
themselves straining to hear what is being said by in-office
participants that do not use near-mouth microphones. Both
noise and reverberance degrade the intelligibility and quality of
speech [1], [2]. Far-field microphones, such as those embedded
into a webcam, ceiling-mounted conference systems, or table-
top speakerphones, inevitably pick up noise and reverberation,
hence reducing both the quality and intelligibility of the
transmitted speech signal.
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As such, speech enhancement (SE) of far-field microphone
recordings for online meetings is more relevant than ever.
Hand in hand comes the need to ensure that we have reliable
tools for measuring the performance of SE systems; this is the
topic of our study.

Microsoft has organised multiple challenges to stimulate
research on improving the quality of noisy and reverberant
speech signals and simultaneously open-sourced a subjective
evaluation framework for this purpose [3]–[5]. This has re-
sulted in several State-Of-The-Art-Systems that significantly
improve the quality of single channel speech signals. For
the Interspeech 2020 Deep Noise Suppression (DNS) chal-
lenge [3], Hu et al. proposed the deep complex convolution
recurrent network (DCCRN) [6], which won the real-time-
track. For the ICASSP 2021 DNS challenge [4], it was Li et al.
who proposed the winning system: a two-stage complex net-
work with a low-complexity post-processing scheme (TSCN-
PP) [7]. The authors later extended this network into the
simultaneous speech denoising and dereverberation network
(SDDNet) [8], which became the winner of the third DNS
challenge [5].

All of these networks (and many other competitors) im-
proved the subjective quality of speech: human listeners rated
the output of these SE systems as having higher quality than
the noisy input speech. As such, the challenges had two
(arguably equally) important outcomes: Not only did they
stimulate the development of better SE systems, they also led
to a far more widespread reliance on subjective evaluation of
system performance with respect to quality. Evidence for the
significance of the latter was, for example, provided by Li et
al. who found that including the proposed post-processing step
of their winning system was consistently preferred by listeners,
even though the objective measures had predicted the opposite
effect [7].

Reducing noise, distortion and reverberance, should not only
be beneficial for quality (how comfortable or annoying the
sound is to listen to), but also for intelligibility. Intelligibility
can be assessed both subjectively (with listening tests) and ob-
jectively (with mathematical metrics). Subjective intelligibility
can be evaluated using either qualitative or quantitative ap-
proaches. Qualitative assessments ask the test subjects to rate
the intelligibility of a word/sentence (e.g. rating it on a ordinal
scale with help text such as fully intelligible, slightly raised
effort to understand, difficult to understand, and impossible to
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understand, etc.) and are an indirect measure of intelligibility.
Speech recognition threshold (SRT), on the other hand, is
an example of a quantitative measure that gives a number
related to the ratio of words/sentences correctly perceived and
is a direct measure of intelligibility. It has been found that
qualitative measures often are biased, and care should be taken
when using them [9].

Since subjective testing is costly and time consuming,
objective intelligibility measures (OIMs) are the most com-
mon method for evaluating the intelligibility performance
of speech enhancement systems. These metrics can be ei-
ther ‘intrusive’ or ‘non-intrusive’. ‘Intrusive’ means they re-
quire the clean reference/target speech in addition to the
noisy/distorted/processed signal to be evaluated. Generally
speaking, the intelligibility score is then based on some
measure of mathematically defined (human hearing inspired)
closeness between the signals. Their non-intrusive counterparts
usually have less predictive power [10], and during the training
of supervised speech enhancement systems, the clean reference
signal is readily available. As such, intrusive measures of
intelligibility are logical choices for the evaluation of speech
enhancement systems.

While the previously mentioned DNS challenges focused
on subjective quality, many of the participants also provided
objective performance scores of their systems with respect to
intelligibility, recognizing the importance of the latter. Most
of the studies (i.e. [11]–[21]) provided short-time objective
intelligibility (STOI [22], [23]) scores, while a few (i.e. [16],
[24], [25]) presented extended STOI (ESTOI [26]) scores.

However, OIMs have their limitations and do not necessarily
work well for complex nonlinear DNN-based processing, or
for the more realistic degradations of speech signals that
include reverberation and distortion [27]–[31]. This means
that the intelligibility performance of SE systems should be
checked with subjective testing. Yet, it is rare to see SE
systems being evaluated subjectively for intelligibility. Notable
exceptions to this observation come from the field of SE for
hearing impaired users, where a limited number of research
groups have put considerable effort into systematically testing
their denoising or speech separation systems subjectively.
Over the years, they have published single channel models
that improve subjective intelligibility for different levels of
generalization (for example from known speakers to complete
language mismatch, and from overlapping noise samples to
completely unseen noise types) and from simpler to more com-
plex degradations (including reverberation and non-stationary
noises) [28], [31]–[39]. The difficulty of improving subjective
intelligibility is evident from the fact that we were unable
to find any studies demonstrating subjectively improved in-
telligibility of noisy reverberant single channel speech, under
combined novel noise and unseen speaker/speech conditions.

While the studies of [28], [31]–[39] mostly focus on
applications for the hearing impaired, their results are also
highly relevant for the setting of online meetings. One general
conclusion we can draw from these studies, is that it seems
to be easier to provide benefit to those that struggle the most.
Subjective intelligibility is quantitatively measured by means
of the speech recognition threshold (SRT) of a subject: the SRT

is the level where the subject can repeat 50 % of the speech
material correctly. Hearing impaired listeners have elevated
SRTs, meaning their intelligibility scores are lower at relatively
high signal to noise ratios (SNRs). At these higher SNRs, SE
systems have to remove less noise to recover the clean speech,
than at the lower SNRs where people with normal hearing start
to struggle.

For the meeting experience, the intelligibility should be
(close to) 100 %, which requires SNRs well above the SRTs
of normal hearing subjects. If SNRs are that high, quality
would be the more important factor. However, it is all too
common to see poorly placed equipment and sub-optimal
sound absorption in meeting rooms, which often leads to
problematic SNRs and reduced intelligibility. Humans are also
extremely apt at ‘guessing’ content from context, and report
higher intelligibility when the topic of conversation is familiar.
This happens at the cost of increased listening effort, making
such meetings more tiring than they would have been if the
speech signals had been clearer. Additionally, retirement age
is increasing, and international cooperation is well-established,
so many meeting participants do have elevated SRTs due to
(mild) hearing loss and/or unfamiliarity with the language,
which reduces their ability to guess from context. Therefore,
we argue that intelligibility is highly relevant also at the higher
SNRs that one may expect for hybrid meetings from a decent
conference room.

Subjective evaluation is currently the only way to determine
how a particular SE system actually affects intelligibility, but
objective metrics are much faster and simpler to use. Relying
solely on subjective testing would impede progress, but we do
need to validate the use of OIMs on modern SE systems.

The latest comprehensive review of intrusive objective in-
telligibility measures was published by Kuyk et al. in 2018
and evaluates a total of 12 such metrics across a large range
of subjective listening test results on different datasets of
degraded and enhanced audio. The novelty of our study is
in its focus on the enhancement by DL-based models, as none
of the datasets in Kuyk et al. ’s review included deep learning
based enhancement models. In that sense, our study is closer
to the recent studies of Keshavarzi et al. and Naithani et
al., who evaluated the effect of their respective DL-based SE
systems on subjective evaluation [40], [41]. However, these
studies relied on a qualitative method that measures whether
the listener believes that the intelligibility of the speech signal
has been improved.

Our study is similar in aim to our previous studies from
2017/2018 [29], [42], but now conducted with more compli-
cated neural networks (with convolution and recurrent layers,
instead of only feed-forward layers) that estimate a mask for
the degraded signal (instead of the enhanced signal itself).
Apart from being technically different, the OIMs also predict
much higher speech enhancement performance for the SE
systems of this study, thus giving higher expectations for
the subjective performance. Additionally, the current study
evaluates the predictive performance of five objective intel-
ligibility metrics, instead of just one. Recently, López-Espejo
et al. also published results of a study with an aim similar to
ours. Important differences between our and their study are
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Fig. 1. Overview of the proposed speech enhancement and dereverberation system. The highlighted WPE and GCC-Phat boxes are only employed during
inference. The red frame contains all blocks with trainable parameters, where each Encoder-Estimator-Decoder structure represents a single channel DCCRN.
The input of the system is the noisy reverberant multichannel speech signal x, and the output is the estimate of the clean speech signal ŝ. Figure taken
from [44] (©2021 IEEE).

the different types of networks used, and the focus of their
approach on using different OIMs as training loss, rather than
as evaluation tools [43].

In this study, we compare objective predictions to subjective
results of both the multi-channel and single channel DCCRN
speech enhancement systems from [44] and [6]. We have
taken particular care to create a challenging and realistic test
set, where speech is made reverberant with room impulse
responses (RIRs) recorded in the same meeting room as
where the noise was recorded. Speakers do not necessarily
look at the microphone (array), which leads to a weaker
direct path to the microphone, and more reverberant input.
Furthermore, there is a speaker and language mismatch as
training data did not include Norwegian, the language used
for the subjective evaluation. Subjective intelligibility was
evaluated by obtaining speech recognition thresholds for 50
participants, representing both native and non native office
workers with or without self reported normal hearing.

We would like to emphasize here that this study does
not focus on the evaluation of state-of-the-art DL-based SE
systems, nor on whether such systems can provide benefit
to its users. Instead, we aim to investigate the reliability of
commonly used OIMs to evaluate such systems. This less
common focus is motivated by the ample use of OIMs for
this exact purpose, despite there being no clear evidence
of the suitability of these OIMs for DL-based SE systems.
Instead, the literature provides us with some evidence of the
opposite [28]–[31]. We argue that the systems evaluated in
this study are representative enough of modern SE systems to
provide evidence concerning the predictive power of objective
intelligibility metrics.

II. SPEECH ENHANCEMENT SYSTEMS

A. Problem formulation
A speech signal from a single stationary speaker, recorded

by a single microphone at a fixed position in stationary room
conditions can be expressed as:

x = h ∗ s+ v, (1)

where x, s and v are the noisy, clean and noise time domain
signals, respectively. Furthermore, h denotes the frequency
response of the reverberation filter, which is time invariant, as
long as relative positions between the speaker, the microphone
and the reflective surfaces in the room do not change. The
noise signal may come from one or more sources, and each
of these will have their own reverberance, but all of these
signal components are here collected in the definition of v.

As a microphone array is nothing more than a collection of
microphones (each located at a unique location), the problem
can be expanded to a multi-channel problem using index i for
each microphone element:

xi = hi ∗ s+ vi, i = 1 . . . N, (2)

where N is the number of microphone elements in the array.
Both the noise, v, and the reverberance, h, degrade the

intelligibility and quality of the speech, s. The ultimate goal of
speech enhancement is therefore to recover the speech signal
s from the single or multi-channel noisy signal x.

B. SE models

From a machine learning perspective, it is natural to formu-
late the speech enhancement problem in terms of supervised
regression. This requires two matching datasets containing
corrupted input samples of x and their respective clean speech
targets s. A model is then trained to minimize the difference
between these two, using a suitable loss function and output
formulation (often defined as a mask) that ideally puts extra
weight on differences that are particularly important for human
perception.

Figure 1 shows an overview of our multi-channel system
first proposed in [44]. Specifically, the system denoted “MPDR
(oracle TDOAs) + Single channel DCCRN” was selected for
the subjective evaluation of this study, without any changes to
its implementation.

This system builds upon the challenge winning single chan-
nel DCCRN system proposed in [6]. At its input, the multi-
channel corrupted speech signal is taken to the Fourier domain
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by a short-time Fourier transform (STFT) operation. The
STFTs for each channel are then passed through a weighted
prediction error (WPE) block for dereverberation [45]. Single
channel DCCRN blocks estimate N masks (one for each
channel), all of which are then collapsed into a single mask
using the median operator. Finally, this mask is applied to a
beamformed version of the output of the WPE blocks, before
the enhanced signal is converted back to a time-signal using
an inverse STFT block.

During beamforming, the channels of a multi-channel signal
are delayed, weighted, and then combined into a single sig-
nal that is steered towards a specific source/direction. This
so-called steering vector requires time difference of arrival
(TDOA) values. During training, the system knows the true
speaker direction. During evaluation, we can either estimate
TDOAs by performing generalized cross correlation with
phase transform (GCC-Phat) [46] on the dereverberated WPE
output, or set them to the true TDOAs.

For the beamformer, we rely on the minimum power dis-
tortionless response (MPDR) beamformer. This beamformer
is also often referred to as a specific implementation of the
popular minimum variance distortionless response (MVDR)
beamformer, where the implementation differentiates itself
from the general MVDR beamformer, by deriving the distor-
tionless filter for a specified steering direction that minimizes
the mean square output power, and as such, it requires only the
corrupted input signal. To avoid ambiguity, we have chosen
to comply with Van Trees’ practice of referring to it as the
MPDR beamformer [47]. While the MPDR is known to be
more sensitive to the correctness of the steering vector, it has
the advantage that it allows for separation of the steering vector
and mask estimation processes as it does not need estimates
of the noise statistics. Further implementation details of the
MPDR-based multi-channel system and its superior objective
performance over several baseline systems are given in [44].

We evaluate two variants of this multi-channel system
(with oracle and unknown TDOAs), in addition to the single-
channel DCCRN it is based on. All processing conditions
were implemented in Python and the neural models were
implemented in PyTorch. To ensure we obtain the change
caused by the DCCRN component of the systems over the
results that we would have obtained just with beamforming
and WPE dereverberation, we also define a relevant baseline
for each of the three systems. This gives us a total of six
processing conditions:

• Baseline 1, Noisy: Single channel noisy and reverberant
speech.

• Baseline 2, MPDR (estimated TDOAs): Multi-channel
noisy and reverberant speech that has been dereverbed
with WPE and beamformed with the MPDR beamformer,
where TDOAs were estimated using GCC-Phat on the
noisy reverberant input.

• Baseline 3, MPDR (oracle TDOAs): Multi-channel
noisy and reverberant speech that has been dereverbed
with WPE and beamformed with the MPDR beamformer,
using oracle TDOAs.

• SE system 1, DCCRN: Single channel noisy and rever-
berant speech passed through a WPE block and a single

channel DCCRN SE model.
• SE system 2, MPDR (estimated TDOAs) + DCCRN:

Multi-channel noisy and reverberant speech that has been
passed through the complete multi-channel system shown
in 1. Here TDOAs are estimated from the dereverberated
output of the WPE blocks using GCC-Phat.

• SE system 3, MPDR (oracle TDOAs) + DCCRN:
Multi-channel noisy and reverberant speech that has been
passed through the complete multi-channel system shown
in 1. Here oracle TDOAs are used.

C. Training Data

The performance of deep learning based SE models is
highly dependent on the data that these models are trained on.
Training data needs to be varied enough to cover all possible
use cases, and realistic enough to avoid mismatch during later
use. Supervised training also requires that the desired target is
available. Therefore, we have taken the common approach of
corrupting clean speech with suitable noise and reverberance.

We relied on the DNS Challenge 2021 speech and noise
data, as it is a high quality database that covers multiple
languages and many different types of noises. For the RIRs,
we used the ISM-dir dataset described in [30]. These RIRs are
simulated using the image source method with the addition that
all speaker sources are modelled as directive sources with an
average male/female speaker pattern directivity.

Training input samples were generated in an ‘online’ man-
ner, meaning that new samples were generated during training
from convolving random samples of speech with random RIRs
and then adding (non-reverberant) random noise. In 20 % of
the cases the speech was also left non-reverberant. We ex-
perimented both with reverberant and non-reverberant speech
as target samples during training, and found the reverberant
speech to work best, as objective testing showed that the
DCCRN network was not able to remove reverberance.

III. EVALUATION

A. Evaluation Data

In order to directly compare results, we used the same
dataset for the objective and the subjective evaluations.

We chose a highly common type of meeting noise for the
evaluation, with transient components produced by typing on
a keyboard on a background of mostly stationary noise from
the air conditioning system. More than an hour of this type of
noise was recorded with a 9-channel circular microphone array
(planar) with 4 cm radius, positioned on a table approximately
in the middle of a typical rectangular meeting room with
dimensions 4.5 x 3.8 x 2.6 m, and a reverberation time
(RT601kHz) of 0.3 s.

RIRs were then recorded with the same microphone array in
the same room, at various speaker positions and orientations.
More details on how these RIRs were obtained can be found
in [30]. We included both the RIR recordings for speakers
facing the array, and the RIRs for speakers facing away at a
90 degree angle.

We used these noise and RIR recordings to corrupt the clean
speech material from the Norwegian speech-in-noise test (see
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Section III-C). For each sentence and SNR, a random clip of
noise and a random RIR was selected to corrupt the clean
speech to all SNRs ranging from -36 dB to 10 dB, with a 2
dB stepsize.

As such, we obtained a challenging evaluation dataset with
an unknown and unseen noise type, recorded RIRs that ‘faced’
towards or away from the array, and speech material from an
unknown speaker in a language that was not present in the
training material.

B. Objective evaluation

Being able to objectively determine the intelligibility of
a speech signal has been relevant since the invention of
telephony, over a hundred years ago. This eventually lead
to the Articulation Index (AI) [48], which was standardized
in 1969 and revised in 1997, into an updated metric called
the ‘speech intelligibility index’ (SII) [49]. In 1980, the
speech transmission index (STI) was proposed [50], which
can account for some simple nonlinear degradations such as
clipping. All these metrics are still in use today.

However, these metrics are based on long-term signal statis-
tics, which make them unsuitable for non-stationary noise
and enhancement algorithms that introduce distortions. Several
metrics have been proposed to improve upon these important
limitations and we evaluate five of these metrics that are
commonly used when testing speech enhancement systems.
All of the tested metrics have been validated to monotonically
relate to subjective intelligibility under the conditions for
which they were designed [22], [23], [26], [51]–[54].

All of these metrics are intrusive, which means they require
both the corrupted signal and a corruption free reference
signal, as input. The metrics then estimate intelligibility based
on a mathematical measure of similarity between these two
signals. Intrusive measures generally perform better than their
non-intrusive counterparts, making intrusive testing the obvi-
ous choice in cases like ours where the reference signal is
readily available [10].

For objective testing, we have obtained predictions for each
metric for the entire evaluation dataset. For this study, we have
only included metrics that aim to estimate intelligibility, as
it is also the intelligibility of speech that will be estimated
subjectively. Therefore, commonly used metrics to evaluate
the quality of speech (such as PESQ [55] and HASQI [56])
are omitted. The evaluated metrics are:

1) NCM (normalized covariance metric): The normalized
covariance measure (originally proposed in [51]) is closely
related to the STI. First, both the corrupted signal and the
clean reference are band-pass filtered into different frequency
bands. Then the normalized covariance (the Pearson cor-
relation coefficient) is calculated for all the temporal en-
velopes of the reference and corrupted frequency bands. The
normalized covariances are converted to apparent SNRs for
each frequency, which are clipped and averaged into a single
score using frequency dependent weights. We relied on the
implementation from [52] for the calculation of NCM scores,
using the updated signal dependent weights proposed in [57].
Van Kuyk et al. found that this NCM implementation works

well for datasets where a speech enhancement system has
post-processed degraded speech, but had less correlation with
subjective results for datasets where speech was only degraded,
or where enhancement had been added as a pre-processing step
(before the speech was corrupted) [27].

2) CSII (coherence speech intelligibility index): The CSII
metric attempts to extend the SII metric by making it appli-
cable to a wider range of distortions, where SII was designed
specifically for additive noise. Instead of finding the SNR of
each frequency band, the signal-to-distortion ratio (SDR) is
estimated for each band, based on the coherence between the
corrupted speech, and the clean reference signal. Speech seg-
ments are also divided into three energy level based categories,
and different weights determine the contribution of low-, mid-
and high-level speech segment scores (CSIIMid,CSIIMid and
CSIIMid, respectively) to the total CSII score [53]. We have
relied on the implementation from [52]. Van Kuyk et al. found
that a slightly different implementation of the CSII score had
acceptable predictive power on most datasets (in terms of
improved correlation coefficients), but notably struggled with
datasets where speech enhancement was applied as a post
processing step [27].

3) STOI (short-time objective intelligibility): STOI has
been specifically designed to deal with noisy speech processed
with time-frequency (TF) weighting techniques. To ensure
that the effect of local TF degradation is taken into account,
signals are segmented into short-time windows, and the overall
score is obtained by averaging the scores of all segments.
These scores themselves depend on the Pearson correlation
coefficient between the temporal envelopes of the corrupted
and clean reference speech signals [22], [23]. We relied on
the implementation provided by the original authors. STOI
is possibly the most popular OIM within the field of speech
enhancement, but multiple studies have noted its limitations
for evaluating performance of DNN-based SE systems [28],
[29], [31], [42].

4) ESTOI (extended STOI): ESTOI is similar to STOI,
but does not assume mutual independence between frequency
bands and incorporates spectral correlation, to improve its
performance on modulated noise sources [26]. We relied on
the implementation provided by the original authors. Van Kuyk
et al. found that ESTOI was one of the higher performing
metrics, but noted that ‘its usefulness is limited to situations
where noise is the main source of degradation’. Zhao et al.
found that ESTOI especially underestimated intelligibility of
unprocessed noisy-reverberant speech [31].

5) HASPI (hearing-aid speech perception index): HASPI
was first introduced in [54], and later updated to better
predict the intelligibility of reverberant speech (HASPI ver-
sion 2) [58]. We relied on the implementation of version
2 that we obtained from the original authors through direct
communication. HASPI allows for intelligibility predictions
based on the subject’s hearing loss, but we assumed normal
hearing conditions for all calculations. This means that during
calculation, both the corrupted signal and its reference were
passed through the same auditory model, giving two sets of
envelope modulation features. These outputs are then passed
through an ensemble of neural networks that have been fit to
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subjective intelligibility data. HASPI has the most complicated
auditory model of the tested metrics, and Van Kuyk found
HASPI (version 1) to be the overall top performing intrusive
metric [27].

Subjective intelligibility is not just dependent on the speech
degradation, but also on the test setup. As such, it is common
to map predicted scores to subjective results for a given test
setup [26]. In order to obtain intelligibility predictions for our
specific subjective evaluation setup, we have mapped the OIM
scores to the subjective results of our single channel noisy
and reverberant baseline. Crucial concepts here are that the
mapping is monotonic, and kept equal for all the six processing
conditions defined in Section II-B.

For STOI and ESTOI, we relied on the mapping proposed
in their respective papers [22], [23], [26]

Î =
100

1 + exp (aĨ + b)
, (3)

where Î is the predicted intelligibility, Ĩ the predicted score,
and a and b are the coefficients to be determined with the
non-linear least squares method. This mapping was empirically
found to also work well for NCM scores. For HASPI (which
has already been fit to subjective data), we found that a simple
translation along the SNR-axis leads to a closer match. For the
CSII metric, we used non-linear least squares to fit our data
to the mapping proposed by the original authors [53],

c = a1 + a2CSIILow + a3CSIIMid + a4CSIIHigh, (4)

Î =
100

1 + exp (−c)
, (5)

where the tunable parameters are the coefficients a.
We relied on the paired Wilcoxon rank sum test (also called

the Mann-Whitney U test), which is a non-parametric test
for paired observations that does not assume normality of
distributions, for testing whether results obtained for the differ-
ent processing conditions are significantly different. First we
obtain the SNR where the metric predicts 50 % intelligibility
for the noisy single channel processing condition. Then we
test, pairwise, for equality of the population medians of the
scores obtained at this SNR, for the noisy single channel
baseline condition, and the 5 remaining processing conditions
defined in Section II-B.

C. Subjective evaluation

To compare the different SE models subjectively, we deter-
mined the speech recognition threshold (SRT) of each subject,
for each processing condition. To find the SRTs, we relied
on a Norwegian implementation of a Hagerman test [59]. In
this test, each sentence is built up as follows: [Name], [Verb],
[Numeral], [Adjective], [Noun]. There are 10 possible options
for each class of words, giving 105 possible unique sentences,
but for practical purposes we relied on a subset of 500 unique
sentences from this database.

When evaluating subjective intelligibility, it is important
to control for the so-called ‘learning effect’, as listeners are
known to become better at speech-in-noise tests with prac-
tice [59], possibly biasing the evaluation to the order in which

models are tested. This is one of the advantages of Hagerman
tests; that there are only ten possible words for each of the
five word categories means that the listener quickly becomes
familiar with all the possible answers, speeding up the learning
effect [60]. Once the learning effect has been established,
the listeners’ answers directly represent the effects of the
processing condition we wish to evaluate. Therefore, each
subject was asked to complete a training round of the speech-
in-noise test, before completing the six different processing
conditions in an order that was randomized for each individual.
For the subjective evaluation of the different SE models, we
recruited 50 (25 male and 25 female) office workers. Our
recruitment process was intentionally inclusive also to those
who may struggle more in such meetings, either because they
suspect/know their hearing is not optimal, or because they are
not native speakers of Norwegian. None of the participants
had participated in any form of speech-in-noise test in the past
year. We were not required to notify the Norwegian Centre for
Research Data (NSD) about our study as we collected only
anonymous data.

Three subgroups of volunteers were recruited: 1) 15 native
listeners with self-reported normal hearing, 2) 16 native listen-
ers with self-reported known/suspected hearing loss, and 3) 19
non-native listeners with self-reported normal hearing. These
different subgroups were recruited to ensure a wide spread in
SRTs. This allowed us to evaluate whether models provide
a different benefit to those who already struggle with speech
understanding at higher SNRs (i.e. the non-native listeners or
those with hearing loss) than to normal hearing listeners that
can understand speech at extremely low SNRs.

After completing the evaluation, all subjects were reassigned
to three new subgroups based on the SRTs they obtained
for the noisy baseline condition: low (n = 16), medium
(n = 17) or high (n = 16). This ensured minimal intelligibility
performance spread within each subgroup, as it compensates
for the fact that self-reported hearing loss was found to be
a rather poor indicator of SRTs and that, as expected, the
results of the non-native volunteers was highly dependent
on the number of years of their experience with Norwegian,
and on the closeness of Norwegian to their mother tongue.
By reassigning candidates we obtained three approximately
equally sized subgroups that are maximally homogeneous in
SRT. Results from one subject were discarded as this subject’s
complete unfamiliarity with the language caused intelligibility
scores to be lower than the SRT threshold (50 %) even at the
highest test SNRs.

The chosen Norwegian speech-in-noise test was imple-
mented in Matlab, and allowed subjects to complete the
procedure independent of an operator. The program presented
the subject with a graphical user interface that showed ten
possible words for each of the five word categories. Each
noisy/processed 5-word sentence was presented only once, and
the subject was asked to click on all the words he/she had
recognized. Guessing was allowed, but the test was not forced
choice.

Responses were recorded and scored automatically and
used as input to an adaptive psychometric function estimation
procedure called the Ψ method [61]. Using this procedure,
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Fig. 2. Intelligibility versus SNR predicted by each metric, for the following conditions: noisy, Single channel DCCRN, MPDR (estimated
TDOAs), , MPDR (estimated TDOAs) + single channel DCCRN, MPDR (oracle TDOAs), MPDR (oracle TDOAs) + single channel DCCRN.
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Fig. 3. Change in SRT predicted by each metric, when the following systems
are compared to the single channel noisy condition: Single channel
DCCRN, MPDR (estimated TDOAs) only, MPDR (estimated
TDOAs) + single channel DCCRN, MPDR (oracle TDOAs) only,

MPDR (oracle TDOAs) + single channel DCCRN. Negative numbers
indicate improvement in speech intelligibility.

the routine continuously estimated the SRT and slope of the
psychometric function during the test. The final threshold
estimate was obtained after 20 sentences.

Subjects were encouraged to take small breaks in between
models, were allowed to repeat the training round (though
none did), and could adjust the volume of the test to their
own preferred setting. All participants received a 150 NOK
(≈ 15 EUR) voucher for their effort.

Experiments were conducted in the sound insulated lab of
SINTEF’s acoustics group. Sentences were presented binau-
rally through a Sennheiser HD 600 type headphone.

We again relied on the paired Wilcoxon rank sum test
for testing our null hypothesis. Here we tested pairwise for
equality of the population medians of the SRT scores (obtained
for each subject) for the single channel noisy condition, versus
the 5 remaining processing conditions defined in Section II-B.

IV. RESULTS

A. Objective results

Figure 2 shows the predicted psychometric functions of
intelligibility for the six different processing conditions defined
in Section II-B, and the five different objective metrics.

Figure 3 summarises these objective predictions by present-
ing the change in SRT predicted by each metric when five of
these processing conditions are compared to the remaining
noisy single channel condition. Here, negative values indicate
a reduced SRT (i.e. increased intelligibility).

The changes in SRTs shown in Figure 3 were found to
be highly significant (p ≪ 0.01) for all but one of the
systems. Namely, for the MPDR on its own and with estimated
TDOAs, only ESTOI and HASPI predicted (small but) signif-
icant changes (p < 0.05), while all other metrics predicted
insignificant changes (p > 0.05). All metrics therefore predict
increased intelligibity for all our DL-based SE systems.

We see similar trends across metrics in the predictions. The
objective measures do not necessarily agree on how much
improvement the systems provide, but performance gain is
nonetheless predicted whenever we compare a DCCRN-based
system to its appropriate baseline, or the noisy single channel
condition. Additionally, all metrics predict that beamforming
on its own (without DCCRN involvement) gives increased
intelligibility over the single channel noisy condition, but
only for oracle TDOAs. When the TDOAs are unknown,
beamforming is predicted to have little to no effect at all.
The noisy (unprocessed) input is expected to give the lowest
intelligibility independent of the predictive measure chosen,
and all metrics predict that the combined MPDR + DCCRN
(with oracle DOAs) will give the highest intelligibility.

B. Subjective results

Figure 4 shows the subjective results for all processing
conditions, together with their respective objective predictions
for each different metric. The results are averaged over the 16
respondents with SRTs below -15 dB on the single channel
noisy baseline: our best hearing subjects.

Objective scores for the single channel noisy condition are
mapped to the corresponding subjective results as described in
Section II-B. The mappings work equally well for all metrics,
as evident from the overlap of all the lines in the top-left plot
(noisy) in Figure 4. All mappings slightly underestimate the
slope of the psychometric function, but even at the extreme
ends, the differences between objective scores and subjective
answers are minor. The same mapping also works reasonably
well for the other baseline systems (Figure 4, top row), al-
though there seems to be a slight systematic overestimation of
intelligibility performance of the MPDR with oracle TDOAs.

When we move our attention to the DCCRN-based systems
(Figure 4, bottom row), we see that all metrics overestimate
intelligibility since all the colored lines are above the black
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Fig. 4. Psychometric functions obtained from normal hearing native speakers (n=14) for different processing pipelines. The subjective responses (error bars
indicating confidence intervals) and their logistic fits are shown in black ( ), together with the corresponding predictions from the objective metrics:
CSII, HASPI, NCM, ESTOI, and STOI.
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Fig. 5. Subjective Intelligibility versus SNR for each subgroup of subjects: noisy, Single channel DCCRN, MPDR (estimated TDOAs),
, MPDR (estimated TDOAs) + single channel DCCRN, MPDR (oracle TDOAs), MPDR (oracle TDOAs) + single channel DCCRN.

lines. This is not only true close to the SRT (SNR at intelli-
gibility 50 %), but across the entire intelligibility range.

Looking at the subjective results, the two systems based on
an MPDR supplied with oracle TDOAs (Figure 4, rightmost
column) are the only ones that lead to lower SRT scores when
compared to the noisy input (indicating improved intelligibil-
ity). All other forms of processing make the noisy input less
intelligible. Here it is important to note that the MPDR (oracle
TDOAs) system without a DCCRN outperforms the system
with a DCCRN.

Figure 5 shows the subjective results for all three subject
groups and the six processing conditions. Here we can see
that all systems with a DCCRN have comparable performance
or do worse than their respective baselines, over the entire
range of test SNRs. Only the systems with a MPDR that
knows where the speaker is (with or without DCCRN), clearly
outperform the single channel noisy baseline.

This observation is also apparent in Figure 6. Here statisti-
cally significant changes are marked with an asterisk. For the

low SRT group (our best hearing subjects), processing with
a single channel DCCRN significantly reduces intelligibility,
while for the other groups, the change in SRT is insignificant.
An MPDR that needs to estimate the direction of speech (the
MPDR with unknown TDOAs) neither degrades nor improves
the signal for any of the groups. When a DCCRN is added to
this type of MPDR, we see a degradation of speech intelligi-
bility for both the low and medium SRT groups. In contrast,
the MPDR-based systems where the TDOAs are known, do
significantly improve intelligibility. Here it is important to note
that the system without a DCCRN consistently outperforms the
combined system.

V. DISCUSSION

The objective of this study has been to assess different
OIMs that are commonly used to evaluate DL-based speech
enhancement systems.

All OIMs indicated that the intelligibility of noisy speech
signals should be improved by the tested DCCRN-based



9

Subjective change in SRT

* * *

*

*
*

* *

*

Low SRT (n=16) Medium SRT (n=17) High SRT (n=16)

-10

-5

0

5

10

C
h
a
n
g
e
 i
n
 S

R
T

 [
d
B

]

Fig. 6. Change in SRT for each group of subjects, when the following systems
are compared to the single channel noisy condition: Single channel
DCCRN, MPDR (estimated TDOAs) only, MPDR (estimated
TDOAs) + single channel DCCRN, MPDR (oracle TDOAs) only,

MPDR (oracle TDOAs) + single channel DCCRN. Positive numbers
indicate a degradation in speech intelligibility. Statistically significant changes
are marked with an *.

systems. However, the subjective evaluation of these systems
shows the opposite: the DCCRN-based systems degrade the
intelligibility of the noisy speech. Therefore, the SE systems
fail to deliver their expected performance, proving that the
OIMs are unreliable.

For our subgroup with the highest SRTs (those that tolerate
the least amount of noise) the SE systems seem to be doing
little harm. So for them, the systems may have merit if the
focus is only on quality, but this is not true for the other two
subgroups (the better-hearing subjects with higher language
familiarity).

Additionally, it is important to note that the metrics pre-
dicted significant increases in intelligibility for all SNRs,
making the OIMs unreliable across the range. All tested
metrics wrongly predicted that the DL-based SE systems
would improve the SRTs of the listeners.

Therefore, no correlation scores are presented since this
could be taken as a pointer to which metric is the ‘least wrong’.
It is not possible to conclude that any of the tested metrics is
more suitable to be used in the development of DL-based SE
systems than the others.

Note also that even though all metrics correctly predicted
approximately the right shape of the psychometric function,
this is merely an effect of using an appropriate mapping
function – it is the SRT that provides the developer with
information. The fact that the psychometric functions of the
top row of Figure 4 match reasonably well indicates that the
reliability of the metrics specifically break down when the
DCCRN network becomes part of the processing pipeline,
whereas beamforming on its own does not.

There is an ever-growing number of DL-based SE systems
proposed in the literature, and the exact results presented here
do not directly carry over to other set-ups. However, our
findings are alarming since they reveal that the performance
results estimated by the commonly used OIMs were not
reliable for these systems and the observed trends have strong
implications also for he expected performance of OIMs for
similar systems.

In earlier studies, we namely also obtained similar results
for very different DNN-based systems [29], [42]. The cur-
rent study expands on the earlier findings by studying more

advanced types of networks (where the OIMs also predict
much higher increases in performance), and over a larger range
of metrics. That the findings remain the same despite these
differences further strengthens the conclusion that OIMs can-
not be assumed to be reliable predictors of subjective speech
intelligibility for DNN-based speech enhancement systems.
As such, we conclude that DL-based SE systems should be
evaluated subjectively at least until the reliability of the OIM
has been validated for the chosen SE system.

As subjective evaluation seldom is used to evaluate the
intelligibility improvement of DL-based SE systems, we have
not found any evidence that OIMs have ever been reported to
reliably predict the quantitative subjective intelligibility per-
formance of DL-based SE systems. Instead, recently López-
Espejo et al. also found no strong positive monotonic rela-
tionship between objective and subjective intelligibility for
their systems, which in contrast to ours are based on a fully
convolutional neural network (FCNN) architecture and trained
with a range of different loss functions. Like us, López-
Espejo et al. conclude that subjective evaluation of DNN-based
SE systems cannot systematically be replaced by objective
intelligibility evaluation as of today [43].

That the tested OIMs do not provide reliable predictions
for the system’s tested here, naturally does not mean they are
necessarily unreliable for all DL-based systems. Further work
is required to identify exactly where the limitations of the
metrics lie and what causes their lack of reliability. A major
challenge for such a study is the black-box nature of DL-based
systems. From the current study, it is not possible to determine
what causes the OIMs to be off in their predictions. This is
essential for the development of new OIMs, and should be
looked into in future research. However, as the OIMs were
unreliable over the entire range of SNRs tested, we are able
to conclude that they are unreliable, not only for extremely
low SNRs, or vice versa. The fact that the tested OIMs
(despite their different approaches) all struggle with predicting
the intelligibility of the samples processed with the DNN-
based SE systems, while being reasonably accurate for the
beamformed samples, suggests it is something in the highly
non-linear nature of DNN processing that causes their failure.
However, from the current study, it is impossible to include
how or why this occurs. Recently, a new type of OIMs in the
form of neural prediction networks has emerged [62]–[64].
Further study is required to evaluate whether such metrics are
better suited to evaluate DNN-based SE networks, than the
more commenly used OIMs tested in this study.

Finally, we note the potential of an MPDR beamformer that
knows the speaker location. That beamforming works (as long
as you know where to steer the beam), is not new knowledge,
but it does provide us with a clear opportunity to avoid the
issue of objective intelligibility predictions altogether. Instead
of relying on OIMs to develop and evaluate multi-channel SE
systems, focus could be moved to speaker localization. For this
study we used a TDOA estimation algorithm that can easily
be improved upon; even so, the results shown in Figure 6
already suggest it was close to starting to provide benefit to
those subjects with the lowest SRTs.

Most importantly, the advantage of direction of arrival
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estimation is that the error between target and estimate is math-
ematically speaking well defined, and in no way dependent on
human hearing and perception.

Absolute intelligibility scores (i.e. the exact ratio of speech
understood at a specific SNR) are highly dependent on test
conditions: the type of noise, type of test, presence of context,
lengths of sentences, etc. From the SE system developer’s
point of view, these absolute intelligibility scores obtained for
a specific processing condition are therefore not that crucial.
Instead, we need tools to reliably predict whether a specific
type of processing enhances or reduces speech intelligibility.
Until such tools are available, we suggest that developers of
DL-based SE systems incorporate early subjective intelligibil-
ity testing on human listeners. While this step requires more
resources, it will ensure that design choices are based on
actual intelligibility improvements, instead of predictions from
metrics that very well may be unreliable.

VI. CONCLUSION

We have evaluated the predictive power of five popular
OIMs (i.e.: NCM, CSII, STOI, ESTOI and HASPI) by compar-
ing objective prediction to subjective results for single-channel
and multi-channel DCCRN-based SE systems. All metrics
predicted increased intelligibility across the entire range of
relevant SNRs. The results from the subjective tests tell a
different story: performance is either worse, or insignificantly
different. Predictions were unreliable across the entire range
of SNRs, including the higher SNRs that are the most relevant
for the online meeting scenario.

Therefore we conclude that there are severe limitations to
the usefulness of these OIMs for the purpose of developing
DNN-based SE systems.
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