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Abstract. In this paper, we present an evaluation of the performance
of five representative RDF triplestores, including GraphDB, Jena Fuseki,
Neptune, RDFox, and Stardog, and one experimental SPARQL query en-
gine, QLever. We compare importing time, loading time, and exporting
time using a complete version of the knowledge graph Wikidata, and we
also evaluate query performances using 328 queries defined by Wikidata
users. To put this evaluation into context with respect to previous eval-
uations, we also analyze the query performances of these systems using
a prominent synthetic benchmark: SP2Bench. We observed that most
of the systems we considered for the evaluation were able to complete
the execution of almost all the queries defined by Wikidata users before
the timeout we established. We noticed, however, that the time needed
by most systems to import and export Wikidata might be longer than
required in some industrial and academic projects, where information is
represented, enriched, and stored using different representation means.

Keywords: RDF Triplestores · Knowledge Graphs · SPARQL Bench-
marks · SP2Bench · Wikidata.

1 Introduction

Wikidata [34] is a collaboratively edited multilingual knowledge graph hosted by
the Wikimedia Foundation. Wikidata is becoming a prominent software artifact
in academia and industry, and offers a broad collection of terms and definitions
that can improve data understandability, integration, and exchange. Wikidata
is stored as an RDF [35] graph that can be queried with the SPARQL language
[36]. With more than 16 billion triples and 100 million defined terms, as the
size of the knowledge graph continuously increases, it might be challenging for
state-of-the-art triplestores to import, export, and query Wikidata. This is also
acknowledged by the Wikimedia Foundation, which is looking for alternatives
to replace Blazegraph [11], an open-source triplestore no longer in development
[39].

To investigate how efficiently RDF triplestores can handle Wikidata, in this
paper, we present an evaluation of the performance of five representative RDF
triplestores, including Ontotext GraphDB [20], Apache Jena Fuseki [6], Amazon
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Neptune [2], OST RDFox [24], and Stardog [31], and one experimental SPARQL
query engine - QLever [9]. We compare importing, loading, and exporting time
using a complete version of Wikidata, and we also evaluate query performances
using 328 queries defined by Wikidata users.

Due to budget limitations, we limited our evaluation to only six representative
tools. However, we tried to ensure a diverse selection. For instance, GraphDB,
Neptune, RDFox, and Stardog are commercial applications, whereas QLever
and Jena Fuseki are not. Neptune is based on Blazegraph, and it is available
as a native cloud-based service. RDFox is an in-memory triplestore, while the
others are persistent. QLever and Jena Fuseki are in the pool of tools considered
by Wikimedia Foundation to replace Blazegraph. So we thought both could
represent a good baseline for our study. After some deliberation, we also decided
to conduct an evaluation of the six triplestores using the synthetic benchmark
SP2Bench [28], which has strong theoretical foundations and a main focus on
query optimization, also very relevant in our analysis of query performances of
SPARQL engines using Wikidata.

In our evaluation using a full version of Wikidata and large datasets generated
by SP2Bench, we study the query execution plan with query profiling informa-
tion to understand better the difference in the performance of the triplestores
on the same query. The ultimate goal is to obtain a thorough understanding of
the impact of SPARQL features on the performance and confirm common best
practices in the design of SPARQL queries. We also consider import and export
time. As service-oriented and decentralized architecture has become a popular
design for software infrastructure in recent years, importing and exporting per-
formance may be critical to enable efficient data transformation and exchange,
especially for big data applications (e.g., big data pipelines or Machine Learn-
ing pipelines). Therefore, it is important to optimize importing and exporting
functionality to avoid bottlenecks in the execution of such applications.

Despite not considering the evaluation of the concurrent execution of SPARQL
queries, we observed that most of the evaluated systems could complete the exe-
cution of almost all queries defined by Wikidata users before the timeout. How-
ever, most of them required a longer time to import and export a full Wikidata
version than expected in many industrial and academic projects, where informa-
tion is represented, enriched, and stored using a diverse selection of applications
offering different representation means.

To help interested readers to dive into the details of this evaluation, all scripts,
data, and results have been uploaded to an open repository [15]. The remainder
of the paper is structured as follows. Section 2 discusses related work. Section
3 describes the evaluation setup. Section 4 provides a detailed discussion of the
evaluation results using SP2Bench and Wikidata. Finally, Section 5 concludes
the paper and presents future work directions.
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2 Related Work

To better relate our evaluation using Wikidata with previous evaluation pa-
pers, we reviewed existing benchmarks based on both synthetic and real-world
datasets. Benchmarks that use synthetic datasets include LUBM (Lehigh Uni-
versity Benchmark) (2005) [16],UOBM (University Ontology Benchmark) (2006)
[18], BSBM (Berlin SPARQL Benchmark) (2009) [10], SP2Bench (SPARQL Per-
formance Benchmark) (2009) [28], Bowlognabench (2011) [12], WatDiv (Water-
loo SPARQL Diversity Test Suite) (2014) [1], LDBC-SNB (Linked Data Bench-
mark Council - Social Network Benchmark) (2015) [13], TrainBench (2018) [33]
and OWL2Bench (2020) [29]. The sizes of the synthetic datasets used in the ref-
erenced papers ranged from 1M to 100M triples, and the numbers of SPARQL
queries executed were between 12 and 29, with the exception of WatDiv that
used a set of 12500 generated queries.

Amongst benchmarks that are based on real-world datasets or queries from
real-world logs, we reviewed DBPSB (DBpedia SPARQL Benchmark) (2011)
[19], FishMark (2012) [8], BioBenchmark (2014) [40], FEASIBLE (2015) [26],
WGPB (Wikidata Graph Pattern Benchmark) (2019) [17] and WDBench (2022)
[5]. The datasets for these benchmarks varied in size from 14M up to 8B triples,
and the numbers of SPARQL queries defined were between 22 and 175, except for
WGPB and WDBench that have 850 and more than 2000 queries respectively.

The study conducted by the Wikimedia Foundation to replace Blazegraph
is the closest work we have been able to identify so far. This study provided
a detailed analysis of relevant features of triplestores according to Wikimedia
Foundation. This study, however, only considered open-source triplestores and
did not include execution times for importing, loading, exporting, or querying
Wikidata [37]. Another related study [14] discussed the possibility of hosting
a full version of Wikidata, and it measured the import time of popular triple-
stores, including Jena Fuseki, QLever, and Stardog. This study, however, did
not discuss export time or query performances. WGPB and WDBench rely on
a substantially reduced version of full Wikidata, and they have very specific ob-
jectives. WGPB defines a large set of SPARQL basic graph patterns exhibiting
a variety of increasingly complex join patterns for testing the benefits of worst-
case optimal join algorithms. The design goal behind WDBench was to create an
evaluation environment able to test not only graph databases supporting RDF
data model and SPARQL query language. The authors of WDBench created a
collection of more than 2000 SPARQL queries distributed in four different cate-
gories. These queries were selected from real Wikidata query logs. Due to budget
constraints, we did not include the queries defined by WDBench in our study.
Still, we would like to include them in an extended version of this evaluation
and compare the results with the queries we selected.

3 Evaluation Setup

In this section we present the details of the evaluation by describing the opera-
tional setup.
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Triplestores To ensure that our limited selection of triple stores is represen-
tative and diverse, the following triplestores were evaluated: (1) Jena Fuseki
4.4.0 with Jena TDB2 RDF store, (2) Amazon Neptune Engine 1.0.5.1, (3)
GraphDB Enterprise Edition 9.10.0, (4) RDFox 5.4, (5) QLever (commit ver-
sion 742213facfcc80af11dade9a971fa6b09770f9ca), and (6) Stardog 7.8.0. In this
selection: there are commercial and non-commercial (Jena Fuseki and QLever)
applications; there is one triplestore distributed as native cloud-service (Nep-
tune); and there is one in-memory triplestore (RDFox). All triplestores support
SPARQL 1.1 syntax and provide querying services via SPARQL endpoints.

Datasets We aim to evaluate the scalability and performance of the SPARQL
query engines using large datasets. For SP2Bench, we generated four different
datasets with 125M, 250M, 500M, and 1B triples. For Wikidata, we used the
full version latest-all.nt.gz (downloaded on 2021-11-19). Table 1 shows the
general statistics of these datasets.

Table 1. Statistics of the datasets: number of distinct Triples, Sub[jects], Pred[idcates],
Obj[ects], Class[es], Ind[ividuals], Obj[ect] Prop[erties] and Data Prop[erties].

Benchmark Triples Sub Pred Obj Class Ind Obj Prop Data Prop
125M 22.4M 78 59.5M 19 22.4M 64 21
250M 45.9M 78 120.8M 19 46.2M 64 21
500M 94M 78 244.9M 19 94.1M 64 21

SP2Bench

1B 190.3M 78 493M 19 190.5M 64 21
Wikidata 16.3B 1.78B 42.92K 2.93B 1.2K 1.77K 17.1K 27K

SPARQL Queries SP2Bench comes with a set of 14 SELECT and 3 ASK
queries which were designed to cover several relevant SPARQL constructs and
operators as well as to provide diverse execution characteristics in terms of diffi-
culty and result size [28]. For Wikidata, the set of 356 SPARQL query examples
defined by Wikidata users [38] was selected. Some of these queries use propri-
etary service extensions deployed for the Wikidata Query Service. We modified
the queries to not use these service extensions and discarded some queries that
are not compliant with SPARQL 1.1 specification or use proprietary built-in
functions not supported by the evaluated triplestores. As a result, a set of 328
queries is used for the evaluation.

Table 2. Coverage (%) of SPARQL features for each benchmark.

Benchmark distinct filter optional union limit order bound offset

SP2Bench 35.29 58.82 17.65 17.65 5.88 11.76 11.76 5.88
Wikidata 33.14 30.84 31.12 5.19 14.7 48.7 2.59 0

DateFnc SetFnc NumFnc StringFnc TermFnc exists notexists in

SP2Bench 0 0 0 0 0 0 0 0
Wikidata 8.65 27.67 2.59 9.8 16.14 0.58 3.75 1.44

groupby bind values minus coalesce if having PropPath

SP2Bench 0 0 0 0 0 0 0 0
Wikidata 29.11 10.66 8.65 5.19 0.86 3.17 1.44 35.73

Table 2 presents an analysis of the queries from the two benchmarks regard-
ing the SPARQL features and operators. These features may have a correlation
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with the execution time of the queries [25,27]. Hence, they need to be taken into
consideration when designing a SPARQL query benchmark. It can be observed
that Wikidata queries provide a broader coverage of SPARQL features and op-
erators than SP2Bench. Wikidata queries have more advanced features [36] such
as Property Path, or built-in functions such as Dates and Times (DateFnc), Set
(SetFnc), Strings (StringFnc), and RDF Terms (TermFnc) functions.

Amazon Web Services (AWS) Infrastructure This evaluation was con-
ducted on the AWS cloud. We used Amazon Elastic Compute Cloud (EC2)
instances with Elastic Blob Store (EBS) volumes. Specifically, r5 instances with
memory configurations of 128GB, 256GB, and 512GB were selected. This cor-
responds to instances of type r5.4xlarge, r5.8xlarge, and r5.16xlarge [3].
This choice also matched the on-demand r5 instances available for the fully
managed Neptune triplestore [4]. As RDFox is an in-memory triplestore, it needs
additional memory to load a full version of Wikidata. None of the available r5

instances offers enough memory for RDFox. Therefore, x1 instances which offer
up to 1,952 GB of memory were selected instead. In particular, x1.32xlarge [3]
was employed to evaluate RDFox using Wikidata. Each EC2 instance was set
up with a separate EBS gp3 volume for data storage with the performance of
3,000 IOPS and 125 MB/s throughput.

Configuration Details We followed the recommended memory configuration
for Stardog [30] and GraphDB [21], and applied it to all triplestores. We used the
default settings for other configurations. In the case of RDFox, this implies that
we use a persistence mode that stores incremental changes in a file [23]. RDFox
can also be set up to run purely in-memory. According to the vendor, this would
result in much lower import and export times than the ones presented in the
paper. Similarly, RDFox offers the possibility to store datastores as binary files
[22], which might significantly reduce loading times. These claims could not be
verified before this study was submitted.

The evaluation was carried out simultaneously with one triplestore running
on one instance. For SP2Bench, r5.8xlarge was used to deploy all triple-
stores. For Wikidata, we ran the evaluation on r5.4xlarge, r5.8xlarge, and
r5.16xlarge, except RDFox that was deployed only on x1.32xlarge. Due to
some differences in the hardware configuration of r5 and x1, we performed a
sensitivity analysis of their performance. The result of this analysis is discussed
in Section 4.2.

To avoid the impact of network latency, the triplestores (i.e., SPARQL server)
and the evaluation scripts (i.e., SPARQL client) were deployed on the same
machine. Neptune is provided as database-as-a-service in the cloud. Thus, the
SPARQL client needs to run on a separate machine. To estimate the effect of
network latency, we set up a test with GraphDB where the SPARQL client was
running on a separate machine. This analysis helped us to adjust and make the
results for Neptune comparable with the others. Detail about this analysis is
discussed in Section 4.2.

The evaluation is comprised of the following stages:
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1. Data Import. All datasets were imported into the selected triplestores.

2. System Restart and Warm-up. The triplestores were restarted, and the
evaluated dataset was loaded again (if needed). Then, one test query was
executed to warm up the triplestores.

3. Hot-run. Each query was executed ten times. We set the query timeout to
30 minutes for the SP2Bench and 5 minutes for the Wikidata.

The following metrics are recorded in this evaluation:

– Import Time. The time required to import the dataset for the first time.
This step involves building indexes and persisting the datasets to storage.

– (Re)Load Time. The time required to (re)load the dataset after importing.

– Export Time. The time required to write imported data to an external file.

– Query Execution Time: The time needed to finish one query execution.

– Success Indicators. The numbers of success, error, and timeout queries.

– Global Performance. We follow the proposal in [28] to compute both well-
known arithmetic mean and geometric mean (the nth root of the product
over n number) of the execution times. Accordingly, the failed queries (e.g.,
timeout, error) were penalized with the double of timeout value. Arithmetic
mean is used as an indicator of a high success and failure ratio (i.e., a smaller
value indicates a higher ratio of success queries) while geometric mean is used
to evaluate the overall performance over success queries (i.e, a smaller value
as an indicator of shorter execution time for the success queries).

Although we ran our experiments on a cloud-based framework, it is worth
mentioning that the executions of each run are remarkably consistent. Specifi-
cally, the standard deviation of the ten runs of 95% of the Wikidata queries is
less than one millisecond.

4 Discussion of the Evaluation Results

In this section, we discuss the evaluation results using SP2Bench and Wikidata.
Additional supplementary information and all experimental results, including
runtimes for individual queries on each engine tested, can be found online at
[15].

4.1 Evaluation results using SP2Bench

Import Time Table 3 includes the import time of SP2Bench datasets. For all
triplestores, the import time increases proportionally to the size of the dataset.
Jena Fuseki showed poor import performance even though the tdb2.xloader

[7] - a multi-threading bulk loader for very large datasets - was employed.

RDFox is the fastest when importing the datasets, even though it was con-
figured using persistence mode. RDFox also exhibited similar loading times. As
discussed in Section 3, RDFox importing and loading times might be reduced
using a different configuration. The other triplestores show similar importing
times and very fast loading times. For instance, they were able to restart and
reload the synthetic dataset with 1B triples in less than a minute.
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Table 3. Global performance of the triplestores on SP2Bench. To compute the mean,
Timeout and Error queries were penalized with 3600 seconds (1 hour).

125M 250M 500M 1B
Triple
stores

Imp
Time

Arith
Mean

Geo
Mean

Imp
Time

Arith
Mean

Geo
Mean

Imp
Time

Arith
Mean

Geo
Mean

Imp
Time

Arith
Mean

Geo
Mean

QLever 17m 1694.23 3.96 35m 1694.23 4.10 1h9m 1694.24 4.24 2h20m 1702.58 5.74
Fuseki 33m 1089.78 14.04 1h6m 1324.24 23.18 2h15m 1370.08 29.28 5h40m 1816.33 45.03
Neptune 18m 898.35 7.11 37m 974.22 9.89 1h16m 1323.48 13.83 2h22m 1781.18 26.40
RDFox 3m 1061.38 1.75 5m 1065.10 2.42 9m 1074.52 2.91 18m 1528.20 6.98
Stardog 18m 862.86 2.76 37m 878.88 3.62 1h17m 917.33 5.54 2h33m 1378.62 9.10
GraphDB 17m 728.62 3.97 36m 766.16 5.00 1h11m 995.00 7.55 2h23m 1248.67 11.75

Table 4. Success indicators (S[uc]C[ess], T[ime]O[ut], ERR[or]) on SP2Bench.

125M 250M 500M 1B
Triplestore

SC TO ERR SC TO ERR SC TO ERR SC TO ERR
QLever 9 0 8 9 0 8 9 0 8 9 0 8
Jena Fuseki 12 5 0 11 6 0 11 6 0 9 8 0
Amazon Neptune 13 4 0 13 4 0 11 6 0 9 8 0
RDFox 12 5 0 12 5 0 12 5 0 10 7 0
Stardog 13 4 0 13 4 0 13 4 0 11 6 0
GraphDB 15 2 0 15 2 0 14 3 0 13 4 0

Query Execution Time Table 3 and 4 present success indicators and average
execution time for the four SP2Bench datasets. QLever is the only triplestore
that had errors and no timeout. Seven queries could not be executed due to
unsupported syntax or functions (e.g., ASK query, combined conditions in FIL-
TER) and one “OutOfMemory” (OOM) error.

According to Table 4, the size of the dataset and results has a significant
effect on the performance of all triplestores, in particular as the dataset grows
from 125M to 1B triples. Neptune, as mentioned earlier, may suffer from net-
work latency, especially for queries with large results because the server and
client were deployed on different machines. For SP2Bench, the timeout was set
to 30 minutes which is relatively long enough for transferring big data between
Amazon machines. In fact, in 8 timeout cases, Neptune failed to finish the exe-
cution of the queries and returned no result. Therefore, network latency is not
the main issue for these timeout queries. Moreover, compared to the average
execution time of the 17 SP2Bench queries which is about 15 minutes, network
latency may be considered as an insignificant factor. A thorough evaluation of
network latency will be discussed in Section 4.2 using the Wikidata benchmark
where there are a lot of queries executed in less than 100 milliseconds.

Regarding the global performance, the arithmetic means of GraphDB were
superior to the others since it had a higher number of success queries. However,
RDFox had better performance over successful queries, so its geometric means
were the smallest; timeouts were limited to queries that introduce equi-joins
using FILTER statements. In all cases, Stardog was always in the top two. It had
more success queries than RDFox and executed difficult queries slightly faster
than GraphDB. Jena Fuseki delivered the poorest performance while Neptune
had mixed results on query execution. QLever was very fast on success queries,
but it offered limited support for queries with complex SPARQL constructs.
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Moreover, QLever automatically puts a limit up to 100.000 results for all queries.
Therefore, its reported execution times may not be comparable, especially for
queries with large results.

Analysis of Query Execution Plan A SPARQL query can be represented as
a Basic Graph Pattern (BGP) which is a set of Triple Patterns (TPs) specified
in the query [25]. Typically, the result of a BGP is obtained by joining the
results of the TPs. Therefore, selective TPs that have smaller result sizes are
usually executed first in order to minimize the number of intermediate results and
therefore reduce the cost related to joining operations [17]. For the same purpose,
filters are also moved closer to the part of the BGP where they apply. The
execution order of the TPs in the BGP is the query execution plan. Typically,
the query execution plan needs to be decided before the SPARQL engine executes
the query. In order to do this, the triplestore requires precise estimation of the
result size of each TP, which is done through building and updating different
types of indexes [17]. In general, different triplestores may employ different data
structures to implement their indexes and use different algorithms to optimize
their query execution plan, therefore resulting in varying performance. In this
study, except for QLever which does not provide the method to get the query
plan, we investigated the execution plans of the other triplestores in order to
gain a better understanding of their performances on the benchmarks.

In addition to the execution plan, RDFox, Neptune, and especially, Stardog
also include very comprehensive profiling reports with the actual result sizes and
the execution time of each TP. However, GraphDB provides only the estimation
of the result sizes while Jena Fuseki produces only the complete results of each
TP. Therefore, for these two triplestores, it was difficult to diagnose performance
problems or identify expensive operations for the difficult queries.

Query 2 is one of the most difficult queries of the SP2Bench where many
triplestores timed out. It has a bushy BGP (i.e., single node linked to a multi-
tude of other nodes) with 10 TPs, and the result size of this query grows with
database size. Therefore, the execution time might be linear to the dataset size.
According to the statistics provided by Stardog query profiler, the most expen-
sive operation for this query is post-processing data (i.e., converting the results
into the data structure that will be sent to the client). Similarly, Amazon Nep-
tune also spent most of the execution time for this query on post-processing
data. This observation illustrates the effect of large result sizes and large strings
on the querying performance of SPARQL engines.

Query 3 (a, b, c) has just two TPs, one of which is of the form (?,?,?),
and one FILTER with “equal to” operator. To avoid evaluating the TP (?,?,?)
which may result in matching the whole dataset, all triplestores embedded the
filter expression into this TP and transformed it into (?,p,?) form.

Query 4 is the most challenging query of the SP2Bench benchmark. The
result of the query is expected to be quadratic in the number of “journal” in-
dividuals in the dataset. To deal with this query, the author in [28] suggested
that the query engines embed the FILTER expression into the computation of
TPs (i.e., the same approach done in Query 3), which may help to reduce the
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intermediate results earlier. However, it is more challenging for all triplestores to
embed the “greater than” operator in this query than the “equal to” operator.
As a result, all of the triplestores failed to complete the query due to timeout.

Query 5a and 12a also test optimizations for embedding FILTER expres-
sion. The expression in these queries is the “equal to” comparison between two
variables while Query 3 filters a variable with a constant value. GraphDB is the
only triplestore handling Query 5a in 30 minutes. After rewriting this query by
explicitly embedding the filtering expression, the triplestores can execute the
query before timeout. However, as the dataset increased to 1B, timeout still oc-
curred for the others. Query 12a replaces the SELECT construct of Query 5a
with the ASK, which has a positive effect on query performances in all triple-
stores with the exception of Qlever and RDFox. This might indicate that col-
lecting the results of Query 5a also has a significant impact on performances.

Query 6, 7, and 8 test another different optimization approach related
to reusing TP results. These queries have several TPs repeated multiple times.
Thus, intermediate results of those TPs can be reused to save cost for matching
those triples. From the execution plan, it is unclear whether the triplestores
implement this optimization approach or the same TPs were executed again.

Overall, when evaluating the execution plans, we observed that the triple-
stores did not pass several optimization tests designed by the authors of the
benchmark. Despite being a synthetic benchmark with only 17 queries where
some tests may not be practical (e.g., Query 4) or biased towards some specific
constructs (e.g., FILTER), SP2Bench proved to be very useful to test common
query optimization techniques and to collect useful insights of the triplestores
selected for this evaluation. Next, we will present the evaluation results using a
completed version of Wikidata and 328 queries defined by its user community.

4.2 Evaluation results using Wikidata

Import and Export Time The Wikidata dump used in this evaluation is
available as a 112GB gzip file (738GB as unzip file). QLever is the only triplestore
that has no support for gzip format. However, due to errors during importing,
only Stardog, GraphDB, and RDFox managed to load the gzip file. Jena TDB2,
in particular, was not able to import Wikidata due to 1319 URI syntax errors
(e.g., special characters not allowed by Jena RIOT - the Jena syntax validator).
After fixing these errors by replacing the special characters with their HTML
numeric codes, we used this “clean” version to import into Jena Fuseki. Jena
Fuseki also suffered from OOM error and succeeded in importing Wikidata only
on r5.16xlarge machine (512GB RAM).

Table 5 presents the performance for importing and exporting Wikidata. RD-
Fox was much faster than the others. This result is consistent with the figures
reported in SP2Bench where all triplestores are evaluated using the same ma-
chine configuration. However, as the triplestores were restarted, RDFox required
around 3.75 hours (40% faster than its initial import time) to reload the data
while the others took only a few minutes. As discussed in Section 3, RDFox
importing and loading times might be reduced using a different configuration.
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Table 5. Import and Export performance of the triplestores on Wikidata.

Triplestore VM
Import
Time

(Re)Load
Time

Export
Time

Persisted
Storage

QLever r5.4xlarge 1d 17h 2m 11m n/a 871 GB
Jena Fuseki (TDB2) r5.16xlarge 3d 15h 27m <1m Timeout 1.52 TB
Stardog r5.4xlarge 2d 1h 9m <1m Error 862 GB
Amazon Neptune r5.4xlarge 3d 1h 50m 7m Error 3.98 TB
GraphDB r5.4xlarge 1d 8h 13m 10m Timeout 1.11 TB
RDFox x1.32xlarge 0d 6h 25m 3h42m 5h28m 202 GB

As QLever, Jena Fuseki, and Amazon Neptune used the unzip data and may
not require any decompress operation during importing, their performance is
expected to be slower on gzip Wikidata. Also, we observed that QLever reported
a much larger number of loaded triples (21.5B triples). QLever may have a
different way of building the statistics on the imported data.

To measure the export time, we set a timeout of 4 days for the triplestores.
Except for QLever which has no support for data exporting, the other triple-
stores provide native functions to export the data. However, RDFox is the only
triplestore that succeeded in exporting Wikidata within the timeout. Stardog did
not show any progress or runtime output while Amazon Neptune encountered
an error after exporting 503M statements in 1.5 hours. GraphDB took 28 days
and 8 hours to export Wikidata. Due to cost constraints, we did not continue the
exporting process for the others after 4 days. Based on this figure, it is obvious
that exporting is not a prioritized feature of most triplestores.

Query Execution Time Table 6 presents the success indicators and mean
execution time of the triplestores on the Wikidata benchmark. QLever reported
the most errors (67% of all queries). Nearly all are syntax errors due to limited
support for the SPARQL 1.1. Furthermore, there are 5 queries where QLever
returns only the first 100.000 results. They were also classified as errors. QLever
also has several OOM errors that were resolved on more powerful machines.

Jena Fuseki is the second triplestore with the most errors. It had 13 query
syntax errors. Particularly, it does not allow using an existing variable name
for the AS operator (e.g., (SAMPLE(?dob) AS ?dob)). Jena Fuseki also suffered
from memory issues. This triplestore either crashed or froze and produced no
output while executing the other 8 error queries. Amazon Neptune and Stardog
accounted for one error which was reported as an internal failure exception.

If we look at the performance of each individual triplestore on the three dif-
ferent r5 configurations, GraphDB and Stardog were more robust with small
variances among the machines. They had approximately the same query execu-
tion time and number of timeouts on the three machines. They may be optimized
to work efficiently even on machines with less physical resources. In contrast,
Jena Fuseki and Amazon Neptune performed better on more powerful machines
as they had more success queries on those machines.

When comparing the execution time of all triplestores, RDFox and GraphDB
are the top two triplestores with the lowest arithmetic mean followed by Amazon
Neptune. Jena Fuseki and QLever are the slowest triplestores due to a lot of
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Table 6. Global performance of the triplestores on Wikidata benchmark. To compute
the mean, Timeout and Error queries were penalized with 600 seconds (10 minutes).
The table also contains the estimated mean (in brackets) for RDFox on r5 machine
and for Amazon Neptune r5.16x (r5.16xlarge VM) with network latency deducted.

Triplestore VM SC TO ERR
Arithmetic

Mean
Geometric

Mean
Qlever r5.4x r5.4xlarge 106 0 222 404.87 12.33
Qlever r5.8x r5.8xlarge 107 0 221 403.05 11.91
Qlever r5.16x r5.16xlarge 108 0 220 401.23 11.73
Jena Fuseki r5.4x r5.4xlarge 224 83 21 192.30 1.43
Jena Fuseki r5.8x r5.8xlarge 231 76 21 180.21 1.29
Jena Fuseki r5.16x r5.16xlarge 250 57 21 148.57 1.20
Amazon Neptune r5.4x r5.4xlarge 309 18 1 39.29 0.34
Amazon Neptune r5.8x r5.8xlarge 310 17 1 36.26 0.31

Amazon Neptune r5.16x r5.16xlarge 312 15 1
31.65

(31.59)
0.28

(0.27)
Stardog r5.4x r5.4xlarge 307 20 1 43.46 0.19
Stardog r5.8x r5.8xlarge 308 19 1 42.01 0.16
Stardog r5.16x r5.16xlarge 308 19 1 41.77 0.18
GraphDB r5.4x r5.4xlarge 321 7 0 15.62 0.08
GraphDB r5.8x r5.8xlarge 322 6 0 14.48 0.08
GraphDB r5.16x r5.16xlarge 321 7 0 15.67 0.07

RDFox x1.32x x1.32xlarge 324 4 0
12.11
(9.23)

0.04
(0.016)

errors and timeouts. Regarding geometric mean, RDFox is also the fastest with
a value of 0.04 which is 50% smaller than the second best, GraphDB. Stardog is
in the third place. Its geometric mean is around 0.18 which is 35% faster than
Amazon Neptune. This insight can also be noticed from Figure 1 that compares
the best performance (i.e., on r5.16xlarge machines) of the triplestores for the
top 50 easy and difficult queries (excluding error queries). Accordingly, for easy
queries, it can be clearly identified the order of the triplestores where RDFox is
the fastest and Amazon Neptune is the slowest. However, there is a mixed result
for difficult queries.

Easy Wikidata Queries
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(a) Easy queries

QLever r5.16x
Jena Fuseki r5.16x
Amazon Neptune r5.16x

Stardog r5.16x
GraphDB r5.16x
RDFox x1.32x

RDFox x1.32x (adjusted for R5 instance)
Arithmetic Mean
Amazon Neptune r5.16x (Latency Remove)

Difficult Wikidata Queries
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1
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(b) Difficult queries

Fig. 1. Query execution time of the top 50 easy and difficult Wikidata queries on
average (excluding error queries). The queries (x axis) are ordered by the arithmetic
mean of the execution time of all triplestores.
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Network Latency Analysis In order to estimate network latency which can be
incorporated into the execution time of Amazon Neptune, especially for those
queries with large results, a separate experiment was conducted. Specifically,
the same setting was deployed for GraphDB on two r5.4xlarge machines. On
average, the latency amounted to 100 milliseconds. In Figure 1(a) and Table 6,
we also have the execution time of Amazon Neptune adjusted by removing the
latency for each individual query. As the latency is just a few milliseconds for
easy queries, the adjusted figure is not different from the original value. Amazon
Neptune is still the slowest on the top 50 easy queries.

Sensitivity Analysis of R5 and X1 Instances To compare the perfor-
mance of the triplestores on x1 and r5 instances, we performed a sensitivity
analysis that: (1) evaluates the performance of GraphDB with Wikidata on
x1e.4xlarge and r5.4xlarge machines, (2) evaluates the performance of RD-
Fox with SP2Bench on x1e.8xlarge and r5.8xlarge machines. On average,
GraphDB had approximately 50% performance degradation on x1e.4xlarge

machine. Similarly, the performance of RDFox on SP2Bench decreased about
59.75% on x1e.8xlarge machine. Thus, it is expected that RDFox may have
better performance on r5 instances for Wikidata queries if a suitable r5 machine
with sufficient RAM memory is available. To ensure the results of this analysis
are reflected in the evaluation, in Table 6, we also provide the adjusted means
for RDFox assuming the queries would be executed 59.75% on average faster.

Analysis of Query Execution Plan To better understand the evaluation
results discussed earlier, several queries are studied in more detail. In particular,
the following selection criteria were applied:

1. Queries not executed by most of the triple stores due to timeout.
2. Queries with large variation in execution times (i.e., timeout for some triple-

stores and executed in few seconds by the rest).
3. Queries where the numbers of results are not consistent (i.e., some triple-

stores returned different numbers of results for the same query).

Due to the page limitation, only a summary of the analysis is presented
in this section. Firstly, for timeout queries, the most expensive operations are
related to processing a large number of results, including both intermediate and
final results. Therefore, to minimize overhead related to handling the results,
highly selective triple patterns are usually prioritized to be executed earlier in
order to reduce the scanning space for later triple patterns of the query. To do
so, the query optimizer needs to have a good estimation of the outputs for each
TP in the query. For queries with simple SPARQL constructs, most triplestores
can manage to create an optimal execution plan. However, as the query employs
complex constructs or features (e.g., nested SELECT query, built-in functions,
property path, etc.), estimating a good execution plan becomes challenging.
Based on the analysis of the query execution plans, the following observations
can be considered when designing the queries for the evaluated triplestores:

– For queries with complicated patterns, most triplestores tend to keep the
execution plan the same as the original order described in the query. In this
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case, it is recommended to rewrite the query using simple constructs. For
example, the property path with arbitrary length can be rewritten explicitly
with a sequence of TPs and UNION. For example, after we rewrite the
property path of Query 234 and Query 235 with the sequence of three
patterns explicitly, Stardog can produce a better plan and result in 2.6x and
4.2x faster respectively. If the query cannot be changed, the TPs need to be
re-ordered manually to help the triplestores to optimize the execution plan.
This can be done by repeating the execution with different orders [32].

– FILTER operations are usually moved earlier in the execution plan in order
to reduce the number of intermediate results. However, filters with complex
conditions (e.g., string and date-time functions) may slow down the exe-
cution, especially for a large number of results (e.g., Query 192, Query
327, Query 343 and Query 350). If possible, such condition should be
rewritten in an equivalent form without using FILTER or applied later in
the execution plan when there are fewer intermediate results.

– The TP of the form (?,?,?) should be considered carefully as it may result
in a bottleneck in the execution of most triplestores (e.g., Query 45).

For queries with large variation in execution times, the following observations
about the evaluated triplestores are recorded:

– Due to its in-memory solution, RDFox tends to perform better on scanning
indexes and joining results, especially for large results or complicated oper-
ations such as string functions (e.g., Query 13, Query 233, Query 237
and Query 350).

– Jena Fuseki had very poor performance on scanning and joining large results
compared with the others. It also has very simple optimization algorithms.
Mostly, it does not change the order of triple patterns, which results in
inefficient execution plans and timeouts (e.g., Query 45, Query 84 and
Query 286). Therefore, the triple patterns need to be re-ordered manually
in order to improve the performance of this triplestore.

– Stardog may have issues with queries having many OPTIONAL constructs.
The triplestore tends to produce exponential intermediate results when match-
ing such triple patterns (e.g., Query 176 and Query 326) while the others
produced much fewer results, and therefore resulting in timeout.

– For queries with sequence paths, Amazon Neptune tends to prioritize triple
patterns with such property path syntax. This strategy may result in an
exponential increase in the intermediate results if those patterns are not the
most selective (e.g., Query 84 and Query 286).

– For queries with UNION construct, RDFox tends to keep the triple patterns
inside UNION unchanged while GraphDB tends to expand this construct by
moving the JOIN operation inside each of the operands of UNION. Stardog
and Amazon Neptune are more flexible in estimating the optimal plan for
the UNION pattern. Therefore, if the optimal plan can be anticipated, it is
recommended to rewrite the UNION patterns, especially for GraphDB and
RDFox (e.g., Query 184 and Query 345).
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The third category of queries selected for further investigation is the one
where the numbers of results are not consistent. Accordingly, we identified 10
queries where there is one triplestore that disagreed with the majority of other
triplestores. As we only captured and compared the number of results, it is not
sufficient to determine whether a triplestore is correct or not. However, if most
of the triplestores report the same number of results, this might be a reasonable
indication in terms of correctness. Based on the analysis of the execution plan,
the following issues from the triplestores were identified:

– Amazon Neptune reported different results when executing a few queries
with REGEX expressions. For instance, the triplestore returned no result
after applying some filters with complex regex patterns (e.g., Query 93,
Query 133 and Query 327).

– Stardog reported different numbers of results for a few SELECT nested
queries (e.g., Query 82 and Query 195). Additionally, in Query 284
which has a FILTER operator on date-time values, Stardog returned six
more results than the others.

– GraphDB also had issues with a few nested SELECT queries. It returned
no result for Query 109 and Query 319. Additionally, in Query 178 and
Query 233, the triplestore returned much fewer results than the others.

5 Conclusions and Future Work

To the best of our knowledge, this study presents one of the most detailed
analyses of the performances of a representative selection of the state-of-the-
art triplestores using a complete version of the knowledge graph Wikidata. In
this section, we conclude the paper with a summary of some of the most relevant
observations produced by this evaluation.

With respect to the evaluation setup used in this study, all selected triple-
stores were tested on Amazon EC2 r5 or x1 instances. Despite some initial
concerns about the reliability of the evaluation results, the execution times of
each run were remarkably consistent. Amazon EC2 instances are also required
to test Neptune, the only native cloud-based service in our evaluation. Some
specific execution requirements posed by Neptune and RDFox difficult a fair
comparative analysis. Sensitivity analyses were conducted to adjust the evalua-
tion results for Neptune and RDFox and make them comparable with the others.
While the impact of network latency in the Neptune client-server configuration
seems to be small, the differences in performances between r5 and x1 instances
seem to be significant (approximately 50% to 60% performance degrade).

SP2Bench proved to be a great choice to test scalability and common query
optimization techniques, which helps us to collect useful insights of the triple-
stores selected for this evaluation. RDFox was the fastest triplestore importing
the synthetic datasets generated for this study and it has better performance
over success queries. Regarding the global query performances, GraphDB was
superior to the others, followed very close by Stardog. After analyzing query ex-
ecution plans and query profiling information, we observed that the triplestores
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did not pass several optimization tests designed by the authors of SP2Bench.
It is worth mentioning that Stardog provides a comprehensive query profiling
service, which establishes a reference for other triplestores.

SP2Bench also has some limitations. It only provides 17 SPARQL queries
offering limited coverage of some SPARQL constructs and features. Moreover,
some of these queries and the synthetic datasets do not seem to be practical in
real use case applications. Our evaluation employing a complete version of Wiki-
data with 328 queries defined by its users seems to overcome these limitations.
This evaluation helps us to stress the triplestores and identify relevant insights.
Importing Wikidata, and especially, exporting Wikidata was challenging for all
triplestores, where RDFox was significantly more efficient. RDFox was also the
only triplestore that managed to export Wikidata, and it completed this oper-
ation in a few hours. Loading Wikidata, however, was done much faster by the
other triplestores, although a different configuration for RDFox might reduce
loading time significantly.

Importing Wikidata was also difficult because of syntax errors reported by
some rigorous parsers such as the ones implemented in RDFox and Jena Fuseki. It
seems that the complete dumps published by Wikidata might not strictly follow
W3C recommendations. For instance, it was possible to find values not formatted
according to these recommendations. The same problem arises with some queries
published by Wikidata users. Some of these queries use, for example, proprietary
service extensions deployed by the Wikidata Query Service team.

In terms of query performances, RDFox reported the best overall perfor-
mances followed by GraphDB. It is remarkable how consistent GraphDB and
Stardog were, in terms of query performances independent of the memory con-
figuration of the machine. This indicates a careful optimization of the design
of both triplestores in terms of memory consumption. With the exception of
QLever and Jena Fuseki, most triplestores reported none or just one error in
the execution of the queries. Few discrepancies in the number of results were
identified in the case of Stardog, GraphDB, and Neptune. The cause of these
discrepancies could not be explained in this study and it will require further
investigation.

As for future work, we plan to evaluate a larger collection of relevant triple-
stores or extend the queries used in the Wikidata evaluation with the queries
defined by the benchmark WDBench.
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