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Abstract. One can elucidate integrability properties of ordinary differential
equations (ODEs) by knowing the existence of second integrals (also known as

weak integrals or Darboux polynomials for polynomial ODEs). However, little

is known about how they are preserved, if at all, under numerical methods.
Here, we leverage the recently discovered theory of discrete second integrals

to show novel results about Runge-Kutta methods. In particular, we show

that any Runge-Kutta method preserves all affine second integrals but cannot
preserve all quadratic second integrals of an ODE. A number of interesting

corollaries are also discussed, such as the preservation of certain rational in-
tegrals by Runge-Kutta methods. The special case of affine second integrals

with constant cofactor are also discussed as well the preservation of third and

higher integrals.

1. Introduction. Many ordinary differential equations (ODEs) possess structure
that gives rise to certain qualitative behaviours of its exact solution. For example,
an energy function remains constant along the flow of Hamiltonian systems [15]
or the phase space volume is preserved along the flow of source-free ODEs [14].
When solving such ODEs numerically it is important, especially for long-term sim-
ulations, that these features are preserved when possible [11]. Numerical methods
that achieve this are referred to as geometric methods. Many ODEs possess first
integrals, also called invariants, which result from physical laws that govern the
dynamics of the system such as momentum mappings, invariant manifolds, Hamil-
tonians and other conservation properties. The preservation of first integrals is
therefore an important property for a numerical method to inherit. As such, this
topic has been thoroughly researched and there exist many well designed numerical
methods for this purpose such as discrete gradient methods [8], averaged vector
field methods [19], splitting methods [18] and collocation methods [10] amongst
others [22]. Perhaps one of the most popular classes of numerical methods are the
Runge-Kutta methods, which automatically preserve all linear first integrals [11]
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and preserve all quadratic first integrals when their stability matrix vanishes [6].
While these methods cannot preserve all cubic (or higher) first integrals [11], there
exist particular Runge-Kutta methods that preserve a given polynomial Hamilton-
ian first integral [4].

While the preservation of first integrals by Runge-Kutta methods is a topic that
has arrived at a certain level of maturation, many ODEs also possess second integrals
[9], which are also important for studying dynamical systems. Second integrals also
go by the names weak integrals, special integrals [1], algebraic invariant curves [12]
or particular algebraic solutions [13], for example. Polynomial second integrals of
polynomial ODEs are also referred to as Darboux polynomials [17]. Second integrals
are important to study as they behave like first integrals on their zero level sets,
which divide phase space into regions that are qualitatively different (e.g., bounded
or unbounded) and represent barriers for transport. Moreover, many first integrals,
especially rational or time-dependent first integrals, are constructed by taking cer-
tain products and/or quotients of second integrals. Despite their importance, the
preservation of second integrals by numerical methods has not been addressed until
only very recently [2, 3], where the notion of discrete Darboux polynomials for maps
is introduced. Here, the discussion is limited to the Kahan-Hirota-Kimura method
for quadratic ODEs. In the present article we discuss the second-integral-preserving
properties of Runge-Kutta methods and show how to leverage this novel concept to
prove interesting new results about such methods in a general setting.

We now summarise relevant background information. Consider an autonomous
ODE in Rn

ẋ = f(x), (1)

then a second integral [9] of the ODE (1) is a function p(x) that satisfies

ṗ(x) = f(x)T∇p(x) = c(x)p(x), (2)

where the dot denotes d
dt and c(x) is called the cofactor of p(x). If f(x) is poly-

nomial, then p(x) ∈ Km[x] is referred to as a second integral, where Km[x] is the
class of polynomials over the field K of degree m in the variables x. For simplicity
will take K = R, but note that most of our results hold for polynomials over C.
The discrete-time analogue of p(x), is referred to as a discrete second integral of a
map ϕh : Rn → Rn (or discrete Darboux polynomial when ϕh(x) is polynomial or
rational), which is a function p(x) that satisfies

p(ϕh(x)) = c̃(x)p(x), (3)

where c̃(x) is called the discrete cofactor of p(x). This is a discrete analogue of
equation (2) and was recently introduced in [2, 3]. In our context, ϕh(x) ≈ x(h) is
a numerical method designed to approximate the solution of the ODE (1) for some
time step h. The map ϕh is said to preserve a second integral p(x) if there exists a
discrete cofactor c̃(x) that satisfies (3) and is independent of the choice of basis for
p(x). The last point is important, otherwise any function p(x) is a discrete second
integral by letting c̃(x) := p(ϕh(x))/p(x).

In this paper we will mainly consider ODEs with one or more affine second
integrals of the form p(x) = pTx + r where p ∈ Rn and r ∈ R. Note that we can
take the constant r = 0 without loss of generality as we will do throughout the
paper. In particular, we focus on the case where the map ϕh is a Runge-Kutta
method applied to an ODE. That is, letting ϕh(x) denote one step of an s-stage
Runge-Kutta method applied to (1) with initial condition x and Butcher table given
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by
C A

bT
(4)

then this defines the method

gi =x + h

s∑
j=1

aijf(gj), for i = 1, ..., s (5)

ϕh(x) =x + h

s∑
j=1

bjf(gj), (6)

where ϕh(x) is the Runge-Kutta map with time-step h applied to the initial point
x and A = [aij ]. For explicit Runge-Kutta maps the sum in equation (5) runs from
j = 1, ..., i− 1 as A is strictly lower triangular.

The paper begins by showing that Runge-Kutta methods cannot preserve ir-
reducible quadratic second integrals. We then show that Runge-Kutta methods
always preserve affine second integrals and discuss the implications of this theorem.
We then focus on the special case of affine second integrals with constant cofactor.
The final section is on the preservation of affine higher integrals.

2. The non-preservation of quadratic second integrals.

Theorem 2.1. Given an autonomous ODE with an irreducible quadratic second
integral p(x) ∈ K2[x], then no Runge-Kutta method can preserve p(x).

Proof. The proof begins in a similar way to that of [6]. Consider a quadratic second
integral p(x) = xTQx for some symmetric matrix Q ∈ Rn×n. Then

p(ϕh(x))=xTQx+h

s∑
i=1

bif(gi)
TQx+h

s∑
j=1

bjx
TQf(gj)+h

2
s∑

i,j=1

bibjf(gi)
TQf(gj).

(7)
Inserting x = gi − h

∑s
j=1 aijf(gj) in the two O(h) terms yields

p(ϕh(x)) = xTQx+2h

s∑
i=1

big
T
i Qf(gi)+h2

s∑
i,j=1

(bibj−biaij−bjaji)f(gi)
TQf(gj).

(8)
Note that equation (2) implies gTi Qf(gi) = c(gi)p(gi). Computing p(gi) gives

p(gi) =xTQx+ h

s∑
j=1

aijf(gj)
TQx+ h

s∑
k=1

aikx
TQf(gk) + h2

s∑
j,k=1

aijaikf(gj)
TQf(gk)

=p(x) + 2h

s∑
j=1

aijc(gj)p(gj) + h2
s∑

j,k=1

(aijaik − aijajk − aikakj)f(gj)
TQf(gk)︸ ︷︷ ︸

:=Ui

,

(9)

where we have again inserted the expression for x and used equation (2) to arrive
at (9). Note that this is now a linear system of s equations for p(gj), which we can

solve for. Denoting by P := (p(g1), ..., p(gs))
T ∈ Rs and U ∈ Rs the vector whose

ith component is defined in equation (9) then

P = 1p(x) + 2hADcP + h2U (10)

= (I − hADc)
−1 (p(x)1 + h2U

)
, (11)



SECOND INTEGRALS AND RUNGE-KUTTA METHODS 307

where Dc := diag([c(g1), ..., c(gs)]) ∈ Rs×s and 1 ∈ Rs is the ones vector. Equation
(8) therefore reads

p(ϕh(x)) =p(x) + hbTDcP + h2
s∑

i,j=1

(bibj − biaij − bjaji)f(gi)
TQf(gj) (12)

=p(x) + hbTDc(I − hADc)
−1 (p(x)1 + h2U

)
+ h2

s∑
i,j=1

(bibj − biaij − bjaji)f(gi)
TQf(gj). (13)

For the discrete cofactor c̃(x) to be independent of p(x), we require that p(x) divides
equation (13). As the coefficients aij and bi are constant, this is achieved only when

bibj − biaij − bjaji = 0, aijaik − aijajk − aikakj = 0, for i, j, k = 1, ..., s (14)

which is solved by aij = 0 and bj = 0 for i, j = 1, ..., s. Therefore no Runge-Kutta
method can, in general, preserve irreducible quadratic second integrals.

Note that above theorem only applies to irreducible second integrals as Runge-
Kutta methods can preserve quadratic second integrals that are the product of affine
second integrals. For example, when a quadratic second integral can be expressed
as p(x) = xTQx = (xTu)(vTx) where Q := uvT then the preservation of p(x) is
equivalent to the preservation of the two linear second integrals xTu and xTv. Due
to theorem 3.1 in the next section, this is always true for Runge-Kutta methods.

Furthermore, in [2] many examples of the Kahan-Hirota-Kimura method (which
is a Runge-Kutta method for quadratic ODEs [5]) preserving irreducible modified
quadratic second integrals are given. This suggests that despite the above no-go
theorem 2.1, there do exist cases where certain Runge-Kutta methods can preserve
certain modified quadratic second integrals. We will leave this for a future study
and instead focus now on the preservation of affine second integrals by Runge-Kutta
methods.

3. The preservation of affine second integrals. We begin with an example of
a planar ODE and its discretisation by a second-order Runge-Kutta method.

Example 1. Consider the following ODE in two dimensions

ẋ = x2 + 2xy + 3 y2, ẏ = 2 y (2x+ y) , (15)

This ODE was studied in [7] and has the following three linear second integrals

p1(x) = x+ y, p2(x) = x− y, p3(x) = y, (16)

that correspond to the cofactors

c1(x) = x+ 5y, c2(x) = x− y, c3(x) = 4x+ 2y. (17)

Consequently, the system also possesses the first integral p1(x)p2(x)3p3(x)−1.
The system is discretised using Ralston’s method with a time step of h = 0.001
and the phase portrait on the square [−10, 10]2 is presented in figure 1a. Here,
the level sets pi(x) = 0 for i = 1, 2, 3 are represented by blue dashed lines. We
see that numerical solutions starting on one of these zero level sets remain on the
level set. This is exemplified in figure 1b which shows the errors pi(xn)− pi(x0) for
the numerical solutions starting from pi(x0) = 0 and for i = 1, 2, 3. Here, we see
that the errors are all within machine precision, implying that these three second
integrals behave like first integrals on their zero level sets as the exact solution
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Figure 1. The phase portrait of the ODE (15) and the errors of
the second integrals pi(x) for initial conditions satisfying pi(x0) =
0. Note that p3(xn)− p3(x0) = 0 and therefore does not show on
the semi-log axis. The initial conditions are shown by black dots
and are located on the grid (−10 + i,−10 + j) for i, j = 0, ..., 20.

dictates. Note that this particular discretisation is susceptible to propagation of
floating point error.

Second integrals are important as they divide phase space into sections with qual-
itatively different behavior. We see that Ralston’s method has preserved the second
integrals pi(x), meaning that it produces a qualitatively similar phase portrait. This
fact is due to the following theorem.

Theorem 3.1. If an autonomous ODE ẋ = f(x) possesses an affine second integral
p(x) = pTx for p ∈ Rn with cofactor c(x) satisfying pTf = c(x)pTx then a Runge-
Kutta map ϕh of the ODE possesses the discrete second integral pTx that satisfies
pTϕh(x) = c̃(x)pTx where the discrete cofactor is given by

c̃(x) = 1 + hbTDc (I − hADc)
−11, (18)

where Dc := diag([c(g1), ..., c(gs)]) ∈ Rs×s and 1 ∈ Rn is the vector of ones.

Proof. Let ϕh denote the Runge-Kutta map defined by equations (4), (5) and (6).
Now let G := (g1, ..., gs)

T and F := (f(gi), ...,f(gs))
T denote the s × n matrices

whose i’th rows are gTi and fTi , respectively. Then

p(ϕh(x)) = pTx + h

s∑
j=1

bjp
Tf(gj) = pTx + hbTFp = pTx + hbTDcGp. (19)

We have for Gp the following

Gp = 1sp
Tx + hAFp = (I − hADc)

−1 1sp
Tx (20)

due to the fact that Fp = DcGp. Inserting (20) into (19) and dividing by pTx we
arrive at the desired result.

This is a generalisation of theorem 1 in [3], which shows that the Kahan-Hirota-
Kimura method preserves all affine second integrals for quadratic vector fields. The
discrete cofactor c̃(x) of theorem 3.1 depends only on the Butcher table coefficients,
the vector field f(x) and the (continuous) cofactor c(x). Furthermore, c̃(x) is in
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general rational and implicitly defined due the dependence of Dc on the stage values
gi. However, when f(x) is polynomial then explicit Runge-Kutta maps applied to
f(x) yield polynomial maps. One would therefore expect c̃ to be known explicitly
and be polynomial.

Remark 1. For all explicit Runge-Kutta methods applied to polynomial ODEs then
c̃(x) is polynomial and can be written explicitly. This can be shown by observing
that the matrix I − hADc = I + L where L := −hADc is strictly lower triangular
and therefore (I+L)−1 = I+ L̃ where L̃ is also strictly lower triangular. Moreover,
as det(I+L) = 1, its inverse is equal to its adjugate, that is (I+L)−1 = adj(I+L) =

I + L̃ and therefore L̃ is polynomial in the components of L. As the cofactor c(x)
is polynomial for polynomial ODEs, it follows that c̃(x) is polynomial.

An interesting implication of theorem 3.1 is that if an ODE possesses two linear
second integrals with the same cofactor, then so does ϕh. This leads to the following
corollary about the preservation of rational integrals.

Corollary 1. All Runge-Kutta methods preserve all rational first integrals of the
form H(x) = Q(x)/R(x) for Q(x) and R(x) affine.

Proof. Any ODE with a first integral H(x) = Q(x)/R(x) can be written as the
following system

ẋ = f(x) = S(x)∇
(
Q(x)

R(x)

)
(21)

for some skew-symmetric matrix S(x) = −S(x)T . Without loss of generality we
can let Q(x) = qTx and R(x) = rTx for constant vectors q, r ∈ Rn. We now show
that these two functions are second integrals of the ODE with the same cofactor by
computing their time derivatives

d

dt
Q(x) = qTf(x) =

qTS(x)
(
rTxq − qTxr

)
R(x)2

=
rTS(x)q

R(x)2
Q(x) (22)

due to skew-symmetry of S(x). Similarly,

d

dt
R(x) =

rTS(x)q

R(x)2
R(x), (23)

that is, Q(x) and R(x) are second integrals with cofactor (rTS(x)q)R(x)−2. Due
to theorem 3.1, all Runge-Kutta methods preserve these second integrals and they
both correspond to the same discrete cofactor. Therefore their quotient is an integral
of the Runge-Kutta map.

Note that corollary 1 applies to general ODEs. The same statement can me made
for polynomial ODEs with a rational integral by scaling (21) by R(x)a, a ≥ 2 and
a ∈ N. We now give two examples of explicit Runge-Kutta methods preserving a
rational integral. The first is of a simple Lotka-Volterra system, the second is of a
non-polynomial vector field.

Example 2 (A Lotka-Volterra system with a rational integral). Consider the fol-
lowing 2D Lotka-Volterra system

ẋ = x(x− y), ẏ = y(x− y). (24)

Here x and y are clearly second integrals with cofactor c = x − y implying that
H(x) = x

y is a first integral of the ODE. Now consider the generic second order
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explicit Runge-Kutta map ϕh defined by the Butcher Tableau

0 0 0
θ θ 0

1− 1
2θ

1
2θ

(25)

Note that setting θ = 1/2, 2/3, 1 yields the explicit midpoint, Ralston’s and Heun’s
methods, respectively. Then according to theorem 3.1 the discrete cofactor is

c̃(x) = 1 + (x1 − x2)h+ (x1 − x2)
2
h2 +

θ

2
(x1 − x2)

3
h3 (26)

and is polynomial due to remark 1. Indeed, we can show that the Runge-Kutta
map satisfies

ϕh(x) = c̃(x)x (27)

meaning that x and y are discrete second integrals of ϕh with cofactor c̃. This
implies that H(x) = x

y is a first integral of ϕh.

We remark that the rational Hamiltonian in Example 2 is preserved under any
Runge-Kutta method, including symplectic ones such as the implicit midpoint rule,
meaning simultaneous symplecticity and energy-preservation is achievable in this
case. Such a map would therefore be a reparametrisation of the exact solution [23].

Example 3 (A non-polynomial ODE with a rational integral). Consider the fol-
lowing ODE

ẋ =
2x+ α

(x− y)
3
2

, ẏ =
2 y + α

(x− y)
3
2

(28)

which has the following two second integrals

p1(x) = x+ y + α, p2(x) = x− y (29)

that both correspond to the cofactor

c(x) =
2

(x− y)
3/2

. (30)

This means that H(x) = (x+y+α)/(x−y) is a first integral of the ODE. Now apply
to this ODE the generic second-order explicit Runge-Kutta map ϕh from example
2. Then ϕh possesses the discrete second integrals p1(x) and p2(x) with cofactor

c̃(x) =

(
h
√
x− y + a(x)

((
(x− y)

3
2 + 2h

)
θ − h

))
a(x)θ (x− y)

3
2

(31)

where

a(x) =

√(
(x− y)

1
2 + 2hθ (x− y)

− 1
2

)
, (32)

in agreement with theorem 3.1, hence H(x) is an integral of ϕh. We can also verify
by direct computation that ϕh satisfies H(ϕh(x)) = H(x).

If an ODE possesses a rational integral of the form prescribed by corollary 1, then
it is not necessarily a straightforward task to determine its form without knowledge
of the cofactor. However, due to the following theorem, one can immediately deter-
mine the discrete cofactor corresponding to the numerator and denominator of the
rational integral by computing the Jacobian determinant of a Runge-Kutta map
applied to the ODE. From this one can infer the (continuous) cofactor due to the
fact that lim

h→0
((c̃(x)− 1)/h) = c(x)
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Theorem 3.2. If a Runge-Kutta map ϕh possesses two or more affine second in-
tegrals with the same cofactor c̃(x), then c̃(x) divides the Jacobian determinant of

the map det
(
∂ϕh(x)
∂x

)
.

Proof. Without loss of generality we can assume the two affine second integrals are
p1(x) = x1 and p2(x) = x2 both with cofactor c̃(x). Letting ϕh : (x1, ..., xn) 7→
ϕh(x1, ..., xn) := (x′1, ..., x

′
n) then the map can be written as

ϕh


x1
x2
x3
...
xn

 =


x1c̃(x)
x2c̃(x)
x′3
...
x′n

 . (33)

Taking the Jacobian of ϕh(x) with respect to x gives

Jϕh
:=

∂ϕh(x)

∂x
=



x1
∂c̃
∂x1

. . . x1
∂c̃
∂xn

x2
∂c̃
∂x1

. . . x2
∂c̃
∂xn

∂x′3
∂x1

. . .
∂x′3
∂xn

...
...

∂x′n
∂x1

. . .
∂x′n
∂xn


+



c̃(x) 0 0 . . . 0

0 c̃(x) 0

0 0 0
...

. . .
...

0 . . . 0


.

(34)
As we are taking the determinant of Jϕh

we can perform elementary row and col-
umn operations to manipulate this matrix. Denoting by ri and ci the ith row
and column of Jϕh

then letting c1 →
∑

ci, then r2 → r2 − r1, we get for row
two r2 = (0, c̃(x), 0, ..., 0). Then by Laplace expansion across this row, we see
that det(Jϕh

) = c̃(x)
∑
M2,j , where M2,j are the determinantal minors across the

second row.

We also remark that theorem 3.2 implies that if a Runge-Kutta map has m second
integrals corresponding to the cofactor c̃(x), then c̃(x)m−1 will divide the Jacobian.
Furthermore, for the proof to hold, we only need the map to be locally invertible,
such that det(Jϕh

) 6= 0 and therefore should hold for other affinely equivalent maps
that possess a rational integral.

Using theorem 3.2 one can easily detect the existence of a rational integral of the
form given in corollary 1 by factoring the Jacobian determinant of any Runge-Kutta
map applied to an ODE. This immediately provides the form of the cofactor, if it
exists as given by the following example.

Example 4 (An ODE with an unknown rational integral). Consider the following
ODE

ẋ =z2 − y2 − xy + xz, (35)

ẏ =2 y2 − xz − z2, (36)

ż =z2 + zx+ zy − y2. (37)

It is not immediately obvious if this ODE possesses a rational integral. However,
we apply to this ODE the forward Euler method, denoted by ϕh(x), and take its



312 BENJAMIN K. TAPLEY

Jacobian determinant. This yields

det (Jϕh
) = K1K2 (38)

where

K1 =yh+ 1, (39)

K2 =1 + h (x+ 5 y + 3 z) + h2
(
2xy + 2xz + 4 y2 + 6 yz + 2 z2

)
, (40)

Using K1 as a discrete cofactor and setting p(x) = α1x+ α2y + α3z + α4 we solve

p(ϕh(x)) = K1p(x) (41)

for αi, which gives the following two discrete second integral solutions

p1(x) = x+ y, and p2(x) = z − x. (42)

This implies that H(x) = (x+ y)/(z − x) is a first integral of ϕh(x) and therefore
also of the original ODE. Computing

c(x) = lim
h→0

(
c̃(x)− 1

h

)
= y, (43)

yields the form of the (continuous) cofactor.

We remark that the above method for finding rational affine integrals involves
only solving linear systems and hence is fast and scalable to ODE in higher dimen-
sions with free parameters.

4. The constant cofactor case. We now restrict our discussion to the special
case of affine second integrals with constant cofactor

ṗ(x) = λp(x), (44)

where λ is constant. If such a second integrals exists then we can solve for p(x)

p(x) = Keλt, (45)

for some arbitrary constant K, and therefore

H = p(x)e−λt (46)

is a time-dependent integral of the ODE (1). This has a natural discrete-time
analogue as follows.

Proposition 1. Consider a map ϕh with a discrete second integral satisfying

p(ϕh(x)) = c̃p(x),

where c̃ is constant. This implies that

p(x) = Kc̃k, (47)

where k is the iteration index and K is an arbitrary constant, moreover the function

H̃ = c̃−kp(x), (48)

is an integral of the map ϕ◦kh .

We now consider the case where the map ϕh is a Runge-Kutta method applied to
an ODE with one or more second integrals of the form (44). We begin with an exam-
ple of a Lotka-Volterra system with a time-dependent integral and its discretisation
under a Runge-Kutta method.
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Example 5 (A Lotka-Volterra system with one time-dependent integral). Consider
the following Lotka-Volterra system

d

dt

 x1
x2
x3

 =

 x1 (a1x2 − a2x3 + b)
x2 (−a1x1 + a3x3 + b)
x3 (a2x1 − a3x2 + b)

 . (49)

Then p1(x) = x1 +x2 +x3 is a second integral corresponding to the cofactor c1 = b,
hence

H = p1(x)e−bt (50)

is a time-dependent integral of the ODE (49). Now consider discretisation of the
above ODE by the forward Euler method ϕh. Then p1(x) is a discrete second
integral of ϕh with the cofactor c̃1 = 1 + bh meaning

H̃ = c̃−k1 p1(x), (51)

where k is the iteration index, is an integral of the map ϕ◦kh .

Note that c̃1 in the above example also corresponds to the stability function R(bh)
of the forward Euler method. This is no coincidence and is due to the following
corollary of theorem 3.1.

Corollary 2. If an autonomous polynomial ODE ẋ = f(x) possesses an affine
second integral p(x) with a constant cofactor λ, then a Runge-Kutta map ϕh with
stability function R(z) satisfies

p(ϕh(x)) = R(λh)p(x), (52)

where

R(z) = 1 + zbT (I − zA)−11 (53)

is the (constant) discrete cofactor, 1 is the ones vector and I is the s × s identity
matrix.

Proof. This can be seen by setting c(x) = λ in theorem 3.1. Alternatively, we note
that as Runge-Kutta methods are affinely equivariant [16], we can take p(x) = x1
without loss of generality, then equation (44) is identical to Dahlquist’s famous
test ODE [21] and the cofactor R(z) is identical to the the stability function in
the context of A-stability of one-step methods. The rest follows from e.g., [21,
Proposition 3.1]. See appendix A for details.

The fact that the cofactor is the stability function is intuitive. Equation (2)
implies that p(x) = A0 exp(

∫
c(x)dt) for some integration constant A0. Letting

c(x) = λ and p(x) = x1 implies that x1 = A0 exp(λt) as expected for Dalquist’s
linear test equation, while an order-p Runge-Kutta map yields ϕh(x1) = R(λh)x1,
where R(z) ≈ exp(z) is an order-p Padé approximation to the exponential function.

This result implies that Runge-Kutta methods cannot, in general, preserve inte-
grals that are the product of second integrals. This can be seen by considering an
ODE that has the first integral H(x) = p1(x)α1p2(x)α2 where the pi(x) are second
integrals with constant cofactors λi. The fact that H(x) is a first integral implies
that α1λ1 + α2λ2 = 0. Then H(x) is only a first integral of the Runge-Kutta map
ϕh if and only if R(λ1)α1R(λ2)α2 = 1. This is only true only when R(z) = exp(z),
which is impossible. The exception of course, is when α1 = −α2 = ±1 and λ1 = λ2.
This results in the integral H(x) = p1(x)/p2(x) being preserved by all Runge-
Kutta maps, as shown in corollary 1. However, despite this result, there are some
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instances where Runge-Kutta methods can preserve a modified integral as we will
now discuss.

The existence of second integrals with constant cofactors implies the existence of
time-dependent integrals of an ODE and therefore iteration-index-dependent inte-
grals of a Runge-Kutta map in the discrete-time case. One can eliminate this time
dependence (and iteration index dependence) by taking quotients. This leads to
the preservation of some non-rational modified integrals by Runge-Kutta methods
by the following corollary.

Corollary 3. Given an ODE with a (non-rational) first integral given by

H(x) =
p1(x)σ

p2(x)
, (54)

where p1(x) and p2(x) are affine second integrals with constant cofactors c1 and c2
and

σ =
c2
c1
, (55)

then any Runge-Kutta map ϕh with stability function R(z) preserves the modified
integral

H̃(x) =
p1(x)σ̃

p2(x)
(56)

with the modified exponent

σ̃ =
ln(R(hc2))

ln(R(hc1))
. (57)

Proof. According to corollary 2, ϕh preserves the second integrals p1(x) and p2(x)
with the modified cofactors R(hc1) and R(hc2). By direct computation one can

easily show that H̃(x) is a second integral of ϕh with cofactor 1, and hence is a first
integral of ϕh.

This is demonstrated by the following example.

Example 6 (An ODE with a non-rational integral). Consider the following ODE
in three dimensions

d

dt

 x1
x2
x3

 =

 x1x2 + x2x3 + x1
−x1x2 − x2x3 + x2

(σ − 1) (x1 + x2) + σ x3

 , (58)

where σ ∈ R. Discretising the above ODE by the forward Euler method ϕh with
stability function R(z) = 1 + z, we find the following affine second integrals and
their corresponding discrete constant cofactors

p1(x) = x1 + x2, c̃1 = 1 + h, (59)

p2(x) = x1 + x2 + x3, c̃2 = 1 + σh. (60)

Therefore

H̃ =
(x1 + x2)σ̃

x1 + x2 + x3
(61)

defines an h-dependent integral of ϕh with

σ̃ =
ln (1 + σh)

ln (1 + h)
. (62)
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We can take the continuum limit lim
h→0

(σ̃) = σ, which implies that lim
h→0

H̃(x) = H(x),

where

H(x) =
(x1 + x2)σ

x1 + x2 + x3
. (63)

Indeed, the irrational integral H(x) is preserved by the flow of the original ODE.

5. The preservation of affine higher integrals. The notion of first, second,
third1 and higher integrals can be generalized by considering solutions of the linear
system for p(x) = (p1(x), p2(x), ..., pm(x))T ∈ Rm satisfying [9]

ṗ(x) = L(x)p(x), (64)

where L(x) ∈ Rn×n. If Lij = 0 for j = 1, ..., n then pi(x) is a first integral and is
preserved from arbitrary initial conditions. If Lii 6= 0 and Lij = 0 for j 6= i then
pi(x) is a second integral with cofactor Lii and is preserved for initial conditions
that begin on its zero level sets. If, for example, Lik 6= 0 and Lij = 0 for j 6= i, k
then pi(x) is preserved for initial conditions starting on the zero level sets of pk(x).
Here, if pk(x) is a first integral, then pi(x) is called a third integral. In this sense,
one can define the notion of higher integrals for ODE systems. In this section we
consider Runge-Kutta methods applied to ODEs with a sub-system of affine higher
integrals with constant coefficient matrix L.

Corollary 4. Consider an autonomous ODE in n dimensions that possesses a sys-
tem of m ≤ n linearly-independent affine polynomials p(x) = (p1(x), ..., pm(x))T ∈
Rm satisfying

ṗ(x) = Lp(x), (65)

where L is an m ×m matrix that is independent of x. Then a Runge-Kutta map
ϕh satisfies

p(ϕh(x)) = R(hL)p(x), (66)

where R(z) is the stability function of ϕh.

Proof. Let p(x) = Dx, where D is an m×n matrix of rank m ≤ n. The numerical
solution of ϕh applied to a linear ODE in n dimensions ṗ = Lp is given by (see for
example, [11, p. 194])

ϕh(p) = R(hL)p. (67)

As Runge-Kutta methods commute with linear transformations we have ϕh(p(x)) =
p(ϕh(x)), which yields the desired result.

We remark that an ODE in n dimensions cannot possess more than n function-
ally independent affine second integrals with constant cofactor. We demonstrate
corollary 4 in an example where L is given in Jordan form. But first we will briefly
introduce a particular class of Runge-Kutta methods called diagonal Padé Runge-
Kutta methods.

Definition 5.1. A diagonal Padé Runge-Kutta map is an s-stage Runge-Kutta

map ϕh whose stability function R(z) = P (z)
Q(z) has equal degree in the numerator

1A third integral is a function K(x) that is preserved on a particular level set of a first integral

H(x), e.g., K̇(x) = c(x)H(x)
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and denominator, that is deg(P (z)) = deg(Q(z)). Such a stability function is an
order s approximation to ez with numerator and denominator given by

P (z) =

s∑
i=0

aiz
i (68)

Q(z) =

s∑
i=0

(−1)iaiz
i = P (−z), (69)

where ai are the constants

ai =
s!(2s− i)!

(2s)!i!(s− i)!
. (70)

See, for example, [20] and references therein. Such a map has a stability function
that satisfies R(−z)R(z) = 1.

As an example of some well known Diagonal Padé Runge-Kutta methods, con-
sider the Runge-Kutta map ϕh(x) = x′ defined by

x′ − x

h
= (1− 2θ)f(

x + x′

2
) + θf(x′) + θf(x) (71)

then its stability function is the diagonal Padé approximation

R(λh) =
1 + 1

2λh

1− 1
2λh

. (72)

Note that the three cases θ = 0, θ = 1
2 and θ = − 1

2 respectively correspond to the
midpoint rule, trapezoidal rule and Kahan’s method, the latter being when f(x) is
quadratic [5].

Example 7 (A 3D ODE with a 2D linear subsystem in Jordan form). Consider
the following quadratic ODE in 3 dimensions that was considered in example (6)

d

dt

 x1
x2
x3

 =

 x1x2 + x2x3 + σx2
−x1x2 − x2x3 + σx1

(x1 + x2) + σ x3

 . (73)

Setting p(x) = (x1 +x2 +x3, x1 +x2)T then the above ODE has the following linear
subsystem

ṗ(x) =

(
σ 1
0 σ

)
p(x) := Lp(x). (74)

If we apply Kahan’s method then we get

p(ϕh(x)) =

( −hσ−2
hσ−2 4 h

(hσ−2)2

0 −hσ−2
hσ−2

)
p(x) (75)

=

(
R(hσ) R′(hσ)

0 R(hσ)

)
p(x) = R(hL)p(x), (76)

which is the form prescribed in corollary 4.

It is known that when the Kahan map is applied to a Hamiltonian ODE that it
preserves a modified Hamiltonian [5]. Here we show that there exists some cases
where the Kahan map (as well as other diagonal Padé Runge-Kutta maps) preserves
a quadratic first integral exactly.
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Example 8 (An ODE with a quadratic integral that is preserved exactly). Consider
the quadratic ODE in three dimensions

d

dt

 x1
x2
x3

 =

 2x2 + x1 + x3 + x3 (x1 + x2) + x1
2

−x1 − x2 − x3 (x1 + x2)− x12
x3 (x1 + x2) + x1

2

 (77)

Setting p(x) = (x1 + x2, x2 + x3)T then this satisfies

ṗ(x) =

(
0 1
−1 0

)
p(x) (78)

If we apply the Kahan discretisation to the above ODE we find that p1(x) =
‖p(x)‖2 = (x1 +x2)2 + (x2 +x3)2 is a quadratic second integral of ϕh with cofactor

c̃ = 1. Therefore H(x) = ‖p(x)‖2 is an integral of the map, i.e., H(ϕh(x)) = H(x).
Moreover, we find that any diagonal Padé Runge-Kutta map preserves this integral.
This is due to the following corollary.

Corollary 5. Given an ODE ẋ = f(x), if there exists m linear polynomials p(x) =

(p1(x), p2(x), ..., pm(x))T that satisfy

ṗ = ASp(x), where A = −AT and S = ST (79)

then H(x) = p(x)TSp(x) is a first integral of the ODE and any diagonal Padé
Runge-Kutta map (e.g., one of the form (71)) preserves this integral exactly.

Proof. Using the fact that R(z) = P (z)P (−z)−1 = P (−z)−1P (z), P (hAS)T =
P (−hSA) and P (hSA)S = S P (hAS) then it’s straight forward to show that H is
preserved under ϕh

H(ϕh(x)) =p(x)TR(hAS)TSR(hAS)p(x) (80)

=p(x)TP (−hAS)−TP (hAS)TSP (hAS)P (−hAS)−1p(x) (81)

=p(x)TP (hSA)−1P (−hSA)SP (hAS)P (−hAS)−1p(x) (82)

=p(x)TSP (hAS)−1P (−hAS)P (−hAS)−1P (hAS)p(x) (83)

=p(x)TSp(x) = H(x) (84)

We can therefore make the following statement about linear ODEs with quadratic
integrals.

Corollary 6. For all linear ODEs with quadratic first integrals, all diagonal Padé
Runge-Kutta maps preserve the integral exactly.

Proof. A linear ODE with a quadratic integral H = 1
2x

TSx can be written in the
form

ẋ = A∇H = ASx (85)

for A = −AT and S = ST , which is in the form of (79) and according to corollary
5, all diagonal Padé Runge-Kutta maps preserve the integral H

This is a slight generalisation of proposition 5 in [4].
Corollary 5 also applies to ODEs with multiple quadratic integrals as shown in

the following example.
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Example 9 (A 5D system with 2 quadratic integrals preserved exactly). Consider
the following ODE

d

dt


x1

x2

x3

x4

x5

=


x3

2 + 2 x3x4 + 2 x3x5 + 2 x4
2 + 2 x4x5 + 2 x5

2 − 10 x1 − 17 x2 − 7 x3 − 5 x4 + 4 x5

−x3
2 − 2 x3x4 − 2 x3x5 − 2 x4

2 − 2 x4x5 − 2 x5
2 + 6 x1 + 11 x2 + 5 x3 + 5 x4 − 3 x5

x3
2 + 2 x3x4 + 2 x3x5 + 2 x4

2 + 2 x4x5 + 2 x5
2 − x2 − x3 − 4 x4 + 2 x5

−x1 − 2 x2 − x3 + 2 x4

x1 + 3 x2 + 2 x3 + 2 x4 − 2 x5


(86)

Let λ = 2+ i, where i2 = −1 and discretise the ODE using Kahan’s method, which
is a diagonal Padé Runge-Kutta map. We find the following affine discrete second
integrals with constant cofactor.

j pj(x) c̃j
1 −ix4 + x1 + 2x2 + x3 R(λh)
2 (106 + 52 i)x2 + 41x3 − (52− 24 i)x5 + (65 + 52 i)x1 + (12− 15 i)x4 R(−λh)
3 ix4 + x1 + 2x2 + x3 R(λ∗h)
4 (106− 52 i)x2 + 41x3 − (52 + 24 i)x5 + (65− 52 i)x1 + (12 + 15 i)x4 R(−λ∗h)

(87)

From the above four linear second integrals, we can construct the following complex
quadratic integrals

K1 = p1(x)p2(x), K2 = p3(x)p4(x), (88)

however if we observe that K1 = K∗2 then the following two independent real inte-
grals can be constructed

H1 = K1 +K2, H2 = i(K1 −K2). (89)

As these two integrals are independent of h, it follows that the ODE also possesses
these integrals.

6. The existence of affine higher integrals. Many of our results in the previous
section so far rely on the fact that there exist a change of coordinates p(x) = Dx
that allow us to find a linear ODE subsystem of higher integrals of the form ṗ = Lp.
A logical question that is now addressed is what is the most general class of ODEs
that admit such a sub-system and how to calculate this transformation.

Theorem 6.1. If an ODE in n dimensions can be expressed in the following form

ẋ = Ax +

k∑
i=1

bi(x)vi (90)

for some matrix A, scalar functions bi(x) and the matrix V := [v1, ...,vk] ∈ Rn×k
has rank n − m, where m < n, then there exists the linear transformations p =

Qx ∈ Rm and y = Rx ∈ Rn−m that decouple the ODE into an m dimensional
linear ODE subsystem for p and an n−m dimensional non-linear ODE for y

ṗ =Lp (91)

ẏ =g(p,y) (92)

for some matrix L.

Proof. Given an ODE in the form (90), then choose the linear transformation p =
Qx such that vi ∈ ker(Q). Multiplying the ODE (90) by Q gives

Qẋ = QAx +

k∑
i=1

bi(x)Qvi = QAx = ṗ, (93)
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which gives the form of the decoupled linear part of the ODE (91). Now we need to
construct the n−m non-linear part of the ODE (92). To do this, we simply choose
some matrix R ∈ R(n−m)×n whose rows are independent to the rows in Q. This
then defines the one-to-one transformation

z :=

(
p
y

)
=

(
Q
R

)
x := Gx (94)

Then the transformed ODE

ż = Gf(z)

is in the desired form.

This class of ODEs encompasses Hamiltonian ODEs with Hamiltonian H =
1
2x

TSx where S = QTQ has rank m and vi ∈ ker(Q). Moreover, diagonal Padé
Runge-Kutta methods preserve this Hamiltonian exactly.

A remaining question is how does one find such a linear transformation. We will
address this now by presenting a systematic algorithm to transform an ODE given
in the form (90) into its decoupled form (91) and (92).

Algorithm 1. Given an ODE ẋ = f(x)

1. Let i = 1.
2. Solve the condition ∇pi(x)Tf(x) = λpi(x) for affine pi(x) and constant λi.

(a) If there is no solutions, or they have all been used in successive steps,
then end the algorithm.

(b) If there are one or more solutions, pick one, set i → i+ 1 and move
to the next step.

3. Set pi−1(x) = 0 in f and solve the condition ∇pi(x)Tf(x)
∣∣
pi−1(x)=0

= λipi(x)

for pi(x) and λi.
(a) If there is a solution, then set i→ i+ 1 and repeat step 3
(b) If there is no solution, go back to step 2 and pick a different second

integral solution
4. Calculate Q = ∇p(x)
5. Calculate L from ∇(Q.f) = LQ
6. Choose a matrix R s.t.

G =

(
Q
R

)
(95)

has full rank. Then the ODE

ż = Gf(z) (96)

is in the desired form. End algorithm.

We will now demonstrate this algorithm with an example.

Example 10 (Example of algorithm 1). Consider the following vector field in five
dimensions

d

dt


x1
x2
x3
x4
x5

=


−2x1x3 + 5x2

2 + x4
2 − 2x5

2 + x2 + x5
(−2x3 + 15)x1 + 5x2

2 + x4
2 − 2x5

2 + 6x2 + 12x3 + 8x4 + x5
(2x3 + 2)x1 − 5x2

2 − x42 + 2x5
2 + x3 + 2x4 − x5

(2x3 − 7)x1 − 5x2
2 − x42 + 2x5

2 − 3x2 − 6x3 − 3x4 − x5
x1x3 − 2x2

2 + x5
2


(97)
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We will now implement algorithm 1 to decouple this ODE into a set of linear and
non-linear equations. First look for an affine second integral that has a constant
cofactor. We find the following second integral

p1 = x1 + x2 + 2x4 (98)

with cofactor 1 is the only affine second integral that has constant cofactor. Now
eliminate a variable from the vector field by setting p1 = 0, for example, by substi-
tuting x1 = −x2 − 2x4 into f .

d

dt


x2

x3

x4

x5

 =


(−2x3 + 15) (−x2 − 2x4) + 5x2

2 + x4
2 − 2x5

2 + 6x2 + 12x3 + 8x4 + x5

(2x3 + 2) (−x2 − 2x4) − 5x2
2 − x4

2 + 2x5
2 + x3 + 2x4 − x5

(2x3 − 7) (−x2 − 2x4) − 5x2
2 − x4

2 + 2x5
2 − 3x2 − 6x3 − 3x4 − x5

(−x2 − 2x4)x3 − 2x2
2 + x5

2


(99)

We now look for second integrals with constant cofactor on the resulting four
dimensional vector field and find

p2 = −x2 + x3 − 2x4 (100)

also with cofactor 1. We now substitute x2 = x3 − 2x4 and compute constant
cofactor second integrals on the resulting three dimensional system

d

dt

 x3
x4
x5

=

 − (2x3 + 2)x3 − 5 (x3 − 2x4)
2 − x42 + 2x5

2 + x3 + 2x4 − x5
− (2x3 − 7)x3 − 5 (x3 − 2x4)

2 − x42 + 2x5
2 − 9x3 + 3x4 − x5

−x32 − 2 (x3 − 2x4)
2

+ x5
2


(101)

this vector field has the polynomial p3 = x4 − x3 with cofactor 1. Substituting
x3 = x4 into the above three dimensional vector field, we find that there are no more
affine second integrals with constant cofactor. Setting p(x) = (p1(x), p2(x), p3(x))T ,
we can write p(x) = Qx, where

Q =

 1 1 0 2 0

0 −1 1 −2 0

0 0 −1 1 0

 . (102)

It is therefore possible to write the original ODE as the following decoupled set of
ODEs

ṗ =Lp, (103)

ẏ =g(y,p), (104)

where L is triangular. Multiplying the ODE ẋ = f(x) by Q, we get the identity
Qf(x) = Lp. In other words, Qf(x) = Bx must be linear. The coefficients of
the matrix L can therefore be easily found by solving the linear problem B = LQ.
Doing so, we find

L =

 1 0 0

1 1 0

−9 −6 1

 . (105)

We can now define the linear transformation(
p
y

)
=

[
Q
R

]
x (106)
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where R is any 2×n matrix whose rows are independent to the rows of Q. We will
choose R = [0, I2]. Hence by the above linear transformation, the ODE reads

ṗ = Lp, (107)

ẏ1 = 2 p1p3 − 5 p2
2 − y12 + 2 y2

2 − 7 p1 − 3 p2 − 6 p3 − 3 y4 − y5, (108)

ẏ2 = p1p3 − 2 p2
2 + y2

2. (109)

7. Conclusion. In this article we have shown that using a discrete analogue of
the theory of second integrals (also known as discrete Darboux polynomials) we
can prove general and novel results about Runge-Kutta methods. In particular we
have shown that all Runge-Kutta methods will preserve all affine second integrals of
an ODE. This implies that all Runge-Kutta methods will preserve all rational first
integrals where the numerator and denominator are affine. Furthermore, we have
demonstrated a method for detecting the existence of such integrals in an ODE, if it
exists. We have also shown that Runge-Kutta methods cannot preserve irreducible
quadratic second integrals, in general.

The constant cofactor case is given particular attention, which gives rise to cer-
tain iteration-index dependent first integrals. Due to this, one can eliminate this
iteration index dependence by taking quotients, which leads to a the preservation of
certain modified first integrals by Runge-Kutta methods. This is the first example
where an arbitrary Runge-Kutta method preserves such an integral. For ODE sys-
tems that possess affine higher integrals, we show that in some cases, the diagonal
Padé Runge-Kutta methods can preserve quadratic integrals exactly. Lastly, we
present an algorithm that detects the existence of such affine integrals as well as
determines the linear transformation that decouples the affine subsystem of higher
integrals from the nonlinear components.
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Appendix A. Derivation of stability matrix for corollary 2. Let ϕh de-
note the Runge-Kutta map defined by equations (4), (5) and (6). Now let G =
(g1, g2, ..., gs)

T denote the s × n matrix whose i’th row is gTi . Then if f(x) = λx
as in the case of our test equation (5) can be written as

G = 1xT + hλAG = (I − hλA)−11xT (110)

We therefore have

gi = GT êi =
(
êi
T (I − hλA)−11

)
x (111)

where êi ∈ Rs is the i’th canonical unit basis vector with a 1 in the i’th component
and 0 elsewhere. Inserting this into equation (6) gives

ϕh(x) =x + hλ

s∑
j=1

bj êi
T (I − hλA)−11x (112)

=(1 + hλbT (I − hλA)−11)x (113)

:=R(λh)x (114)

as required.
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