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Abstract—Regular inspection and maintenance (I&M) of road
tunnels is critical for ensuring safe operation and maximising
the infrastructure’s longevity. Today’s I&M operations are time-
consuming and disruptive to normal operations, but advances
within robotics, automation, and digitalisation promise significant
productivity gains. Accurate and reliable localisation is key to
achieving this, but poses significant challenges in tunnels due
to the absence of GNSS signals and the self-similar nature
of the environment. This paper presents a novel approach for
achieving real-time high-accuracy localisation in tunnels such
that it can be used for autonomous navigation. The proposed
system implements a simultaneous localisation and mapping
(SLAM) solution that integrates data from scanning LiDAR,
camera and inertial measurement unit (IMU). We have developed
a novel approach that fuses the information from these sensors
at the feature level and jointly optimises over all constraints.
This enables our system to overcome the degeneracy of typical
SLAM solutions in self-similar environments such as tunnels. To
evaluate the performance of the proposed system, experiments
and autonomous missions were conducted in real tunnels, and
comparisons were made against existing localisation methods.
The results demonstrate that the proposed system achieves high
accuracy and exhibits good robustness in challenging tunnel
conditions.

Index Terms—SLAM, localisation, autonomy, inspection, tun-
nel, road, infrastructure

I. INTRODUCTION

Systems for autonomous infrastructure inspection aim to
save time, limit human exposure to dirty and dangerous
environments, and to deliver structured and repeatable data.
Key requirements for such systems are accurate associations
between observations and locations as well as the ability to
repeat inspections with high positional accuracy over time.
These systems are therefore dependent on a robust and accu-
rate localisation solution.

This project has received funding from the European Union’s (EU) Hori-
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under grant agreement number 871542. Described work in this article was
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Fig. 1. Images of the autonomous cart with which we tested our localisation
solution in a highway tunnel (left) and ex-train tunnel (right). Our system
is mounted to the roof of the vehicle. Also visible is the crane-mounted
inspection camera.

Many inspection tasks are performed in GNSS-denied en-
vironments such as indoor, underground, or in outdoor areas
where large buildings or geological structures makes GNSS
positioning unreliable. In these environments, simultaneous
localisation and mapping (SLAM) is an often used alternative.

SLAM methods have been developed to support different
sensor modalities. For platforms where weight and power
consumption are constraints such as drones, camera or cam-
era and inertial measurement unit (IMU)-based SLAM, also
known as visual SLAM [3], or visual-inertial SLAM [11],
are commonly used. On platforms that do not have such
limitations, a standard configuration is to apply LiDAR [17],
or LiDAR inertial SLAM methods [13].

In short, LiDAR SLAM is based on sampling the surround-
ing geometry and aligning the resulting scan with previous
scans to estimate ego-motion. This is a robust and well tested
approach much used in robotics. Visual SLAM, on the other
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hand, is based on matching 2D features between two or more
images and from this, estimating local geometry and motion.
This process is in general less constrained and more prone to
accumulating pose and/or scale drift. However, an image can
in many cases provide more unique information as it will pick
up intensity information from a scene as well as the projection
of geometries.

The main challenges of delivering well functioning locali-
sation in the case of tunnels are connected to the particular
conditions we find in such environments:

• Geometry is not locally unique, hence traditional LiDAR
based SLAM solutions will not be able to asses ego-
motion uniquely in any straight part of a tunnel.

• The environment contains repeated structures such as
signs, lamps and road markings. This will make global
place recognition vulnerable to proposing erroneous data
association and loop closures.

• In trafficked tunnels, a large part of the environment can
consist of dynamic objects such as vehicles or cyclists.
If the SLAM system bases its estimated ego-motion on
these objects instead of the static environment, errors will
occur and accumulate.

In the particular case of tunnel inspection, Filip et al. [5]
tested several state-of-the-art LiDAR-based SLAM solutions
and found positional root mean square error (RMSE) for all
methods to be several meters on a 40 m trajectory. This will
for the inspection use-cases be too large an error.
Combining vision and LiDAR within a SLAM system is
not a first; open source systems such as [14] and [18] use
LiDAR-assisted visual odometry as an initialisation to a
LiDAR SLAM method, others such as [4] fuse LiDAR- and
camera-based pose estimates and geometries in a joint bundle
adjustment. But for the tunnel case, both these approaches
have a similar problem, as they leave the scan matcher to
align an incoming scan with a previous scan, or a map,
without sufficiently constraining the motion along the length
of the tunnel. Even when scan matching is initialised with
a pose that reflects the agent’s actual motion, the matching
algorithm will tend to “pull” the estimated velocity towards
zero, as this creates the best overlap between scans. Hence
both of these approaches expose the solution to the same
vulnerabilities as a LiDAR-only solution, and the motion
estimate will not be sufficiently constrained.
To handle these challenges, the proposed method utilises
camera, LiDAR, IMU, and optionally wheel optometry.
With the combination of these data streams we achieve the
robustness of a LiDAR based system, whilst constraining the
problem also along the degenerate axis of the environment
by jointly optimising over structural features, image features
projected into 3D, as well as an optional motion constraint
from the wheel odometry.
In the Horizon 2020 EU project PILOTING [1], three
pilots for autonomous infrastructure inspection are being
developed. This paper describes our contribution to one
of the pilots, namely an autonomous vehicle produced by

Fig. 2. Developed localisation system

Robotnik Automation S.L., aka the “cart”, intended to perform
inspection in road and drainage tunnels. Localisation is used
for the navigation of the autonomous vehicle, for the tagging
inspection data with position, and for the re-localisation of
points of interest. An image of the vehicle at two of the test
sites can be seen in Fig. 1.

II. METHOD

We divide the description of our approach into three sec-
tions: development, calibration, and synchronisation of the
sensor suite (II-A); our novel SLAM algorithm (II-B); and
our implementation onboard an autonomous robot for high-
precision and robust inspection missions (II-C).

A. Hardware

The navigation payload shown on Fig. 2 consists of an Intel
NUC computer with an i7-8665U CPU and three sensors –
an Ouster OS0-128 LiDAR; a forward-facing FLIR BFS-U3-
17S7M-C camera with Kowa LM6HC 1/1.8 lens and IR-cut
filter; and a XSENS MTI-630 IMU. The navigation payload
has no internal light source so the camera relies on ambient
light or the light from the vehicle. Data are time synchronised
with use of the precision time protocol (PTP) defined in IEEE
1588-2019 [9], which can achieve synchronisation at the sub-
microsecond level. Since only the LiDAR and onboard com-
puter supports hardware PTP, this precision is achieved only
between these two sensors; and camera-IMU synchronisation
is affected by transmission delays in the order of milliseconds.

Our algorithm requires that data from all three sensors must
be precisely time-synchronised. Camera frame acquisition is
governed by the LiDAR’s trigger signal that is set by the beam
at 0 degrees, hence the cameras and the LiDAR’s time stamp
are set identical. The IMU captures at a much higher frequency
and timestamps are assigned as an offset to the LiDAR scan,
based on time of arrival to the NUC.

B. SLAM solution

The SLAM solution is based on LOAM – LiDAR Odometry
and Mapping in real-time [17]. This combines an odometry
thread that computes the motion of the LiDAR between sweeps
with a mapping thread that incrementally builds a map from
the point cloud and computes the pose of the LiDAR in
the map. Initially, we experimented using LIO-SAM [13], a
LiDAR-inertial odometry solution to provide state estimates.
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This solution did at times provide a high degree of accuracy,
but we also experienced that the solution lacked robustness,
and at times state estimates would fail to reflect the cart’s
motion, or spiral into the sunset due to faulty IMU integration.
As robustness is a priority, we transitioned to a LiDAR-only
SLAM solution and expanded on this by adding additional
constraints from a camera and optionally from the vehicle’s
wheel odometry to the state estimates. The core of the solution
is the novel iterative scan matching jointly estimating pose
over all available constraints. The LiDAR-based estimate of
the cart’s pose in a tunnel is well constrained in five out of
six degrees of freedom, namely the rotational components and
the translation in the vertical and lateral dimensions of the
tunnel. However, the translation along the longitudinal axis of
the tunnel will drift as the geometry of each scan along this
axis will be more or less identical. To fix this degeneracy in
state estimation a camera is used to add non-structural features
that constrain the optimisation also along the degenerate axis.
Two types of visual features are extracted:

• ORB features [12] are extracted per scan and added as ad-
ditional constraints in both the scan matching performed
in the odometry thread and in the mapping thread. These
features are considered only locally unique and are thus
only used to improve motion estimates locally. These
might be extracted from lighting fixtures, road markings,
signs, and markings on the tunnel wall.

• Augmented Reality University of Cordoba (ArUco) fea-
tures [7] and [6] are extracted whenever they are available
and are added to the scan matching in the mapping thread.
As most visual features are repeated several times through
a tunnel, ArUco markers are the only features considered
globally unique and can thus be used to correct for drift
in the motion estimate when the robot is visiting a place
it has seen before i.e. when localising in an existing map.
Thus the ArUco markers are mainly of utility when we
are performing localisation in a previously mapped asset.

As we need the 3D coordinates of the visual features to use
them as constraints in scan matching, we project the LiDAR
cloud into the image, and find the depth of each visual feature
from a depth based clustering of the nearest neighbours in the
transformed LiDAR points. An illustration of the projected
visual features can be seen in Fig. 3.

Wheel odometry has also been added as an optional input to
the algorithm. Initially, this was used as a correction if a degen-
eracy was detected on the translation part of the pose estimate.
The degeneracy detection proposed in [16] was performed by
analysing the covariance matrix of the state estimate in the
mapping thread, if a degeneracy was detected the estimates
along the degenerate axis were replaced by those of the wheel
odometry. In the current version, the wheel odometry from the
cart can instead be added directly as an optional constraint
in the scan matching performed in the mapping thread. The
wheel odometry can be considered as a redundancy in the
system and will contribute to constraining the translation along
the travelling distance of the tunnel, a useful constraint when

Fig. 3. Left: top down view of mapped tunnel. Right: Cart pose (red arrow),
surface features (pink dots), ORB features (red cubes) and ArUco features
(blue cubes) projected into the point cloud

operating in heavily trafficked environments such as a road
tunnel.
In the following, a brief overview of the full expression to
be minimised, as well as the per-constraint cost terms. For all
optimisation the Ceres Solver [2] is used.

0Tt = argmin
T

(rtp + rtv + rtw); (1a)

rtp =

N∑
n=1

∥(0T̃tp
s
n − pmn ) · nm

n ∥2 (1b)

rtv =
M∑

m=1

wv∥0T̃tv
s
n − vmn ∥2 (1c)

rtw = ww∥0tt − 0Tt−1
t−1t̂t∥2 (1d)

The full cost function is given by (1a), here 0Tt is the current
estimate of the global pose at time t and 0T̃t is the estimate
of this pose at the previous iteration of the scanmatcher. The
structural feature constraint is given by the point to plane
residual term (1b), where psi ∈ Ps is a structural feature from
the current scan, pmi ∈ Pm is the associated point in the
map and nm

i is the corresponding point normal. For structural
features, correspondence search is done as in most ICP-based
scan matchers, with a nearest neighbour search per iteration.
For the projected visual feature points on the other hand,
correspondences are found either directly by matching ArUco
tag ID, or in the case of an ORB feature through an initial
feature matching followed by a Random Sample Consensus
(RANSAC) outlier rejection scheme, aligning the set of current
3D visual features with visual features from a fixed lag window
in the map coordinate frame. The visual features residual term
is given in (1c), here vsi is the ith visual feature projected
into the incoming scan, vmi is the corresponding feature in the
map frame, and wv is a weighting term. Finally the wheel
odometry residual, which only constrain the translational part
of the motion estimate, 0tt, is given in (1d), where the relative
translation measured by wheel odometry since last scan t−1t̂t
is transformed to the previous scan’s frame by 0Tt−1 .
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A graphical overview of the SLAM method can be seen in
Fig. 4. The LiDAR cloud is dewarped by integrating up the
IMU’s gyro since the last scan and thus finding the robot’s
rotation during the scan period. This compensates for the
changes in the robot’s orientation during the acquisition of the
LiDAR scan. After this, surface features are extracted from the
LiDAR scan. In parallel, ArUco features and ORB features are
extracted from the current image. These features are projected
into 3D by sampling the LiDAR cloud for depths. Following
this, scan-to-scan matching is performed in the odometry
thread, matching surface features and ORB features from the
previous and the current scan to estimate the relative motion
between scans. Motion estimates from the odometry thread as
well as surface, ORB and ArUco features are passed on to
the mapping thread. Here, scan-to-map matching is performed
to align the current LiDAR data to the map. After scan-to-
map matching is successful, surface points and ArUco corner
points are added to the map.

C. Map creation

The intended use case for the system is to make repeatable
observations of faults in a tunnel over time. A way to make
localisation as repeatable as possible is to create a map of an
asset once, and then use this map for all successive missions.
In this way all observations will be in a common reference
frame and we will be able to limit the positional drift to
a minimum. When creating this map, one wants it to carry
sufficient information to correct for drift, contain as little noise
as possible, and be as accurate as possible. These three aspects
are discussed in the following.
Environments such as tunnels can be very self-similar for both
LiDAR and camera sensors, thus attaching ArUco markers
on the tunnel wall at approximately 20 meter intervals gives
explicit landmarks prior to mapping. These will be registered
by the SLAM method to the map, which will thus consist of
a dense point-cloud representing the geometry of the tunnel,
in addition to a set of points per observed tag with a unique
identifier.
Another challenge when mapping a new site, is that dynamic
objects, such as cars, will be introduced as noise in the map.
When the system then reuses the map, these dynamic elements
can align with current dynamic elements, which introduce
errors in the estimated motion. To avoid this issue a post-
processing step is applied to remove such dynamic features
stored in the map. Thus for the cases where the system
operates in very dynamic environments, such as a highway
tunnel, the Removert algorithm [10] is used to clean the map,
removing most dynamic features.
Even though we found our system to provide accurate and ro-
bust pose estimates, we found that localisation accuracy could
be further improved by utilising a total station to constrain
the cart’s position during offline map building. This requires
some setup, and can only be done offline both because the
total station lack long range communications with the cart and
due to that coordinate frames and clocks between the cart and
the total station needs aligning. As the total station provides

Fig. 4. An overview of the dataflow in the SLAM system

accurate positioning but no orientation we treat this additional
constraint similar to the wheel odometry constraint 1d, but
on the carts absolute position. This workflow requires a larger
setup, but allow for a theoretical sub-centimetre accuracy when
building a map of a new site. It is worth noting that even
though the total station is a valuable constraint for SLAM, it
is not suitable for deployment on long range inspections due
to the line of sight requirement.

III. DATA

We have recorded datasets with the system mounted on an
inspection vehicle in a 175 m long former railway tunnel out-
side the city of Coripe, Spain. Accompanying these recordings
we have position measurements, as reported by a Leica robotic
total station tracking a prism mounted on the cart. The total
station reports position with sub-centimetre precision at 10 Hz,
and can thus be considered as a ground truth with which to
evaluate the system.

We have in total three data-sets, the first set (A) is a round-
trip in the tunnel at inspection speed, about 1 m/s, with only
the tunnel lights used as illumination. The vehicle first drives
forwards through the tunnel and then reverses back to the
starting point. The second data-set (B) is recorded under the
same conditions but with a speed of about 4m/s. And the third
data-set (C) contains a single forward pass with a similar speed
as (B) and with the vehicle’s headlights switched on.

As we did not have the option to synchronise the clocks and
align the frames between the total station and the cart during
the field tests, this was done after the fact by cross-correlating
the trajectories and then aligning frames by Umeyama’s
method [15].

IV. RESULTS

We have evaluated two configurations of our proposed
approach:
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1) Only LiDAR, camera, and IMU data are available during
map building and localisation – i.e. here we are perform-
ing SLAM in an unknown environment

2) Identical sensor setup to the first configuration, except
here we are localising against a pre-built high accuracy
map created by using the total station as an additional
constraint as described is section II-C.

In both configurations, the position data from the total station
is used to provide ground truth to evaluate the system. We have
also benchmarked our approach against two existing SLAM
systems, the LiDAR inertial SLAM system named LIO-SAM
[13] and a LiDAR visual inertial SLAM system, LVI-SAM
[14]. We have made a reasonable attempt to tune the two
systems to achieve good performance, but further tuning could
likely be performed to improve results.

As an evaluation framework we have used TUMs evo pack-
age for comparison of trajectory output of SLAM algorithms
[8]. For the reported RMSE we have aligned the estimated
trajectory with the ground truth. The reported RMSE for the
three data-sets can be found in Table I.

TABLE I
FULL TRAJECTORY RMSE FOR THREE TUNNEL DATASETS

Method RMSE (m)
A B C

LIO-SAM 52.8 51.9 52.5
LVI-SAM 44.5 28.8 45.2

Ours 0.605 0.314 0.400
Ours (pre-built map) 0.086 0.156 0.112
*Smallest error in bold

As a sanity check, we first evaluated our approach against
the two comparison state-of-the-art methods, LIO-SAM and
LVI-SAM, in a well-structured environment. Here we expected
all methods to give qualitatively similar results, and this is
confirmed by the trajectories shown in Figure 5.

We then tested all methods on the three tunnel datasets
described in section III. Table I shows that both LIO-SAM
and LVI-SAM produced trajectories with very large RMSEs
for all three test datasets. Position error for these approaches
evolves systematically in all three tests and a typical trace is
shown in Figure 6. In fact for all our test cases, LIO-SAM and
LVI-SAM underestimated the motion of the vehicle when in
the tunnel, causing position error to grow in proportion to the
vehicle’s distance from the start point. This is due to the design
of the scan matching step in these algorithms, which leads
to an underestimation of observer motion in cases where the
lidar-based motion estimate is poorly constrained, as discussed
in section I.

Our proposed approach, on the other hand, achieves an
average RMSE from all three tunnel tests of 0.44 m when
running live without a pre-built map, and 0.12 m when utilising
a map pre-built with the aid of a total station. Furthermore,
Figure 6 shows that our approach is consistent with the ground
truth at all times and clearly outperforms the comparison state-
of-the-art methods. These results support our hypothesis that

‘anchoring’ the lidar-based scan matching step with visual
feature correspondences will sufficiently constrain the problem
of self-localisation even in environments that are structurally
self-similar, such as tunnels. The significant improvement
in accuracy of our proposed approach over other LiDAR-
visual-inertial approaches such as LVI-SAM, demonstrates
the importance of jointly optimising lidar and visual feature
correspondences rather than simply initialising lidar-based
scan matching with a pose estimate.

In addition to the above tests we have validated the accu-
racy, robustness, and real-time capability of our approach by
integrating our localisation module with the target inspection
vehicle (Figure 1) and performing a series of fully autonomous
inspection missions at several tunnel sites in Spain and Greece.
During these missions, our localisation module provided real-
time (10 Hz) pose data, which was used on board the vehicle
for path planning and control.

V. CONCLUSIONS

In this paper we have presented a sensor suite and SLAM
solution for localising within self similar environments such as
tunnels. The solution is derived from LOAM, but as observed
for multiple LiDAR-based SLAM solutions the tunnel environ-
ment does not have enough structural features to accurately
estimate the ego-motion. We have therefore built a sensor
payload with additional sensors data from camera and IMU
to address this limitation. Experimental evaluation in a tunnel
shows that this results in good accuracy, which is important
for the use cases such as tunnel inspection and maintenance.
The algorithms will be further validated in additional tunnels
with traffic to ensure that the dynamic objects are properly
filtered.

Fig. 5. Comparison of estimated trajectories from a dataset recorded in an
urban environment containing lots of structural features. No ground truth
available, but from visual inspection all methods produce reasonable results
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Fig. 6. Comparison of the absolute position error of the estimated trajectories
based on dataset A – a pass back and forth through the 175m long tunnel at
inspection speed.
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