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Abstract—Ultrasound (US) imaging is a paramount
modality in many image-guided surgeries and per-
cutaneous interventions, thanks to its high portabil-
ity, temporal resolution, and cost-efficiency. However,
due to its imaging principles, the US is often noisy
and difficult to interpret. Appropriate image process-
ing can greatly enhance the applicability of the imag-
ing modality in clinical practice. Compared with the
classic iterative optimization and machine learning (ML)
approach, deep learning (DL) algorithms have shown
great performance in terms of accuracy and efficiency
for US processing. In this work, we conduct a com-
prehensive review on deep-learning algorithms in the
applications of US-guided interventions, summarize the
current trends, and suggest future directions on the
topic.

Index Terms— Deep learning (DL), intervention, percu-
taneous, surgical guidance, ultrasound (US).

I. INTRODUCTION

ULTRASOUND (US) is a non-ionizing imaging modal-
ity that is commonly employed in the clinic, offering

2-D, 3-D, and 4-D data. Although US transducers are often
operated in a free-hand manner by a physician or technician,
to ensure image quality, semi-automatic or fully automatic
image acquisitions are performed with the assistance of robotic
arms in some applications [1]. While avoiding radiation risks,
US scanners are portable and cost-effective as opposed to
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other staple imaging techniques, such as magnetic resonance
imaging (MRI) and computed tomography (CT). In addition,
US offers real-time anatomical and physiological information
with great flexibility in applications, such as endoscopic,
laparoscopic, transrectal, and transvaginal imaging. In addition
to the most commonly seen B-mode contrast for structural
imaging, US also provides additional contrasts, including
Doppler US for flow imaging and US elastography com-
puted from raw radio frequency (RF) scans to visualize the
biophysical properties of tissues. These advantages of US
imaging make it a favorable modality for image-guided inter-
ventions, where it is used for instrument and biological tissue
(e.g., lesions) detection and tracking [2], [3].

Despite multiple benefits, US still faces several drawbacks
primarily as a result of its inherent imaging principle. First,
US scans are often noisy and prone to imaging artifacts
such as reverberations, refraction, and shadowing, making
recognition of anatomy and surgical tools difficult at times.
Second, US usually has limited imaging depth, which can
restrict the field of view for inspecting the pathological region.
Finally, unlike modalities such as MRI and CT that have
standardized planes, the unique image contrast and arbitrary
and unfamiliar imaging planes make it challenging to interpret
US images. So far, a great number of image processing
techniques were proposed to tackle these aforementioned
drawbacks, including denoising [4], structure or instrument
detection [5], [6], segmentation [7], and image registration
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Highlights
• We conduct a comprehensive review on deep-learning algorithms in the applications of ultrasound-guided inter-

ventions, summarize the current trends, and suggest future directions.

• Near 74% of reviewed methods perform segmentation, detection, and localization of medical instruments and target
tissues, wherein U-Net and its variants were employed more than other models.

• With the ability to further reduce the demand for data annotation, unsupervised learning may hold an important role
for future developments in interventional applications.

[8], [9], [10], [11]. Traditionally, these techniques heavily
rely on time-consuming iterative optimization methods or
suboptimal hand-crafted features for classic machine learning
(ML) algorithms. In comparison to conventional techniques,
deep learning (DL)-based methods have shown excellent
results in many US processing tasks by leveraging the comput-
ing power of modern graphics processing units (GPUs) [12],
[13]. In addition, DL-based methods are faster at inference
time, especially for large images [14]. With high requirement
in accuracy, robustness, and efficiency, DL is well suited to
facilitate US-guided interventions. To facilitate readers from
diverse backgrounds, we have included a concise introduction
to DL in Section S1 of the Supplementary Material.

To date, a number of literature reviews have been con-
ducted on the topic of US-guided interventions. However,
most of these previous reviews focus on the survey of clinical
applicability of intra-operative US [15], [16], [17] or related
acquisition techniques [18], [19], [20], [21]. With the great
promise of DL techniques to enhance the value of intra-
operative US, it is beneficial to provide a comprehensive
review of the advancement of DL techniques in therapeutic
interventional US. Based on the survey, we also identify the
unmet clinical needs and suggest future research directions in
the domain.

II. LITERATURE SELECTION

We searched the literature using the Google Scholar
database. The search was performed for publications from
January 2015 to December 2022, the period that DL-based
techniques gain popularity in medical imaging. The search
criteria “US AND (Guided OR Surgery OR Intraoperative) OR
(Convolution OR DL)” was utilized. The articles reviewed are
on the technical development and validation of the algorithms,
and review articles, case reports, and clinical reports are
excluded from the search. The selected papers were care-
fully screened to ensure they were relevant to US-guided
surgery and percutaneous interventions. US-guided diagnosis
and biopsies were excluded from our search to focus our
review on the therapeutic application of US imaging. The
survey resulted in 58 papers. A breakdown of reviewed papers’
numbers for each year is shown in Fig. 1. A breakdown
of the reviewed DL methods in this study is illustrated in
Fig. 2. To help the readers with their technical developments,
we conducted a brief introduction to the common DL models
in this survey in Section S2, a summary of the public datasets
used in the reviewed papers in Section S3, and a list of

Fig. 1. Breakdown of reviewed papers’ numbers for each year is
presented. In total, 58 papers were studied. We did not find relevant
publications in 2015 and 2016. The number of DL-based approaches
in US-guided therapeutic interventions has grown from 2016 until 2020.
The drop in publications in the year 2021 is likely due to the COVID-19
pandemic, which may have substantially impacted new data acquisition
and research progress in the domain.

Fig. 2. Methods were classified into three categories: 1) segmentation,
detection, and localization; 2) image registration; and 3) other methods.
Since U-Net and its variants were employed dominantly more than the
other models, we divide the utilized models into: 1) U-Net and vari-
ants and 2) other architectures. Most methods perform segmentation,
detection, and localization of medical instruments and target tissues.
These methods can be further broken down into tissue and instrument
segmentation, detection, and localization. The other methods include
the classification of tissues, motion detection, and so on.

reviewed papers’ public codes with the web links in Section S4
of the Supplementary Material.

III. CLINICAL APPLICATIONS

The main clinical applications of the reviewed papers
are US-guided cardiac catheterization, brachytherapy, regional
anesthesia, liver ablation, and brain glioma resection. While
most papers focus on one application, the others validated
the proposed techniques in multiple. Since typically different
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TABLE I
SUMMARY OF DL-BASED METHODS FOR HEART CATHETERIZATION IS PRESENTED. THE METHODS ARE MOSTLY FOCUSED ON CATHETER

SEGMENTATION. THE EXAMINED DATASETS ARE ALL PRIVATE

surgical procedures have different needs, the review of the
developed techniques is conducted with respect to their clinical
applications.

A. US-Guided Cardiac Catheterization
Catheterization is common in various cardiac interventions,

such as angioplasty and heart valve surgery. The catheter has
a narrow tubular shape inserted into the patient’s artery. The
intraoperative X-ray is commonly acquired to localize the
catheter. X-ray imaging has risks for interventionalists and
patients due to its ionizing radiation. Given this fact, a safer
choice, US-guided catheterization, is gaining popularity over
intraoperative X-rays. However, locating the catheter in US
images, especially near the heart chamber, is challenging,
and in the clinic, fast uptake is required. Robust image
processing algorithms can automatically detect and localize
the catheter in US images. Furthermore, they can also per-
form voxel/pixel-wise segmentation of the catheter with sub-
millimeter precision. Yang et al. [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], and [32] in several studies, showed
that DL approaches could help the localization and detection
of the catheter in US images. They proposed methods to
segment pixels/voxels into catheter and non-catheter classes.
The methods were validated in several applications, such as
transcatheter aortic valve implantation (TAVI). The methods
are summarized in Table I, and they are primarily validated
using private 3-D ex vivo animal and in vivo human datasets.
In terms of instrument segmentation, these methods achieved
Dice scores up to 70%.

B. US-Guided Brachytherapy
Brachytherapy is a procedure for treating certain kinds of

cancers. In this procedure, small radioactive seeds are placed
into the target region of the patient’s body using needles or a
catheter. The radiation dose of seeds in brachytherapy should

be well-localized to the pathological region and spares the
adjacent healthy tissues. Therefore, intra-operative guidance,
especially with US has gained the attention of radiation
therapists. For prostate brachytherapy, transrectal US (TRUS)
is commonly used to guide multiple medical instruments
to the targeted region for the correct placement of seeds.
Multi-needle localization, detection, and segmentation in US
images can help accurate insertion of radioactive seeds and
potentially improve the treatment efficacy and safety. Ideally,
automatic algorithms that perform these tasks should operate
in real-time and be robust against image noise and signal dis-
tortion in real clinical applications. Zhang et al. [39] and [40],
in two different studies, proposed multi-needle localization
methods using an attention U-Net [34] and a region-based
convolutional neural network (R-CNN). They validated their
method on 3-D TRUS of patients who underwent high-dose-
rate (HDR) brachytherapy. A CNN model was developed
by Andersén et al. [41] to digitize needles in 3-D TRUS
of prostate HDR brachytherapy patients. Wang et al. [42]
proposed a U-Net and an additional VGG16-based deep
network to segment brachytherapy needles in 3-D volumes
reconstructed from 2-D TRUS slices. Liu et al. [43] trained
and tested a U-Net model to localize catheter in 3-D recon-
structed TRUS images taken during several prostate HDR
brachytherapies.

Intraoperative prostate segmentation can facilitate the treat-
ment target identification in consideration of the patient
motion, thus improving the efficiency, safety, and thera-
peutic outcomes. Girum et al. [44] and [45] proposed DL
approaches using a U-Net and a generative CNN to seg-
ment the prostate in 3-D reconstructed volumes from 2-D
TRUS slices. Orlando et al. [46] proposed a DL method using
a modified U-Net for prostate segmentation on clinically
diverse 3-D TRUS images. Later, they developed two DL
methods using a modified U-Net and a U-Net++ [47], [48],
which were trained on 2-D TRUS slices [49]. Nevertheless,
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the methods were tested on 3-D TRUS volumetric images.
Lei et al. [50] proposed DS-V-Net which is a prostate seg-
mentation method using multidirectional V-Net [51]. The
popular DS-V-Net achieved the Dice score (%) of 91.9 ±

2.8 in clinical data. A prostate target volume delineation
method using residual neural networks for low-dose-rate
brachytherapy was developed by Anas et al. [52]. The method
was validated on 2-D TRUS slices using manual segmen-
tation as ground truths. Karimi et al. [53] and [54] pro-
posed a novel CNN architecture for prostate segmentation
in 2-D TRUS images. He et al. et al. [55] proposed a deep-
attentional GAN-based method to improve the resolution of
3-D TRUS images. Golshan et al. [56] proposed a modified
LeNet architecture [57] for radioactive seeds segmentation in
3-D TRUS images. This will help confirm the location of
implantation and facilitate the procedure that removes these
seeds after the treatment period.

Pre-operative MRIs are often acquired for surgical planning
in prostate brachytherapy. MRIs generally have sharper images
and show better details of the target area than US. Image reg-
istration of intraoperative TRUS with the MRI can help guide
the interpretation of the US scans. Chen et al. [58] proposed a
DL approach using V-Net and U-Net architectures to segment
and register the prostate in MR and TRUS. Zeng et al. [59]
performed 3-D non-rigid registration of MR-TRUS using
convolutional and recurrent neural networks.

Brachytherapy is not confined to prostate cancer treatment.
Rodgers et al. [60] proposed a DL-based method for needle
localization in 3-D transvaginal US images of interstitial
gynecologic HDR brachytherapy. Sun et al. [61] generated
pseudo-CT images from intraoperative US images of cervical
cancer patients for brachytherapy. The DL methods in this
section are summarized in Table II. The Dice score, followed
by the shaft and needle tip localization errors, are the key
metrics for quantitative performance assessment. In general,
the algorithms achieved sub-millimeter accuracy in shaft and
needle tip localization.

C. US-Guided Regional Anesthesia

Needle-based regional anesthesia is conventionally used in
operating rooms. It usually requires an experienced expert to
deliver the anesthetic injection. US-guided regional anesthesia
can help the anesthesiologist with the procedure. Detection
and localization of the injection needle shaft and tip can be
challenging. In 2-D US scans, needle tips are occasionally out-
of-plane or difficult to spot. Processing raw US RF data or
3-D reconstructed scans is helpful for accurate and reliable
needle identification. DL approaches can help with needle
localization in US images [67]. Mwikirize et al. [68], [69],
and [70] developed CNNs in three studies to localize the
needle tip in real-time 2-D US images. Gao et al. [71] pro-
posed a needle segmentation method using a U-Net architec-
ture. Pourtaherian et al. [72] proposed a needle tip detection
method using orthogonal-plane CNNs. They validated their
method on ex vivo 3-D US images of chicken breast. Later,
they developed a method for the localization of needle tips
with sub-millimeter accuracy using dilated CNNs [73]. Finally,
Maneas et al. [80] modified an established residual neural

network to improve the axial and lateral resolution of tracked
US images for needle localization. They trained their model
on synthetic data, and the model was validated on a fetal sheep
heart in vivo data.

Nerve segmentation in US scans for US-guided regional
anesthesia can facilitate the practitioners with the procedure.
Automatic non-learning methods using Kalman filters could
rapidly perform nerve and artery segmentations [74]. Gener-
ally, these methods are computationally expensive and require
intensive hyperparameter tuning but recent works proposed
DL-based techniques to address the drawbacks of classic
Kalman filtering [75], [76]. Smistad et al. [77] proposed a
technique using U-Net for musculocutaneous, median, ulnar,
and radial nerve segmentation during axillary nerve block
procedures. Baby and Jereesh [78] developed a U-Net model
to delineate the brachial plexus in 2-D US images. A con-
ditioned U-Net model (ww.w.kaggle.com/harolddiaz1018/unet-
cond) was trained by Díaz-Vargas et al. [79] to segment ulnar,
median, femoral, and sciatic nerves in 2-D US slices. The
DL methods in this section are summarized in Table III. The
shaft and needle tip localization errors are the key metrics for
quantitative performance assessment.

D. US-Guided Liver Ablation

Image-guided microwave ablation (MWA) is a promising
therapeutic percutaneous intervention that provides a high
intralesional temperature. Real-time US imaging techniques
can visualize the target for accurate lesion MWA and com-
plete tumor eradication. However, the ablation region mar-
gin is not easily detectable in US images. While ablation
region delineation is feasible using techniques such as US
elastography [85], we focus our review on DL techniques.
Unsupervised classification of target region tissues by lever-
aging an ML/DL-based method is a candidate approach.
Zhang et al. [86] utilized the raw US RF data and trained a
CNN network to delineate the ablation region in ex-vivo data
of the porcine liver. Wang et al. [87] proposed a CNN-based
method for ablation region detection and monitoring MWA.
They performed image registration of US RF data and optical
images to boost the accuracy of their method in terms of
receiver operating characteristic curves. Kondo et al. [88]
proposed an out-of-plane motion detection system using CNNs
to track liver tumor movement in ablation therapies.

Ablation needle detection and visualization can help inter-
ventionalists during the MWA procedure. Arif et al. [89]
proposed a real-time bi-planar needle detection and visualiza-
tion for liver 3-D US images. Their method utilizes a U-Net
architecture and specific post-processing to perform the needle
detection. They execute the registration of images in different
time frames acquired from liver phantom and ten patients.
The DL methods in this section are summarized in Table IV.
Dice score and mean absolute error are the key metrics for
quantitative performance assessment.

E. US-Guided Brain Glioma Resection

US scanners’ portability and cost-effectiveness of US imag-
ing contributed to the growing popularity of intraoperative US
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TABLE II
SUMMARY OF DL-BASED METHODS FOR US-GUIDED BRACHYTHERAPY IS PRESENTED. THE METHODS ARE MOSTLY FOCUSED

ON TARGET AND INSTRUMENT SEGMENTATION. PUBLIC DATASETS ARE MARKED WITH “*”

acquisition. Spatially tracked US probes can be calibrated and
synced with a neuronavigation system in operating rooms to
allow the overlay of real-time US scans with pre-operative
surgical plans. Practitioners may execute image registration
between preoperative images and intraoperative US to update
the surgical plan. For instance, in brain glioma surgery, intra-
operative US images can be registered to the preoperative
MRIs (or intraoperative US images at different time points).
Because after surgeons open the dura, the brain tissue can
deform up to 18 mm due to several causes, including gravity,

cerebrospinal fluid loss, drug administration, retraction, resec-
tion, and so on [90], [92]. This phenomenon is commonly
called brain shift. Brain shift can make the preoperative
planning invalid. Therefore, fast registration of preoperative
and intraoperative data is crucial. Public datasets, such as the
brain images of tumors for evaluation database (BITE) [90]
and retrospective evaluation of cerebral tumors (RESECT) [92]
databases have greatly facilitated the development of methods
for brain-shift correction, including the DL approaches. In the
CuRIOUS2018 Challenge held in conjunction with MICCAI
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TABLE III
SUMMARY OF DL-BASED METHODS FOR US-GUIDED REGIONAL ANESTHESIA IS PRESENTED. ANESTHESIA NEEDLE TIP LOCALIZATION

IS THE FOCUS OF THE MAJORITY OF WORKS. PUBLIC DATASETS ARE MARKED WITH “*”

TABLE IV
SUMMARY OF DL-BASED METHODS FOR US-GUIDED LIVER ABLATION IS PRESENTED. THE EXAMINED DATASETS ARE ALL PRIVATE

2018, the participating teams were asked to register preopera-
tive MRI to intraoperative US images of the RESECT dataset.
The challenge results and participating teams’ methods are
summarized and compared in [91] with most methods using
traditional approaches. Canilini et al. [93] proposed a DL
method using a CNN to segment sulci and falx cerebri in US
images. Then, they used the segmentation masks to register
intraoperative, preoperative, and postoperative US images. The
method was tested on BITE and RESECT datasets. Given the
fact that these datasets provide manual homologous landmarks,
Canilini et al. [94] calculated mean target registration error
(mTRE) for the quantitative validation of their method. Later,
they trained a U-Net architecture to generate segmentation
masks of resection cavities. They registered the US volumes
using these masks.

Zeineldin et al. [95], [96], and [97] proposed DL-based
methods with U-Net architectures in different studies to reg-
ister preoperative MRI to intraoperative US images. They
employed MSE Loss for their model training in [95]. Later,
they used MSE loss and NCC loss in a comparison study
in [96] and NCC loss in [97]. Pirhadi et al. [98] employed
a Siamese neural network [99] to perform landmark-based

registration of pre-resection intraoperative US to post-resection
intraoperative US scans.

Finding the precise boundaries of the tumor and its segmen-
tation can assist surgeons to optimize the resection bound-
ary. Zeineldin et al. [100] employed U-Net and TransUNet
networks [101] to segment brain tumors in US images.
Carton et al. [102] proposed a DL-based method with a 3-D
U-Net architecture to segment the brain tumors of RESECT
dataset intraoperative US images. In addition to lesion seg-
mentation, classification of the lesion into different glioma
grades or solitary brain metastases can be substantial because
the surgical procedures vary for each case. Cepeda et al. [103]
proposed a DL approach to analyze the candidate lesions in
patients who underwent craniotomy. They used B-mode and
strain elastography images to correctly classify the lesions as
glioblastoma or solitary brain metastases. The DL methods in
this section are summarized in Table V.

F. Other Clinical Applications
Sections III-E reviewed the DL approaches in widely stud-

ied clinical applications. This section reviews the clinical
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TABLE V
SUMMARY OF DL-BASED METHODS FOR US-GUIDED BRAIN GLIOMA RESECTION IS PRESENTED. MOST METHODS PERFORM IMAGE

REGISTRATION FOR BRAIN SHIFT CORRECTION IN BITE [90] AND RESECT [92] DATASETS. PUBLIC DATASETS ARE MARKED WITH “*”

applications with a few DL-based approaches. Lee et al. [105]
proposed a DL method to classify liver fibrosis. They uti-
lized the data for patients who underwent liver resection
surgery. Gillies et al. [106] employed a U-Net architecture
with a Dice loss to detect general interventional tools in
2-D US images. They utilized the datasets of prostate and
interstitial gynecologic brachytherapy, liver, and kidney abla-
tions. Wang et al. [107] proposed a deep attentive method
for prostate segmentation. Their notable approach achieved
the Dice score (%) of 90.0 ± 3.0 in the clinical target
volume. Hu et al. [108] developed an adversarial deforma-
tion regularization method for preoperative and procedural
TRUS image registration. However, the developed methods of
Wang et al. [107] and Hu et al. [108] have not been designed
for a focused application, and they can be used for prostate
brachytherapy or prostatectomy.

IV. DISCUSSION AND FUTURE DIRECTIONS

Based on the literature included in the review, DL tech-
niques have shown great promise to enhance the value of
intra-operative US in surgical interventions. In most of the
reviewed papers, the proposed DL methods were compared
with traditional methods, where they showed that their tech-
niques could significantly (p < 0.05) outperform the tradi-
tional ones in the execution time and the evaluation met-
rics. While segmentation, detection, and localization are the
main techniques under development, these also need to be
adapted to the application-specific needs and from the current
state-of-the art, we identified a few unmet clinical needs
that could be addressed by DL methods in the future.
In the literature on brachytherapy, most efforts in DL tech-

niques were dedicated to the prostate treatment, even though
US-guided brachytherapy was also practiced for lung can-
cer, breast cancer, anal cancer, and abdominal wall metas-
tases. Similarly, DL approaches in US-guided ablation are
primarily focused on the liver while kidney and prostate
ablation therapies still have the potentials for further techni-
cal development. In US-guided tumor resection procedures,
similar DL methods can be further adapted for lumpec-
tomy, prostatectomy, tongue cancer resection, laparotomy,
pancreatic cancer resection, and bladder cancer resection.
Finally, although, US was investigated as an intraoperative
imaging tool in orthopedic surgery procedures, and com-
plete system with extensive evaluation studies is still lack-
ing. Currently, most focus in this domain has been given
to developing accurate, robust, and fast bone segmentation
[112], [113]. We believe efforts could be directed to propose
and evaluate US bone registration approaches [114]. For some
domain applications, such as cardiac catheterization, we found
that the relevant works were mainly from a handful of labs.
This may be due to the availability of clinical resources
and collaboration, and it will be beneficial to have more
confirmation studies from other research groups in the future.
3-D US volume reconstruction is critical for interventional
guidance in many clinical applications, such as brain tumor
resection [90], [92]. Leblanc et al. [109] proposed a US
reconstruction technique for peripheral artery imaging. Luo
et al. [110] leveraged a self-supervised strategy to reconstruct
freehand 3-D US. Guo et al. [111] developed a learning model
utilizing self-attention to reconstruct 3-D US volumes with-
out tracking. However, most existing techniques use biopsy
and diagnostic data to develop the algorithms due to their
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availability, but they can still be well applied in surgical
applications.

Despite the excellent performance, DL techniques, including
those reviewed in this article still have several drawbacks.
First, most algorithms still require large well-annotated data
to achieve good performance. This issue can be mitigated by
adopting self-supervised and semi-supervised learning to learn
feature representations by exploiting unlabeled or partially
labeled data. Second, due to coarse and difficult-to-interpret
image features as a result of US’s imaging principle, accu-
rate anatomical segmentation is often challenging. DL-based
super-resolution and denoising techniques may help enhance
the clarity of image features to mitigate the issue. Third,
the trained networks often have limited adaptability to new
domains (e.g., images from different scanner types or setting).
Finally, most existing algorithms still lack transparency to
help verify the quality of the outcomes. Currently, the lack
of large-scale well annotated databases, especially the pub-
lic repositories poses a bottleneck in algorithm development
and fair performance benchmarking, and this also partially
contributed to the various under-explored clinical applications
as mentioned earlier, besides their application-specific chal-
lenges. In interventional applications, well-annotated data are
often more difficult to obtain, especially with US. Currently
to address the issue, weakly-supervised learning strategies in
the reviewed papers have achieved impressive performance
[27], [45], [59]. By leveraging categorical or coarse image
annotations. With the ability to further reduce the demand for
data annotation, unsupervised learning may hold an important
role in future developments in interventional applications, but
a more in-depth investigation is still required. In addition,
data augmentation, including simulated US, can help over-
come the scarcity of samples. However, the current tech-
niques often fail to provide realistic results. Compared with
MRI and CT scans, clear structural delineations in US is
more difficult due to the nature of the imaging principles,
and often co-registered biopsy, MRI, and CT data may be
required when it comes to confirmation of pathological tissue
segmentation. As direct contact is needed, for endoscopic
applications, image acquisition also demands elaborate setup
using surgical navigation systems or robotic assistance. These
further complicate the construction of relevant datasets besides
the privacy concerns commonly associated with medical data
sharing.

In current literature, convolutional neural networks,
especially different variants of U-Net architecture [83] have
dominated the reviewed methods. In many applications,
to overcome the limited data, CNNs previously trained with
other imaging modalties (e.g., natural images) were adapted to
the application domain with transfer learning [115]. However,
partially due to the lack of public data, general-purpose DL
algorithms that are more tolerant to scanner types and clinical
applications still face major challenges. A few initiatives in
MRI and CT DL registration and segmentation, such as the
Learn2Reg MICCAI challenge [116] and the medical seg-
mentation decathlon challenges [117] have attempted to help
development these types of algorithms, but there is still a lack
of similar endeavors in US. Accessibility to implementations

facilitates transferring various architectures to new problems.
As many learning-based approaches are highly data-dependent
and application-tailored, efforts in the reproducibility of the
published algorithms from the research community are still
required to ensure the value of the technology in real practice.
Several DL architectures are proposed in the reviewed litera-
ture. Optimal model selection can largely depend on various
factors, including the suitability of data types (e.g., static ver-
sus temporal), data dimensions (e.g., 2-D versus 3-D), types of
the target task (e.g., segmentation, registration, and so on), and
requirement of portability (i.e., running on a mobile device,
desktop computers, or cloud service). Besides decisions by
human experts, automated DL model search has also attracted
the attention of the research community [119]. However,
automatic search strategies are still not widely adopted. The
more recent vision transformers (ViT) have shown better
performance in learning long-range spatial dependencies than
CNNs, which require a more elaborate architecture design to
model the spatial context of the image [118]. Adoption of ViT
and its variants may further improve the accuracy of existing
and future DL methods for intra-operative US.

Interpretability and trustworthiness of DL algorithms are
crucial for the widespread adoption of the end products to
the clinic. Conventional algorithms often have a goal-driven
black-box design, and in this case, without careful verification,
faulty automatic outputs can cause harms to the patients.
The latest trend in explainable AI (XAI) intends to improve
algorithm transparency through techniques, including spatial
attention/activation visualization [120], [121], uncertainty esti-
mation, and multi-task learning [122]. For various surgical
applications, XAI methodologies can potentially further detect
and explain problematic results from DL-based iUS processing
that offer real-time feedback to improve the robustness and
reliability of the algorithms, and thus the safety and efficiency
of the surgery.

V. CONCLUSION

This review paper studied 58 DL-based approaches for
US-guided heart catheterization, brachytherapy, regional anes-
thesia, liver ablation, and glioma resection. Near 74% of
reviewed methods perform segmentation, detection, and local-
ization of medical instruments and target tissues. Possible
research directions for DL-based approaches were discussed
in Section IV.
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