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Preface  
 

 

The main goal of the ICEDAM (Ice forces on the dams) project carried out at Norut Narvik during the period 

2011-2014, is to further develop and improve models for the calculation of ice forces on dam structures and 

thus contribute to sustainable energy production in Norway. The main objective of the ICEDAM project is to 

ensure dam safety and to ensure that any enhancement measures are implemented where necessary. 

 

As the first phase of the project a literature survey to identify what has previously been made regarding the 

calculation of thermally-induced ice forces on structures, are completed and presented in this report. The 

literature study includes the current rules and guidelines for the calculation of ice load in both Norwegian and 

international norms and guidelines and description of existing analytical, semi-empirical methods for calculating 

thermally-induced ice forces. The presented literature study is intended to contribute as a basis for further work 

in the project. 
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1. Introduction 
 

The gravity dams are solid concrete structures that maintain their stability against design loads from the 

geometric shape and the mass and strength of the concrete. Generally, they are constructed on a straight axis, 

but may be slightly curved or angled to accommodate the specific site conditions. A dam must be designed with 

a high factor of safety to withstand the designed loads. 

 

Analysis of the stability and calculation of the stresses are generally conducted at the dam base and at selected 

planes within the structure. If plane of weakness exist in the foundation, they should also be analysed.  

 

The basic stability requirements for a gravity dam for all conditions of loading are that: 

 

• It must be safe against overturning at any horizontal plane within the structure, at the base, or at a 
plane below the base. 

• It must be safe against sliding on any horizontal or near-horizontal plane within the structure at the base 
or on any rock seam in the foundation.  

• The allowable unit stresses in the concrete or in the foundation material shall not be exceeded. 
 

Characteristic locations within the dam in which a stability criteria check should be considered include planes 

where there are dam section changes and high concentrated loads. Large galleries and openings within the 

structure and upstream and downstream slope transitions are specific areas for consideration. 

 

There are two types of loads act on the dam: stabilizing loads (weight of the dam and weight of water over dam 

section) and overturning loads (water pressure, uplift pressure, ice pressure). The silt pressure, wave pressure 

and earthquake pressure may also contribute to the overturning loads. Figure 1 presents the most common 

static loads used in the stability analysis and stress calculations. Various loads may act on the body of the dam 

but all these loads seldom act simultaneously on the dam. Therefore, design of the dam should be based on the 

most adverse combination of probable loading conditions.   

 

Figure 1. Some of the stabilizing loads and overturning loads acting of the buttressed dam: V1, V2 and B are 

weights of the dam section and the bridges; P is the headwater pressure; U is the uplift pressure and Is  is ice 

pressure (Norut Narvik report 2009). 
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Static loads acting on the body of the dam can be described as following: 

 

Weight of the dam: Weight of the dam is the most important stabilizing load action on the dam. The loads act in 

the downward direction at the centre of the gravity of the dam sections. The weight of the structure includes 

the weight of concrete of section and other installations on the dam. The weight of the dam section is 

determined by multiplying the area of the cross section with the unit of weight of the material of the dam.  

 

Water pressure acting on a sloping face of the dam body can be decomposed into a horizontal and a vertical 

component. 

 

Weight of water over dam section (vertical component of the water pressure): Weight of the columns of water 

standing over the sloping faces of the dam act as stabilizing loads. These loads act the downward direction at 

the centre of the gravity of the columns.  

 

Water pressure (vertical component of the water pressure)A dam is subjected to water pressure due to water 

standing against it. The headwater pressure acts on the downstream direction whereas the tail water pressure 

acts in the downstream direction.  

 

Head water pressure acting on the upstream face of the dam is equal to the area of the load triangle and given 

by:  

 

2

2

1
whP =  (1) 

 

 

 where h  is depth of water standing against the dam and w  is unit weight of water. 

 

The centre of application of the load is located at the centre of the gravity of the triangle which 1/3 of the depth 

of the water from the base.  

 

Tail water pressure acting on the downstream sections of the dam is simultaneous to the head water pressure 

and it acts at the point 1/3 of the depth of the water from the base.   

 

Uplift pressure (pore pressure): Water that seeps through the pores of the material of the dam and foundation 

causes pressure under the dam foundation in the upward direction. This results in the reduction of the 

stabilizing loads on the base. Intensity of uplift pressure is maximum at the upstream heal of the dam base and 

goes on reducing to the downstream toe. Intensity of uplift pressure at the upstream is taken equal to the 

hydrostatic pressure at the heal and the pressure at the downstream is taken as equal to hydrostatic pressure of 

water at the toe. The uplift pressure varies in a straight line between heal and toe as shown in Figure 1. The 

uplift pressure acts in an upwards direction at the centre of gravity of the pressure diagram. In order to reduce 

uplift pressure, drainage galleries are provided in the body of the dam. 

 

Ice pressure/ice loads: Ice pressure can produce a significant load against the face of a dam in locations where 

winter temperatures are cold enough to cause a relatively thick ice cover. Ice pressure is created by thermal 
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expansion of the ice and by wind drag, but it is not fully known as to how much pressure is exerted by the sheet 

of ice on the dam face. Several design codes are available to help in design.  According to these codes the ice 

pressure acts along the length of the dam at a height below or at the water level. The magnitude of this load 

varies much in different codes.  When the stability of a dam is considered, an equivalent line load represents the 

thermal ice pressure acting on the face of the dam. 

  

The following ice loads on dams or other structures should be considered during the design or reconstruction 

phases:  

 

− Horizontal load due to temperature fluctuation in a stable ice cover (thermal ice load). 

− Horizontal load from moving ice floes (dynamic load). 

− Vertical forces from a stable ice cover subject to water level fluctuations. 

 

Ice expands with increasing temperature, and vice versa. However, unlike other materials, water expands when 

it changes phase from liquid to solid. These two properties, along with the creep properties of ice, explain the 

forces that develop when ice undergoes a temperature change. The temperature of ice changes because of 

conduction, radiation, and convection heat transfer at its surface. The depth to which temperature changes take 

place depends on the thickness of the ice cover, the presence or absence of snow on its top surface, and the 

environmental conditions (Michel 1970, 1978; Sanderson 1988).  

 

A very thin ice sheet has a temperature close to 0°C. As the sheet grows in thickness, the temperature of its top 

surface decreases because of the low air temperature. The upper layer of the ice contract, but since the 

temperature lower boundary is still 0°C the contraction causes tension, creep of ice and cracks in the upper 

layers of the ice. The ice cover usually grows slowly. Except for the first few centimeters of growth, the ice has 

time to creep without the formation of the tensile cracks as long as the temperature at the upper surface is 

constant (Ashton 1986). If, however, the air temperature suddenly falls considerably, the upper surface of the 

ice assumes a new temperature, and after some time a steady state thermal gradient will be established in the 

ice cover. The upper surface contracts rapidly, but the lower boundary stays approximately the same since its 

temperature stays at the freezing point. 

 

The ice is floating on a horizontal water surface, so the free bending of the ice cover is restricted. Instead, the 

effect is a bending moment in the cover, and the stresses are mostly released by the formation of deep cracks 

(Figure 2). If the change of temperature is very slow, the ice may deform viscously without formation of the 

cracks (Bergdahl 1978). 

 

 

Figure 2. Bending and cracking of a floating ice cover due to rapidly change of temperature at the upper surface 

(Bergdahl 1978, Ashton 1986). 
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Later if the ice cover is warmed up due to mild weather or water finding its way on to the ice, the upper layers 

will again expand. Pressure will develop in the ice and may be followed by shoving onto a beach or folding of the 

ice cover against banks and in zones of weakness (Figure 3).  

 

  

Figure 3. Examples of expanding ice covers (Bergdahl 1978, Ashton 1986). 

 

 

In summary, factors influencing thermal ice loads (Engineering and Design - Ice Engineering 2002) are: 

  

• The magnitude and the rate of change in the temperature. 

• Heat transfer at the top surface and in the ice sheet; the ice coefficient of thermal expansion. 

• Restrictions to expansion along the boundaries. 

• Creep properties of the ice cover. 

• Dry, wet and wide cracks in the ice cover, see Metge (1976), Kjeldgaard and Carstens (1980), Fransson 
(1988). 

• The thickness of the ice cover and snow cover. 

• Mechanical properties to ice. 
 

Thermal ice load shall only be considered in lakes and in brackish seas and not in the open sea with saline water. 

Vertical ice loads may occur particularly where the water level initially remains at one level long enough for the 

ice to adfreeze to the structure, and then changes. As the later level changes, either the adfreezing bond 

developed between the ice sheet and the structure or the bending strength of the ice must be exceeded in order 

for the ice to move. Horizontal loads from moving ice floes are not going to be considered in the present report. 

  

2. Previously proposed theories and models  
 

Several theories have been proposed for estimating the thermal ice loads and ice pressures and have been 

reviewed by several authors (Engineering and Design - Ice Engineering 2002). A number of laboratory 

experiments and full-scale observations have been conducted to verify these theories. Most extensive reviews 

may be found in the following sources: Michel (1970), Bergdahl (1978), Kjeldgaard and Carstens (1980), 

Fransson (1988) and Hassan (1991). 

 

The basis for the calculation of the stress in the ice can be a rheological equation where the rate of strain is 

given as a function of stress and the rate of change of stress. The rate of strain is a function of the rate of change 

of ice temperature. So, the first step towards the estimation of thermal ice pressures is calculation of the ice 

temperature or its derivative. The temperature calculations in details can be found in Bergdahl (1978). Basic 

rheological models of ice which have stress-strain-time characteristics similar to deformable solids and, thus 

mentioned later in this section, are well described by Mellor (1983). Some of the methods and analytical 
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theories that have been proposed for calculation of the thermal loads are presented below in this report. 

However, in spite of a number of analytical and numerical studies of ice loads, Gebre et al. (2013) asserted that 

general models for the estimation of ice loads are still not fully verified and accepted and concluded that there is 

a need for research to develop and validate numerical ice load models. 

 

 

2.1. Royen (1922) 
 

Royen (1922) proposed a simple analytical expression of the maximum pressure as a function of initial 

temperature and the rate of the temperature rise. Royen realized that, unlike most construction material, ice is 

a highly time-dependent material. To obtain a useful formula for thermal ice pressure, Royen compared creep 

curves by Hess (1902), Kreuger (1921) and from the own investigation at constant stress (700-900 kPa) and 

constant temperatures (-8 - 0 °C), see Figure 4. 

 

 

Figure 4. Experimental creep curves on lake ice and single crystals compared with Royen's formula with (after 

Royen 1922); from Fransson (1988). 

 

In this stress interval Royen suggested the creep law: 

 

( ) qtkt = 1  (2) 

 

where ( )t  is a strain function of the time t  (hours). In Eq. (2), 1k  and 3/1=q  parameters are used in Royen 's 

investigation. 

 

The temperature dependence of the creep was established using experimental results from indentation tests at 

-35 °C to 0°C. Royen suggested that: 
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( )
TT

k

+
=

1

2  (3) 

where 2k and 1T are constants; 11 +=T °C in the Royen's investigation and T  is the temperature (without sign). 

The stress dependence of the creep could not be established with ice data known to Royen. He suggested the 

linear relation, somewhat contradictory to later research (Fransson 1988): 

 

( )  3k=  (4) 

 

where 3k  is constant. 

 

Further, the stress-strain relation, obtained by combination of the three empirical equations, was presented by 

Royen as: 

T

tc

+


=

1

3/1
  (5) 

                                                                                       

where   is compressive strain;   is  applied stress (≤ 800 kPa); t  is loading time (hours); T  is ice temperature 

(≤ 0 °C) and 54 109106 −−  c  (°C cm2/(kph1/3). 

 

The non-restricted thermal expansion of ice can be written as: 

 

dt

dT

dt

d



=  (6) 

 

Royen differentiated Eq. (5) with respect to t  keeping T  and   constant and equated the results with that of 

Eq. (6)  : 

                                                                                                             

dt

dT
tT

c

3/2)1(
3

+=


  

 

(7) 

But the act is a violation of the rules of differentiation as both  and T are used as function of time, see below.  

Royen justified the approximation by its agreement with experimental values.  Further, it was assumed that the 

temperature increase is linear in time: 

                                                                                                                        

( ) tTTtT i −=
•

 (8) 

 

where ( )tT  is mean temperature of ice (absolute value, °C ); iT  is initial mean temperature of ice (absolute 

value, °C ) and 
•

T  is the  constant mean temperature increase (°C /h).  
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By means of the equations Royen has found the maximum stress development (in 2/ cmkp ) during a 

temperature increase:  

                                                                                    

( ) ( )3 2

max 119772.0 ++=
•

ii TTT
c


  (9) 

 

at the time (hours): 

                                                                                                             

( )( )12/5max +=
•

iTTt  (10) 

 

With 5105.5 −= °C and 4106 −=c  the standard form of the Royen's equation becomes: 

                                                                                         

( ) ( )3 2

max 119.0 ++=
•

ii TTThP  (11) 

 

where maxP is force ( mt / ) and h is ice cover thickness (m). 

 

A number of drawbacks in Royen's theory can be mentioned, for instance:  

 

• The relation in the Eq. (5) had been found by test with paraffin wax which does not simulate the properties 

of fresh ice. The relation was based mainly on testes with lake ice. Both of these relations give an 

inadequate description of the behaviour of fresh water ice (Kjeldgaard and Carstens 1980). 

• The elastic deformation of ice was ignored. 

• No distinctions are made between different creep states of ice. 

• The difference between uniaxial and biaxial load cases was not discussed. 

• Because the temperature is assumed to occur uniformly over the ice thickness, the maximum ice pressure 

will be proportional to the ice thickness. 

 

Later, a mistake made by Royen (1922) was corrected by Proskourjakov (1967). Royen had only made a partial 

derivation of Eq. (5) instead of a total derivation as   and T varies with time. The result of this correction is 

that the final expression for the maximum pressure is divided by three. But the coefficients c and q were still 

empirical constants.   

 

2.2. Brown and Clarke (1932) 
 

Results from two experiments reported by Brown and Clarke (1932), ice cubes were subject to a temperature 

rise that was intended  to be linear with time while two opposite cube faces were loaded exactly as much as 

needed to avoid an expansion in that direction. The results of the experiments were a few (three) points on a 

graph showing the temperature increase rate versus load increase rate, see Figure 5. As is seen the results are 

few and furthermore the experimental equipment was not able to realize the intended test conditions with any 

high degree of accuracy.   
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Figure 5. Relation between temperature rise per hour and pressure rise per hour (Brown and Clarke 1932); from 

Bergdahl (1978). 

 

The continuous curve is the curve of Brown and Clarke 1932; filled circles A-C original point and D-I from shorter 

parts of the same experiments. The lower circles, crosses and dashed curve are from the experiments of Löfquist 

(1954). 

2.3. Rose (1947) 
 

Using the experimental data obtained by Brown and Clarke (1932), Rose (1947) generated curves to predict ice 

pressure. Rose's main contribution to the ice pressure problem was that he showed how the temperature 

distribution will develop in an ice cover that is subjected to a linear temperature rise at the top. 

 

The computation of the ice forces were carried out by first using finite difference integration of the heat 

conduction equation to give the rate of change of temperature at a certain level in the ice cover. The presented 

curves illustrated pressures from 0 to 1.3 m for three distinct temperatures rise (5, 10 and 15 °F/hour). The 

curves were given for cases with and without effects of solar energy, and with and without lateral constraint. 

One of Rose's figures is shown in Figure 6. 
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Figure 6. Ice temperature curves and resulting ice pressure curves (Rose 1947). 

 

The inputs in the calculations are only ice thickness, rate of the temperature increase, the presence or absence 

of lateral constraints, and the presentence or absents of solar absorptions.  No account was taken of the initial 

temperature.  

 

2.4. Monfore (1947-1954) 
 

The intention of their study was to determinate the thermal ice pressure on some dams in Colorado. Both in situ 

measurements of the ice pressure and the laboratory investigations of the creep properties of natural ice were 

conducted by Monfore (1954). The laboratory investigations by Monfore were made in almost the same way as 

Brown and Clarke. Small cylindrical ice samples were taken from two reservoirs, where ice cover thickness was 

approximately 45 cm and cut in such way that the axis of the cylinders was parallel to the ice cover surface. A 

meter in direct contact with the sample measured the axial strain. The temperature of the ice sample was 

controlled by means of cold air-circulation and the ice temperature was measured both at the periphery of the 

ice sample and at the axis.  

 

Before a test was made the sample was kept at one of the following initial temperatures - 30°C, -20°C, -10°C, 

0°C, 10°C, 20°C. Then the circulation of air was changed in such way that the temperature of ice was made to 

increase with one of the following rates: 2, 5, 10, 15 °F/hour.  During the first 30 minutes the load was adjusted 

to give zero total strain every 5 minutes. Thereafter adjustment of load was done every 15 minutes. The results 

of the experiments were curves over stress as a function of time. The curves have approximately the same 

shape, with first nearly linear increase of stress, and then curved to a maximum, and decreased, see Figure 7.  
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Figure 7. Average pressure-time curve (left) and air and ice temperature for typical laboratory test (right) 

(Monfore 1954). 

 

The final results of experiments were summarized in two diagrams; see Figure 8, showing the maximum 

pressure and the time to reach the maximum as functions of the rate of change of ice temperature for different 

initial temperatures. 

 

Figure 8. Maximum ice pressure (left) and time of temperature rise (right) related to the temperature rise 

(Monfore 1954). 

 

 

Bergdahl (1978) concluded that the weaknesses of Monfore’s methods are: 

• uniaxial tests are used for biaxially restricted ice and that the crystal structure was not considered as a 

parameter. 

•  the phase lag of temperature (or stress) at different levels are not included in the methods.  

 

2.5. Löfquist (1954) 
 

Löfquist (1954) introduced a new concept for studying thermal ice pressure. The experiment was of the same 

type as used later by Drouin and Michel (1971) and Bergdahl (1978). Löfquist reproduced a part of an ice cover 
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in a cylindrical concrete basin diameter 50 cm with an insulated wall. In this container the ice was left to develop 

in the same way as it happens in nature by cooling the water-ice at the top surface. When the ice had reached a 

thickness at about 60 cm the temperature of the room was raised, the temperature of the ice surface was rising 

approximately from -30°C to 0°C during 15 hours.  

 

The course of the temperature in the ice is shown in Figure 9a as given by Löfquist. The measured pressures 

profiles at 10, 14, and 17 hours are shown in Figure 9b. As the temperature increase penetrated through the ice, 

the stress profile developed into the shape of a half pear with a maximum moving down through the ice some 

hours delayed with respect to the  minimum of the temperature curve. The maximum total ice pressure was 

measured to 20 t/m about 14 hours after the start of the temperature increase.  

 

Figure 9. Results presented by Löfquist (1954): measured ice temperature (a) and pressures (b) in the ice sheet. 

 

 

The cylindrical container used by Löfquist (1954) was made of concrete. Because of that, it was assumed that 

the thermal and elastic expansions of the concrete and some cracks in the cover during heating had caused the 

measured stresses to be less that it ought to be. 

 

2.6. Assur (1959) 
 

Assur used a quasi-linear model for the rheology with a temperature and stress dependent creep law, solved the 

equation for constant rate of change of temperature, and finally, formulated a differential equation for the 

elastic buckling of the ice cover when not loaded symmetrically.  

 

In Assur's model, the creep deformation of ice under a load was approximately described by a rheological model 

with a Maxwell and a Kelvin-Voigt units in series, see Figure 10.  
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Figure 10. Rheological model with Maxwell and Kelvin-Voigt units in series. 

 

A solution for constant load presented by Assur is: 

 

                                                                                         

( ) 







+−+=

−

1

/

2

0

1

01





t
e

t

SmE

tt
 (12) 

 

where   is compressive stress; t  is time from the load application; 220 /Et = is relaxation time for elastic lag; 

1E  and 2E  are elastic moduli; 1  and 2  are viscosity moduli; m  is a factor depending on the load case; S is a 

function of temperature and stress and 1 and 2 indices for the Maxwell and Kelvin-Voigt units, respectively. 

 

For the uniaxial case ( )+= 12m , and for the biaxial case /2=m , where 5.0=  for the case of viscous flow: 

                                                                                              

( )
0

0

/sinh

/
/exp




RTQS C=  (13) 

 

where SQ  is the activation energy for creep; R is the universal gas constant; T is the absolute temperature; 

m/ = ; cT=0¨  and c  is a constant. 

 

Neglecting the elastic lag (the first term within the brackets in Eq. (12)), the differential equation was given as:   

                                                                                                             

••

=+ TE
Sm

E
1

0

1 



  (14) 

 

which actually is similar expression as Eq. (31) (the rheological model by Bergdahl) for the rate of deformation: 

                                                                                                                     

T =
•

 (15) 

 

The maximum ice pressure max was calculated from Eq. (14) for 0=
•

 as: 
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( )
•

= TSRTQm C 10max /exp  (16) 

 

where   is the linear coefficient of thermal expansion; 
•

T  is the rate of warming and 1S  is unit for low stresses 

which can be calculated as: 

 

( ) ( )mcTmcTS /sinh/ maxmax1 =  
(17) 

 

Assur gave values equivalent to 210 /104172.0 mhtonnes= − ; molkJQc /81= ; ( )KmolJR = /31.8 ; 

( )Kmtonnesc 2/154.0= ; -16 C105.51 = ; 
26

1 /1065.0 mtonnesE = . 

 

Assur also gave a non-dimensional solution of the complete function for a constant rate of change of 

temperature by searching unknown functions:  

 

( ) 



+




−−=

••

100max 1 TTbTaT  (18) 

where 0T  is the initial temperature; a , b and 1

•

T  are constants: with C)/(33964.0 2= mtonnesa ; 

-1C010137.0 =b  and 
•

T C/h1.21 = . 

 

The agreement with test results given by Monfore was said to be excellent with a correlation coefficient of 

0.9986 for C/hour5.2 
•

T . Assur pointed out that the total lateral force to a considerable degree depends on 

the depth of penetration of the warming wave and is limited by the buckling, if the ice cover is thin. He criticized 

the use of the assumption of an axial load at half the depth of the ice cover, and he proposed a corrected 

equation probably based on an assumed unfavourable stress distribution (Bergdahl 1978).   

 

2.7. Lindgren (1968) 
 

The work presented by Lindgren (1968) contained laboratory tests with both uniaxial and biaxial load. The 

results of the experiments were utilized in a method to calculate the thermal ice pressure in an ice cover for a 

prescribed air-temperature variation.  

 

The uniaxial tests were performed with ice prism that were loaded with constant weights at - 10°C equivalent to 

2, 6, 8, 10 and  14 2/ cmpk 1, and at -0.5°C, - 5°C and - 20°C equivalent to 6 2/ cmpk . The deformation as a 

function of time was measured during these investigations. Biaxial experiments with restricted thermal 

expansion were also made with circular ice plates that were placed in a steel ring, where the small space 

 

1 [ 2/ cmpk ] – [kilolibra/cm2 ] . MPacmpk 981.00981.0*/1 2 =  
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between the ice and ring was filled by water. Tests started at low temperatures after which the temperature 

was raised. The temperature, the strain and the stress were recorded as a function of time.  

 

To present the results of the laboratory tests in a common form, Lindgren tried to fit the parameters in a linear 

viscoelastic model composed of a Maxwell and a Kelvin-Voigt element couplet in series.  

 

The rheological equation for such model is: 

                                                                                      

12

2
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
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
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


−−+=  (19) 

 

 

where 1E  and 2E  are elastic moduli; 1  and 2 are viscosity moduli;  is strain;   is stress; 1 is index for the 

Maxwell unit and 2 is index for the Kelvin-Voigt unit.   

 

Lindgren gave the following values from uniaxial experiment: 

( )−= 012.01660001E  ( 2/ cmkp ) 
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(20) 

 

From the biaxial test Lindgren estimated the same values of and as for the uniaxial test with the assumption that 

Poisson's modulus was 0.36. The values of 2 was assumed to be the same while a new equation was used for 

1 (in 2sec/cmkp ) : 
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(21) 

 

on condition that Poisson's ratio 0.5 was for the viscous deformation.  

 

In the thermal analysis Lindgren established that the influence of the growing of the ice cover on the thermal 

gradient can be disregarded. For calculation of the temperature profile in the ice for arbitrarily changes of air 

temperature a graphical variant of Schmidt difference scheme was used in Lundgren model.  

 

2.8. Jumppanen (1973) 
 

The thermal ice pressure was studied by Jumppanen (1973). Cylindrical specimens were loaded axially at stress 

level 3, 7 and 12 2/ cmkp  at temperatures of -2°C, -5°C, -12°C and -25 °C. The specimens were cut with their 

axes horizontal and parallel to c-axes of grains, and were taken from artificial ice covers produced from tap 

water and from an ice cover in the Saima Canal in Finland.  
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Jumppanen analysed his data using a viscoelastic model similar to Lindgren's. For a linear material the creep 

compliance ( )tJ  is a monotonously increasing function for 0t , and for 0t  ( ) 0tJ . For a constant stress 

0  applied to a material obeying the same differential equation as the one used by Lindgren (1968), the 

deformation   as a function of time t  can be written: 
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The compliance function proposed by Jumppanen based on several uniaxial loading tests on cylindrical 

specimens is:                                                                                                                           

( ) nbtatJ +=  (23) 

 

where 3.0=n , t  is time in hours; and a and b are linearly dependent on temperature as: 

 

( ) ( ) 510036.017.1 −+= TTa  kpcm /2  

( ) ( ) 5105.05.24 −+= TTb  kpcm /2  for artificial ice 

( ) ( ) 51025.012 −+= TTb  kpcm /2  for Saima Canal ice  

with 

 C25+= TT    for       C0C25 − T  

 

(24) 

 

The value of ( )Tb  was quite different for artificial ice and the Saima Canal ice. According to Jumppanen this 

was probably caused by the air content of the artificial ice, and by the fact the canal ice had earlier been loaded 

by temperature changes of the ice cover. The compliance function was finally used for calculation of the 

expansion of a circular ice plate, a square ice plate and an ice plate in a long trough. The solution did not involve 

the calculation of temperatures in the ice cover.  Comparison of the measured and calculated values is 

presented in Figure 11.  
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Figure 11. Values of ice pressure at the Saima Canal. 1) Air temperatures; 2) Ice temperatures at the depth 8 cm; 

3) Approximated ice temperature for the calculations; 4) Measured ice pressure at the same depth; 5) Calculated 

ice pressure (Jumppanen 1973). 

 

2.9. Drouin and Michel (1971, 1974) 
 

Drouin and Michel (1971) presented an extensive investigation of the thermal ice pressure. The study of uniaxial 

deformation of ice and biaxially restricted expansion tests of the same type as made by Lindgren (1968) with 

better controlled conditions.  

 

In uniaxial test cylindrical samples with length of 76.2 mm and diameter of 25.4 mm, were deformed along the 

axis at a constant strain rate and a constant temperature. The loading direction was always parallel to the 

surface of the ice. Three types of ice were tested:  

 

Manufactured snow ice with porosity about 3.3% and reported density 810 3/ mkg . The diameter of grains was 

about 1 mm and the direction of the crystallographic orientations was random (38 tests). 

 

Manufactured columnar ice of the type S1, where the c-axes of the crystals are vertical or nearly vertical. The 

stress was perpendicular to the c-axes (26 tests). 

 

Manufactured columnar ice of the type S2, where the c-axes is horizontal. The average gain size measured 

perpendicular to the long direction of the grains was about 2 mm (2 tests). 

 

After some tests had been made, Drouin and Michel concluded that the samples of the S2 ice were too small 

compared to the grain size. Only two tests with bigger samples are then reported with dimensions of height of 

101.6 mm and diameter of 50.8 mm.  
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Brouin and Michel used the dislocation theory to improve constant-strain-rate curves. The rheological model of  

Drouin and Michel is of the following form:  
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where  is stress; 
•

  is strain rate; t  is time; aE  is apparent elastic modulus; 0n is initial number of dislocations; 

  is rate of multiplication of dislocations; b is the Burger vector and p and m are constants.  

 

The necessary material constants (a total of six: aE , 0n ,  , b , p , m ) were obtained partly as fitting constants 

to the experiments. The surface temperature of the ice cover is assumed to be equal to the air temperature. The 

ice temperature is initially assumed to increase linearly from the surface to the ice-water interface, where it is 0 

°C. If the air temperature is subjected to fluctuation: 
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 where 0T  is the initial air temperature and 0t  the period of the cycle.  

 

The variation of the temperature in the ice cover more than 40 cm thick due to a cyclic temperature variation at 

the surface was approximated by the Fourier-solution for a semi-infinite space. At any depth z of the cover it is 

given by: 
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where  
0

2

t


 =   and d  is the thermal diffusivity of ice, assumed to be 61016.1 −  sm /2 .  

 

However, Bergdahl (1978) showed that the calculation of the temperature distribution may not be correct. 

 

Differentiating the equation with respect to time gives: 
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On the other hand, strain is related to temperature change by: 
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••

= T  
(29) 

 

 

The coefficient of thermal expansion of ice decrease slightly with decreasing temperature and is expressed in 

the form: 

 

( ) 510018.04.5 −+= T  -1C                                                                                                       (30) 

 

 

When the strain rates at different levels of the ice cover and the rheological model for ice are known, the 

thermal pressure can be computed numerically step by step. 

 

Based on the tests graphs have been computed which show the maximum total thermal ice pressure that is 

exerted by an ice cover (composed of S1 ice and uniaxially restrained) as a function of cover thickness and with 

initial surface temperature of the ice and the time for increasing this temperature from 0 °C (half period of the 

sinusoidal variation as parameters). 

 

2.10. Metge (1976)  
 

Metge (1976) (from Ashton 1986) presented the basic assumptions about cracks in the ice and drew some 

important conclusion which should be incorporated into the methods for calculating thermal ice pressure. The 

basic assumptions in most methods are that the tension is completely released when the crack is formed, that 

all cracks become filled by water, and that this water is completely frozen when the ice starts to expand again. 

Thermal cracks fall into three groups characterized by different behaviour: dry cracks, narrow, wet cracks; and 

wide cracks. 

 

Dry cracks: Dry cracks form as following: during a cold night, the top of the ice cools, while bottom remain at 

0°C. This cause that ice becomes concave, until the moment due to the weight of the edges is so large that the 

sheet cracks. This process is repeated until each piece of uncracked ice is small enough to withstand the 

curvature. The cracks do not usually fill with water because the cracking does not result in separation of the 

pieces. Dry cracks act as bellows, opening and closing according to ice temperature. These cracks are always 

present in a cold ice cover, where they absorb a significant part of the thermal ice movement, reducing the 

potential thermal ice pressure significantly.  

 

Figure 12 shows a typical section of a dry crack. The crack is straight down to about 2/3 of the ice thickness, 

where t is met by one or two shear cracks, usually at 45° to the vertical. Although these shear cracks are easily 

visible because of reflected light, they are not open and do not let any water though. 

 



Norut Narvik REPORT 2019/19 

23 

 

 

Figure 12. Section of a dry crack (Metge 1976). 

 

Narrow, wet cracks: These cracks are narrow enough to refreeze rapidly and in doing so add material to ice 

sheet. The existence of this process was proven from thin section of these cracks, which show the layer of new 

ice added, see Figure 13. When the sides of a dry crack separate, the water rises to approximately 90 % of the 

ice thickness, with some adjustment for the deflection of the ice sheet due to thermal stresses or snow load. 

 

 

Figure 13. Repeated addition of ice to a narrow wet crack (Metge 1976). 

 

Wide cracks: The overall contraction of an ice sheet is mostly concentrated at one or two cracks, which usually 

form near tensile rises, such as between two headlands. In a long channel, wide cracks form a fairly regular 

interval across the channel, while other cracks skirt the shore form headland to headland. Some cracks are more 

than 20 cm wide. The large volume of water in these cracks cannot freeze completely during one night, so by 

morning a typical wide crack has taken the shape shown in Figure 14a. If the ice temperature rises the next day, 

the thin bridge of ice across the crack is put in compression and will suddenly fail. The crack may close, 

producing a noise and violent impact. The ice bridge usually fails in shear along an inclined plane, and one side 

of the crack slip over the other (Figure 14b). In this way a pressure ridge has started to form. Another 

mechanism is caused by the fact that the bridge is formed near the top of the ice sheet. During compression a 

moment applied to the sheet, and if it is thin, the sheet may fail in bending. If a cold period lasts for weeks, even 

wide cracks will refreeze to a considerable extent and will be sufficiently strong to sustain the eventually 

thermal expansion. 



Norut Narvik REPORT 2019/19 

24 

 

 

Figure 14. Typical wide crack (Ashton 1986). 

 

The main conclusion is that in a wide crack a pressure ridge may be initiated at compressive stresses associated 

with the crushing strength of the ice or the buckling load of the ice cover. For thermal pressure this is limited by 

the strength of the bridge, and the resulting impact load can become as much as three times the failure load of 

the bridge.  

 

2.11. Bergdahl (1978) 
 

Some of investigators acknowledged that linear viscous-elastic models give an unsatisfactory description of the 

stress-strain relationship of ice (Ashton 1986). Bergdahl (1978) proposed a simple nonlinear rheological model 

composed of a linear spring in series a nonlinear dashpot, see Figure 15. 

 

 

Figure 15. Nonlinear rheological model used by Bergdahl (1978). 

 

The differential equation of the model is: 

 

( )nKD
E




 +=

•
•

 
(31) 

 

 

where K  and n  are functions of strain rate, and E  and D  are functions of temperature.  

 

The modulus of elasticity E  (MPa) was based on the results by Lindgren (1968) and Gold (1958) and was 

expressed as: 

                                                                                                                      

( )TcE −= 11.6  (32) 

 

where 012.0=c °C -1 and T is the ice temperature, °C. 

 

The temperature dependence of the viscous creep rate was described by the Arrhenius equation for diffusion:  
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( )abss RTQDD /exp0 −=  (33) 

 

 

where ( ) 4

0 1057.013.9 −=D  sm /2 ; 8.59=sQ  molekJ / , the activation energy; 31.8=R  KmoleJ /   

(the gas constant) and absT is absolute temperature, K . 

 

The basis for the values of K  and n  is the experiments by Drouin and Michel (1971) on ice monocrystals loaded 

parallel to the basal planes. The constant strain rate tests have been evaluated for the maximum stress when 

0=
•

 of the differential equation of the model. The results was 161040.4 −=K (m -2 Pa -n ) and 651.3=n  for 

the temperature compensated rate range: 

 

97 108/102 
•

D (m-2) (34) 

 

In Figure 16 stress as a function of a constant strain rate at 81045.1 −
•

=  s -1  calculated with Bergdahl's model 

and Drouin's and Michel's model is compared (Bergdahl 1978). Calculations using Bergdahl's equation yielded 

higher pressure than similar calculations made by Drouin and Michel. The reason was mainly the choice of 

modulus of elasticity 1.6=E GPa compared to Drouin's and Michel's 1.5 GPa. The strain softening proposed by 

Drouin and Michel reduced their ice load calculations and thus Bergdahl's results appeared to be much too high 

(Fransson 1988). 

 

 

Figure 16.Stress as a function of time for constant rate of strain 181045.1 −−
•

= s : a) at C10−  ; b)  C20−   

(Bergdahl 1978). 
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The calculated temperature profile can be used to calculate the thermal ice pressure for each depth interval 

separately. The pressures are then integrated over the depth of ice which gives the total ice pressure (N/m).  

 

The rate of deformation is the coefficient of linear thermal expansion times the rate of change of temperature: 

                                                                                                             

••

=== T
dt

dT

dt

d



  (35) 

 

 

which with the differential equation of the model gives: 

                                                                                        

( )dtKDdtEdddT n +== /  (36) 

 

This can be written on difference form as: 
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where k  is the stress at the point of time  tkt = ; 1+k  is the stress at ( ) tktt ++ 10 ;  =−+ kk 1 ; 

mE   is the elasticity  modulus of the ice for ( ) ( )( ) 2/ttTtTT ++= ; kD   is the self-diffusion for ( )tT  and 1+kD  

is the self-diffusion for ( )ttT + . 

 

This equation can be solved for the stresses using the interactive procedure. The stresses are integrated over the 

depth of the ice cover, and if the integrated ice pressure is greater than an elastic buckling load, the thermal ice 

pressure is set to that lower value. The limiting load is set to: 

                                                                                                    

( )23 112/2  −= gEhP wb  
(38) 

 

 

where w is the density of water; g  is the earth acceleration; E  is the elasticity modulus of ice at the mean 

depth of the ice cover, Eq. (32); h  is the thickness of the ice cover and  0=  is the Poisson's modulus. 

 

The comparison between the proposed model and some others models (Royen, Jumppanen, Assur and 

Lindgren) was presented by Bergdahl (1978), see Figure 17. 
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Figure 17. Deformation as a function of time for the constant stresses: a) MPa1=  and b) ice temperature 

C10− and two-axial deformation (Bergdahl 1978). 

 

2.12. Cox (1984) 
 

Cox (1984) reported the results of measuring the ice pressure in the cover of small lake using a biaxial stress 

sensor. Bergdahl's rheological model was used to calculate the ice stress during the study. As the ice was warm 

(never colder than -3°C at the depth of the sensing portion of the stress gauge) and presumably ductile, the 

model by  Bergdahl was modified to allow tensile stresses to accumulated in the ice cover during cooling periods 

without any cracking.  

 

As Bergdahl, a finite difference scheme was used to calculate the ice pressure. However, a Newton's method 

rather than successive substitution was used to solve the nonlinear equation. From Bergdahl: 
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and the subscripts denote the value of the parameters at times 1 and 2. 

 

The ice thermal strain during the time step t  is calculated from: 

                                                                                                        

( )1212 TT −=−=   (40) 

 

 

where   is the linear coefficient of thermal expansion and T is the ice temperature.  
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Applying Newton's methods to solve for 2  the following equation can be obtained:  
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(41) 

 

 

The computed stress-time history using Bergdahl's model and recommended values for E , K , D  and n  was 

compared to the measured stress, see Figure 18. In general, it was concluded by Cox that Bergdahl's model over-

predicts compressive and tensile stresses in the ice.  

 

The conservative (high) values of maximum stress were explained partially by Bergdahl's selection of E , K  and 

D . Cox used a lower effective modulus 4=E GPa of ice to describe the elastic behaviour of the ice while 

Bergdahl recommended the values of 6 GPa. 

 

Additionally, Bergdahl used the Arrhenius equation to describe the effect of temperature on the creep rate of 

ice. Cox defined a new function based on the experimental work by Drouin and Michel (1971) which showed a 

very strong temperature dependence of creep rate of S1 ice such that 
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where in a constant strain-rate test: 
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or,  in a constant load test:                                                                                                                      
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From the curves presented by Droiun and Michel values of max where obtained for a strain-rate of 2×10-8 s-1.  

Then the values of ( )TAln were plotted against the values of ( )Tln . To provide a linear fit of the data, it was 

assumed that the 0°C tests were performed at -1°C. By adjusting the data:   
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(45) 

 

where 291046.2 −=B s -1 ; 92.1=m ; 1* −=T °C  (unit of temperature) and T  is the ice temperature, °C. 

 

According to Fransson (1988) Eq. (45) presented by Cox (1984) must contain a typing error and should be: 
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By using E  and ( )TA  the new values of the thermal stresses were calculated and compared to measured 

values and values obtained by the Bergdahl model. Better agreement was obtained between the measured and 

calculated values using the Cox's modification of the Bergdahl model (Figure 18). 

 

  

Figure 18. Calculated and measured values obtained by the Bergdahl model and the Cox's modification (Cox 

1984). 

 

2.13. Xu Bomeng (1981, 1986) 
 

Xu, based on the data collected from reservoirs in Northern China presents an empirical formula to predict the 

average pressure of ice sheet: 

 

( ) ( ) 4/326.03/12/1
/6.03 aaahs tTttCKKP −−−=  (47) 

 

 

where P is average pressure of ice sheet, kg/cm2 ; at  is initial air temperature at 8 a.m., °C   (usually not 

exceeding -10 °C); at  is increment in air temperature rising (°C) from 8 a.m. to 2 p.m., or from 8 a.m. of the 

first day to 2 p.m. of the second or third day for sustained temperature rising; the highest air temperature 

should not exceed 0°C; T is duration of sustained temperature rising (hours) corresponding to at - for ordinary 

weather 6=T hours, for successive days of air temperature rising 30=T hours (two days); sK is factor of 

snow cover, in case of no snow ;0.1=sK
 hC is conversion factor related to thickness of ice which is equal to 

0.391, 0.311, 0.274, 0.252 and 0.237 corresponding to the ice thicknesses of 40, 60, 80, 100 and 120 cm, 

respectively; K is coefficient to account for the overall effect of others factors.  
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The design value of the ice pressure expressed in total ice pressure in one unit of length can be obtained as the 

following relationship: 

 

th mCKhP = 73.13  (48) 

 

where P is design ice pressure (t/m); h is ice thickness (m) and tm is time factor of temperature rise (1.0 or 

1.82). 

 

The ice pressure values computed with Eq. (48) are presented in Figure 19. 

 

 

Figure 19. Relationship of ice pressure and ice thickness (Xu 1986). 

 

2.14. Fransson (1988) 
 

Two steps process for determination of the ice pressure were suggested by Fransson (1988):  simple analytical 

determination of the maximum ice pressure at the centre of ice and calculation of the maximum load by 

assuming a pressure distribution through the ice. A possible approximation of the sum of the pressure in an ice 

cover can be based on the stress development in the centre of ice. Therefore a link between the air temperature 

history and the resulting temperatures in the centre of the ice was suggested by Fransson.  

 

The temperature at any depth x  and time t  in the ice cover can be calculated assuming one-dimensional heat 

conductivity. Solar radiation and other heat sources were neglected during the time of the year when maximum 

ice thrust is expected.  The temperature rise at the centre of the ice is approximated to a straight line with the 

coefficient 5.0b during the period of time when the total ice pressure increases. The relation between the 

linearized function used by Fransson and the original temperature function, see Figure 20. 
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Figure 20. Relationship between the used linearized function and the original temperature function (Fransson 

1988). 

 

The rheological model used by Fransson consists of a linear spring in series with a nonlinear and temperature 

dependent dashpot. The stress  corresponds to uniaxial stress. The rheological equation is: 
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where 
•

  is strain rate; 
•

  is stress rate;   is stress level; *  is index stress; n  is empirical constant; E  is 

Young's modulus for columnar ice and  B  is temperature dependent strain rate.  

 

The temperature dependence of the creep rate can be expressed as: 
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where T  is temperature; *T  is index temperature ( C1+ ); 1T and m are empirical constants and 0B is strain 

rate at C0=T and * = . 

 

The proposed rheological model by Fransson for S1 ice is basically the same as the model by Bergdahl and Cox. 

However, one difference is that n  is an empirical constant adjusted to field data. Young's modulus for S1 ice can 

be obtained from accurate measurements on single crystals, eventually with some reduction because of air 

content and microcracks.  

 

By definition of thermal stress with complete restraint, follows that the expansion strain rate is equal to the 

deformation strain rate, such that: 
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or the stress rate: 
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The maximum stress is obtained for 
•

= 0  is: 
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where B  is the creep rate at the temperature when max = . 

 

The differential equation of order n  can be solved numerically using a finite difference scheme. However, the 

lack of an analytical solution of the nonlinear rheological equation is one obstacle that has to be overcome with 

help of the computer calculations. Another obstacle is that the constant n cannot be obtained from simple 

material tests on the actual ice type passing the transient creep. That takes a very long time to do at low stress 

levels. In this situation it was suggested by Fransson to use an approximate stress model.  

 

Royen's empirical equation can be expressed in a more general way, with nonlinear dependence of the 

temperature: 

 

( )m
q

TT

tc

−
=

1


  (54) 

 

 

where c , q , 1T ,  and m  are constants.  

 

After differentiation of   with respect to t  , the stress rate becomes:  
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Eq. (55) is a linear differential equation of first order which can be solved analytically as: 
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and for linear temperature rise the maximum stress can be presented as: 
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where                  
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1 , q , m  and c  are empirical constants;   is linear coefficient of thermal expansion; 0T  and b  are input 

temperature variables.  

 

For biaxial stress field the Eq. (52) may be reformulated as: 
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where   is Poisson's ratio;   is ratio between two principal stresses and   is a  factor defined as:   

 

( )0/ 00 ==  BB  (60) 

 

 

where ( )00 =B  is the creep rate at 0 °C determined from a uniaxial loading test parallel to the surface of the 

ice sheet.  

 

Further, Fransson presented how potential of the thermal ice load can be assembled using an analytical solution. 

An ice sheet with known parameters ( a , c/ ) and with a complete lateral restraint. The boundary conditions 

at the upper surface are given by the temperature history shown in Figure 21. 
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Figure 21. Analytical temperature rise on the surface of an ice sheet with complete lateral restraint (Fransson 

1988). 

 

 

An analytical expression of the potential of ice pressure in the ice centre was written as: 

 

( ) ( ) 5.0

02

5.0

01

max

5.0 /exp TbdabTa −−−=   for md 22.0                                                (61) 

 

 

 

( ) 15.1

03

max

5.0

−−= dTa                                           for md 5.0                                                      (62) 

 

 

where ( )ca /224.01 = ; 49.22 =a  and ( )ca /331.03 = . 

 

The total horizontal force P  from the ice pressure can be estimated as:   

 

                                                                                                                       

dP o

max

5.=  (63) 

 

 

where   is a function of the shape of the stress distribution ( 1=  if rectangular). 

 

Based on the experimental study by Löfquist (1954), the value 7.0=  was used by Fransson. The pressure 

distribution is presented in Figure 22.  
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Figure 22. Assumed relationship between maximum pressure and the resulting maximum force (Fransson 1988). 

 

The reduction because of closure of dry cracks at the ice surface can be included using the proposed values of 

:T     
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where L  is the total length of the confined ice sheet; dLC 100= , the distance between two major thermal 

contraction cracks and d is the ice thickness.  

 

Also reduction because of incomplete restraint or large, wide cracks can be considered applying the following 

relation:  

 

( ) ( )n

C PP
/11

1/
+

−=   
(65) 

 

 

where PPC /  is the reduction of the potential of ice thrust;   is the crack depth and n  is the empirical stress 

exponent; 2=n .  

 

The reduced load CP  can be expressed as: 

                                                                                                                        

( ) 5.1
1 −= PPC  

(66) 

 

 

A practical formulation of the potential of thermal ice load cP  can be assembled using Eqs. (56), (57) and (60): 

 

( )( )  5.1

03 1 TTaPC +−−=   
(67) 

 

 

where ca /0331.03 =  and 0T is the initial ice surface temperature.  
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In most situations very limited information is available for the actual ice conditions at the location of the 

structure. Based on the presented work by Fransson (1988) a simple design formula that may serve as guidance 

for engineers can be established:  

                                                                                                                        

( ) 5.1

02 TPC −=  
(68) 

 

where 0T is the initial temperature (°C). 

 

The temperature should be chosen as the coldest week- temperature during a 10-year period according to the 

closest weather station. At the areas where the ice thickness is less that 0.5 m the thermal ice load may be lower 

than predicted by presented formula (Fransson 1988). 

2.15. Carter et al. (1998) 
 

Carter et al. (1998) undertook a 3-year program from 1995 to 1998 to measure the static ice forces in four 

reservoirs in central and northern Quebec. In this program, changes in measured stress in an ice sheet have 

been correlated with changes in air temperature; it may arise from water level variations, wind and current drag 

force. Measurements indicated that the ice pressure changes with increasing water level; the maximum values 

were about 150 kN/m.The field investigations revealed two facts that ice cover have circumferential cracks 

caused either by water level variation or thermal contraction, and the static ice forces are, in some instances, 

sufficient to trigger an instability of the broken ice covers by buckling.  

 

To investigate stability of ice floes, a two-dimensional analysis was considered by Carter et al. (1998), in which 

wide ice floes are pushed by in-plane force against a dam wall, see Figure 23. Previously, Kovacs and Sodhi 

(1980) have discussed the stability of two ice floes by considering the potential energy of the system arising 

from buoyancy effects and elastic hinges at the end of the floes. As rotation of ice floes usually results in 

permanent damage to ice at the end of a floe, it was suggested by Sodhi (1995, 1998) to consider plastic, instead 

of elastic, hinges at the ends of the floes. Assuming a velocity field for the system shown in Figure 23, Sodhi and 

Carter (1998) have used plastic limit analysis to determine the force per unit width of ice sheet required to cause 

instability. 

  

 

Figure 23. Model for in-plane compressive force displacement of ice floes (Carter et al. (1998). 

 

 

For an assumed velocity field of the system, see Figure 23 , point A moves horizontally at a velocity of 2V , and 

point C does not move. Point B moves horizontally at a velocity of V and vertically at a velocity of  V cot  , 
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where  is the angular position of the floe. The velocity of other points on floes AB and BC is linearly 

proportional to the velocity at the ends of a floe. Considering a unit width of an ice sheet, the rate of change of 

potential energy bE , arising from buoyancy effect is than obtained as: 

 

 cos
3

2 2VgL
dt

dEb =
 

(69) 

 

where g is the specific weight of water and L is the floe length. 

 

With respect to adjacent ice sheets, the rate of rotation of these floes at points A and C is: 

 





sinL

V

dt

d
=  (70) 

 

 

whereas it is  
dt

d2
 at point B with respect to each other. 

  

Assuming that plastic hinges cause a moment M per unit weight to resist the rotation of ice floes, Sodhi and 

Carter (1998) define the rate of energy dissipation hE  at hinges A, B and C as: 

 

dt

d
M

dt

dEh 
4=  (71) 

 

Equating the rate of work done by externally applied force, 2FV, to the rate of work operation against the 

buoyancy forces and energy dissipation within the plastic hinges, it was found by Sodhi and Carter (1998) that: 

 


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3

1 2
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M
gLF +=  (72) 

 

 

This expression provide an upper bound estimate of the in-plane force by plastic limit analysis under the 

assumed velocity field, where the vertical movement of point A attributable to changes in water lever is not 

considered. The first term on the right-hand side is due to buoyancy forces and the second term derives from 

moments caused by wedging pressure. Sodhi and Carter (1998) point out that in-plane displacement coupled   

with vertical movement of point A will not produce a wedging action if the two ice floes are in a buckled position 

between three wet cracks. The probability of thermal ice push coinciding with an event when the ice floes 

assume a straight position can be very small. Moreover, fluctuations in water level do not allow the cracks to 

freeze solid, resulting in negligible wedging action.  

 

Therefore, the only term that can results in an in-plane force is buoyancy term alone: 

2

3

1
gLF =  (73) 
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Introducing 
3/8.9 mkNg =  and the value of L given as  

 

4/38.8 hL =  (74) 

 

 

the following equation may be obtained:  

5.1253hF =  (75) 

 

The empirical formula by Drouin (1976) for estimation of ice thickness is:  

 

Sh 02.0=  
(76) 

 

where h is the ice thickness, m and  S is the freezing degree-day accumulation, °C-days. 

 

For normal field conditions, Eq. (75) can be written by applying Eq. (76) as:  

75.072.0 SF =  
(77) 

 

where F, kN/m is the in-plane force per unit weight () for which the ice floes  become unstable by a mechanics 

similar to buckling.   

 

From  Eq. (76)and Eq. (77), the critical pressure, p, sufficient to trigger an instability of the floating ice floes may 

therefore be written as:  

25.05.0 78.35253 Shp ==  (78) 

 

 

Further, empirical formulas have been presented for three typical structural shapes: vertical dam wall, narrow 

protruding structure and spillway gate as the following: 

 

• vertical dam wall 

5.1

1 253hH =  (79) 

 

• narrow protruding structure 

 

5.1

2 2531
5

h
b

h
H +=  

(80) 

 

 

• spillway gate 

5.1/

3 253heH ax = −  (81) 
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It was suggested that these equations will provide reasonable predictions for the purpose of design under 

typical conditions of practice. The proposed equations have been confirmed by the data obtained by the Carters 

et al. (1998).  

 

Later in 2003, Carter (2003) extended the concept of “Indentation” to static ice loads for Dams (this publication 

is available only in French) which is based on the theory that for piers the effective ice pressure diminished as 

the contact area increases (CAN/CSA-S471-92). However, the results from some experimental investigations 

(Morse et al. 2011) showed that the calculated line load (having a peak spatially-averaged value of about 135 

kN/m) was more than twice the theoretically possible value as calculated by the Carter et al. (2003). 

 
 

2.16. Comfort et al. (2003) 
 

A large program was undertaken in Canada from 1991-1992 to 1999-2000 to measure the loads in the ice sheet 

adjacent to eight dam sites in Manitoba, Ontario, Quebec, and Labrador; to measure the load distribution 

between the gate and a pier and compare loads on wooden and steel stoplogs. Parallel work was conducted to 

develop analytical predictors of ice loads. 

 

Comfort et al. (2000) identified the importance of water level fluctuations to the ice loads on dam walls. They 

found the ice loads to be higher and more variable than those generated by thermal processes alone when there 

were significant, but not excessive, water level changes. The range of ice thickness during the measurement 

program was 0.3-0.7 meters. The maximum values of the measured line load resulting from thermal events with 

negligible change in water level at four dam sites in central and eastern Canada were in the range of 61 to 85 

kN/m, with average value of 70 kN/m (Comfort and Armstrong 2001, Comfort et al. 2003). The values resulting 

from thermal events, combined with significant change in water level at these four dams were in the range of 52 

to 374 kN/m, with average value of 186 kN/m (Comfort and Armstrong 2001, Comfort et al. 2003).  

 

   According to Comfort et al. (2003) the thermal ice load were comprised of two parts:  

• residual load, which are loads that were presented before the start of the loading event 

• line load increases produced by ice temperature rises, which result from air temperature rises and/or 
precipitation, particularly snowfalls. 

 

The equation for predicting the two load components separately is given as 

                                                          

ycontingencresidualthertotal LLLLLLLL ++=  (82) 

 

 

where totalLL  is the total line load, therLL  is the line load increase produced by ice temperature changes, 

residualLL  is the residual load in the ice sheet before the thermal event occurred, and ycontingencLL  is a load 

contingency that was added to ensure that the predicted line loads provide an upper bound to the measured 

line loads. 
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Although it was recognized that this approach is not strictly correct from the standpoint of ice rheological 

behaviour.   

 

Predicting residual loads residualLL   

 

 

37.2100528.0 +−= iresidual ALL  

(83) 

 

 

where iA  is the ice temperature profile area (in °C·cm) at the start of the event, and residualLL is in kN/m.  

 

Predicting line load increase due to ice temperature rise therLL  

                                                                                     

 
)(88.06.0064.0 Af
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(84) 
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A
                                                                                                  

(85) 

 

where A  is the ice temperature profile area change (°C·cm) (Figure 24), h  is the ice thickness (cm), and Dur is 

the event duration (days). 

 

Figure 24. Profile area change definition sketch (Comfort et al. 2003). 

 

The predicted loads obtained by summing therLL  and residualLL  were compared with the measured loads to 

evaluate the degree of fit and the load contingency, see Figure 25. 
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Figure 25. Measured versus predicted total thermal loads (Comfort et al. 2003). 

 

Over the range of available experimental data, the predictive error measured as the difference between the 

measured and predicted loads, can be approximated by a normal distribution with a mean of - 7 kN/m and a 

standard deviation of 13 kN/m. The overall range between the predicted load measured values was ± 23 kN/m. 

 

However, the observed range between the measured and predicted loads provides insight. A value of 25 kN/m 

for ycontingencLL would ensure that the predicted loads bound the measured loads for all events. A value of 13 

kN/m for ycontingencLL  would ensure that the predicted loads exceed the measured loads for 80 % of the events 

analysed. 

 

Additionally, the total loads due to a combination of ice temperature and water level changes were considered:  

                                                               

ycontingencwaterlevelresidualthertotal LLLLLLLLLL +++=  (86) 

 

 

where 
levelwaterLL is the water level change load. 

 

The water level change load contains the following two components: 1) the pure water change water load, 

which is the load produced solely by a water level change; and 2) the interaction load, which is the second term 

and models the observed interaction effects (with higher loads being produced when water level and ice 

temperature changes both took place): 
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where  
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and A is the average water level change amplitude ( absolute value, cm) over 2-3-days leading up to the peak 

load; h is the reservoir ice thickness (cm); A  is the profile area change (absolute value, °C·cm); iA  is the 

initial profile area change  prior to the start of the event (absolute value, °C·cm); iA  is the temperature profile 

area at the start of the events (absolute value, °C·cm); drop is the drop or rise in mean water level during the 

event (absolute value, °C·cm); and mA  is the maximum ice temperature profile area  (°C·cm), which was defined 

as h20  (in cm). 

 

Although residual loads were affected by several parameters the ice thickness and the ratio ha /  were found to 

have the greatest effect. The data were scattered, the following trends are evident: residual loads were larger in 

thicker ice and the residual loads decreased as the ratio ha /  was increased.  

 

The best fit equation for the residual loads residualLL  (kN/m) with respect to these parameters is shown in Eq. 

(92), which predicted the measured residual loads within 29 kN/m. 

 

( )
ha

hfLLresidual
/

47.1
37.0 +=  (92) 

 

 

with 

 

( ) 25−= hhf  for 25h                                                                                                         (93) 

 

 

where h  is the ice sheet thickness (cm). 

 

It should be noted that Eq. (93) is not applicable for 25h cm. 
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Eq. (92) will always produce positive values for the residual load, indication that the residual loads are 

compressive. Some of the measured residual loads were slightly negative, suggesting that there was a small 

amount of tension in the ice sheet. This probably resulted from cooling of the ice sheet at the time when the 

next event started. This was not accounted for in developing the ice load algorithms because the measured load 

tensions were small, and this approach errs conservatively.  

 

The variation between the measured and predicted loads was generally similar in magnitude over full range of 

data. As result, the prediction error is smallest, on a per cent basis, for the highest loads, which are the loads of 

greatest concern. Over the range of data, the difference between the measured and predicted loads is normally 

distributed with a mean of 0 kN/m  and a standard deviation of 45 kN/m. it was also noted that  negative errors 

are of most concern, as these represent the case where the ice load algorithms under predict the measures 

loads. The probability that the algorithms under predict the measured loads by less than 60 kN/m is 90 %.  

 

2.17.  Ekström (2006) 
 
Ekström (2006) presented a mathematical and a numerical model of ice loads on structures. In this work, a 

continuum model is used, despite the drawbacks in fracture phenomena around cracks. Additionally, to the fact 

that no creep effects are not applied in this model.   

 

The ice is assumed to be isotropic. Below the yield limit the ice is assumed to behave linear elastic and above 
perfectly plastic. The stress 𝜎 – strain 𝜀 relation is assumed as:  
 

𝝈 = 𝑫(𝜺𝒆𝒍 + 𝜺𝒑𝒍) + 𝝈𝟎 = 𝑫(𝜺 + 𝜺𝒕𝒉 + 𝜺𝟎 + 𝜺𝒑𝒍) + 𝝈𝟎 (94) 

 

 
where D is elastic matrix, 𝜀𝑒𝑙  is elastic strain vectors, 𝜀𝑡ℎ is thermal elastic strain vector, 𝜀𝑝𝑙 is plastic strain vector 

and 𝜎0 is initial stress. 
 
 A Drucker-Prager condition was used in the presented model to calculate when the stress reaches the yield 
limit.  The same basic principles are used for modelling of concrete.  
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3. Comparisons of the measured and calculated results 
 

The first approximation of thermal ice loads at different locations and climatic zones was done on the basis of 

available empirical values. The maximum measured ice load acting on the surface on the dam face, i.e., 370 

kN/m, was registered in Canada, while several measurements showed an average ice load of 150 - 200 kN/m.  

 

The first reported field investigations including in situ measurements of ice pressure showed seasonal maximum 

of 240, 200 and 300 kN/m (Fransson 1988). Also laboratory tests were carried out in order to simulate expansion 

with complete restraint. The maximum thermal ice pressure of 250 kN/m has been measured during the 

laboratory experiments by Löfquist (1954) in Sweden.  

The laboratory test series showed higher maximum pressures than the field measurements. However, the used 

rates for the temperature change during the laboratory experiments were considerable higher than usually 

expected in a thick ice cover in the field. A summary of results of some full scale and model measurements 

(carried out before 1984) was presented by Löfquist (1987) and can be found in Table 1. The maximum values of 

the thermal ice load are between 100 - 507 kN/m.  

 

Drouin (1970) made a comparison between results obtained by some of the theories using specific conditions 

that the initial temperature of ice - 40°C is raised at rate of 2.8 °C/hour, the ice cover is uniaxial restricted and 

without a snow cover, and no solar energy is absorbed. Later the list of the results tabulated by Drouin (1970) 

was extended by Kjeldgaard (1977) and Bergdahl (1978), see Table 2.  

  

However, as it was pointed by Timco et al. (1996) that these early measurements were plagued with poor 

measuring instrumentations, so obtained results were not generally reliable. More recently, there have been a 

number experiments performed to measured thermally-induced stresses using more sophisticated 

instrumentation. Also these later experiments used instrumentation at different depths within the ice sheet, so 

pressure distributions could be determined. This produces a much more accurate estimation of the thermal 

load.  

 

Comparison of five theories (Rose 1947;  Russian Code SN-76-66 (1973); Drouin and Michel 1974; Xu Bomeng 

1981, 1986; Fransson 1988) performed by Timco et al (1996) , see Figure 26, with available field data measured 

at the NRC outdoor basin (Canada) in winter 1993 and at the Paugan Dam (Quebec) during winters of 1993 and 

1994, showed a poor correlation between the calculated and measured values. None of these models for 

predicting ice pressure was capable of predicting the measured pressure within an acceptable margin of error 

(Timco et al. 1996). The difference between theoretical estimates and measured values of loads on dam walls 

may be attributed to changes in water levels in reservoirs and large wet cracks in the ice cover. 

 

Later in 1999, Timco et al. (1999) presented a summary over a number of wide structures in Canada (Baffin 

Island and Ottawa) which have been instrumented to determine the ice loads, mostly due to a thermal origin. In 

all cases, the structures were quite wide, on the order of 75 to 100 m, and surrounded by landfast ice. In total, 

42 events have been extracted and these events were on the order of several hours to several days. The width 

of these structures ranged from 97 to 124 m. Measured loads ranged from 0.4 to 16.9 MN, due to ice with a 

thickness that ranged from 0.17 to 1.45 m. (Timco et al 1999). 
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Results of in situ measurements of ice loads on Silvann dam in Narvik (Norway) during winter 1998-1999 were 

presented by Hoseth and Fransson (1999). The maximum measured ice load was 135 kN/m with ice thickness of 

0.6 m.  A semi-empirical equation by Fransson was used to estimate the thermal ice loads. Comparison of the 

measured and estimated values showed a good agreement with previously performed measurements in 

Sweden.  

 

Finally, as s it was mentioned before in this report, results from some experimental investigations in Canada 

(Morse et al. 2011) carried out during last years, showed that the calculated line load (having a peak spatially-

averaged value of about 135 kN/m) was more than twice the theoretically possible value as calculated by the 

Carter et al. (2003). This suggests that the nature of the fissure near the dam may be very important in 

predicting possible maximum loads as it may affect the nature of the instability in the ice sheet.  

 

 

Table 1. Maximum thermal ice load (Löfquist 1987). 

Authors Publication year Ice pressure, kN/m Ice thickness, m 

Royen 1922 300 1.0 

Löfquist;  

model experiment 

1954 250 0.6 

Monfore; 

field investigations 

1954   

   Winter 1947-1948  240 about 0.5 

   Winter 1948-1949  210 about 0.5 

   Winter 1949-1950  300 about 0.5 

SOU 1961:12 1961   

for bridges  100-200 - 

for dams  100-200 - 

for dams, exceptions  100-400 - 

Lindgren 1968 460 0.6 

Bergdahl; 

calculated maximum for 100 

years period in the lakes, 

Sweden  

1978   

Torne träsk (Norrbotten)  507  

Runn (Dalarna)  410  

Vidösten (Smäland)  330  

Fransson and Cederwall, 

calculated from 

measurements in the 

natural ice floe next to the 

bridge piles   

1984   

  300 1.0 

  220 0.5 
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Table 2. Thermal ice load computed by different theories (Tsinker 1995). 

Source Ice force, kPa,  for ice thicknesses  

0.45m 0.9m 

Rose (1947)a  47 86 

Monfore (1954)a  222 232 

SN76-59 (1959)a  128 255 

Drouin and Michel (1971)b S1 ice 330 390 

 Snow ice 220 270 

SN76-66 (1966) 0 m/s 30 60 

 5 m/s 310 440 

 20 m/s 410 580 

Bergdahl (1978) 0 m/s 459 752 

 5 m/s 502 830 

 20 m/s 531 829 
a Calculated from Drouin (1970) 
b Calculated from Kjeldgaard (1977)   

 

 
 

  

 
Figure 26. Comparison between measured and calculated results using the theories by theories Rose 
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1947;  Russian Code SN-76-66 (1973); Drouin and Michel 1974; Xu Bomeng 1981, 1986; Fransson 

1988 ( Timco et al. 1996). 

 

 

4. Ice load values, current standards and recommendations 

4.1. USA 
 

Previously in Design Criteria for Concrete Arch and Gravity Dams (1977) the method of Monfore and Taylor 

(1948) was suggested for using to analyze anticipated ice pressures if necessary basic data are available. An 

acceptable value for the ice load of 146 kN/m can be expected on the face of a structure for an assumed ice 

depth of 0.6 meter or more when basic data are not available to compute pressures. 

 

Kocahan and Rodionov (2003) mentioned that 150 kN/m are suggested for 25 inch (0.64m) thick ice, and 220 

kN/m for 35 inch (0.9 m) thick ice.   

 

The method of calculating thermal ice load in a confined ice sheet is presented in the report by U.S. Army Corps 

of Engineers EM 1110-2-1612 (Engineering and Design - Ice Engineering 2002), and for an unconfined case, see 

Sanderson, (1988). Calculations of typical thermal ice load are in the range of 200–400 kN/ m, whereas some of 

the measured values are in the range of 100–350 kN/m (Sanderson 1984).  

 

Except for the recommended values of effective pressure, the guidelines by U.S. Army Corps of Engineers for ice 

loads on structures are almost the same as those of the American Association of State Highway and 

Transportation Officials (AASHTO 1994), which in turn were adopted from the Canadian Standards Association 

(CSA 1988, 2000). The CSA (2000) and the AASHTO (1994) codes consider dynamic and static loads on bridge 

piers located in rivers, lakes, and coastal waters. The static loads are generated by thermal expansion or 

contraction of the ice and by fluctuations in the water levels.  

 

Some information about vertical loads is also could be found in the report by U.S. Army Corps of Engineers EM 

1110-2-1612.  

4.2. Canada  
 

In recommendations by the Canadian Department of Environmental (1971) it is assumed that the ice pressure 

varies linearly with ice thickness, and therefore recommended loads of 150 and 220 kN/m subsequently 

correspond to ice thicknesses of 0.3 m and 0.6 m, respectively. In an overview presented by Tsinker (1995), and 

later by Kocahan and Rodionov (2003), values for the the ice pressure are between 150 to 220 kN/m for fixed 

structures and 70 -75 kN/m for more flexible structures.   

 

According to "Water control structures selected design guidelines" (2004) traditional values generally 

considered suitable for static ice loads acting on a unit width of a dam or similar structures are as follows:  
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• 150 kN/m (10 kips/ft) for concrete dams and structures 

• 75 kN/m (5 kips/ft) for steel gates 

• 30 kN/m (2 kips/ft) for timber stop logs 
 

The ice thickness is normally considered to be 0.6 m thick with the ice load acting at 0.3 m below the water 

level.  

 

Recent studies on static ice loads for dams, conducted by Comfort et al. (2003), suggest that considerable higher 

ice loads than traditional values can occur when significant, but not excessive, changes in reservoir levels are 

expected. 

 

The National Research Council of Canada in Ottawa has developed an “Ice Load Catalogue” (Timco and al. 1999). 

This catalogue contains over 300 events of ice loading on offshore and coastal structures. The catalogue 

contains information on the time-based behaviour of the load as well as details of the ice conditions during each 

loading event. There is a complete range of structures that are included in the Catalogue including bridge piers, 

light piers, wharves, dams, offshore structures and natural islands.   

 

Comfort et al. (2003) have developed methods for prediction of ice load. The presented algorithms predicted 

thermal loads well, but they are less accurate for loads produced by a combination of water level and ice 

temperature changes. In the work presented by Comfort et al. (2003) the thermal ice loads were comprised of 

two parts: residual loads, which are loads that were present before the start of loadings event; and a line load, 

which increases due to ice temperature rises and/or precipitation, particularly snowfalls. To determine the ice 

loads generated by a combination of ice temperature and water level changes "water level change load" was 

additional added to the residual loads and "pure thermal loads".  

 

Stander (2006) presented the data collected at La Gabelle reservoir located in south-central Quebec, Canada, 

during the winters of 1992 and 1993. It was documented the increase in stress (about 100 to 200 kPa) due to a 

rise in water levels and showed that stress increased by about 4-5 kPa/ cm rise in stage height and were 

superimposed on thermal stresses , providing a maximum ice thrust on the order 20-25 t/m at the measured ice 

thickness of 0.75 m. He also noted that the process of tidal jacking led to displacement of the ice sheet away 

from the dam (at a rate of around 8 mm/day), and that ice growth within the fissures was the root of the 

process. He further noted that stresses created by this process were attenuated over short distances by the ice 

sheet itself.  

 
A program to evaluate ice load thrust on dams was undertaken during winters 2007-08 at La Gabelle, 2008-09 at 

Beaumont and La Gabelle, and during winter 2011 at Barrett Chute in Canada. The main objective was to 

measure ice load thrust on the dam face in order to harmonize different design load criteria. It was also 

presented a comparison of the recorded near and far-field ice thrust as well as results obtained from different 

measuring systems. Only results from experimental measurements and observations (no theoretical approach) 

are presented by  Morse et al. (2009), Taras et al. (2009), Morse et al. (2011) and Taras et al. (2011). 

 

Morse et al. (2009) and Taras et al. (2009) reported similar findings over subsequent winters at La Gabelle, and 

generally confirmed Stander’s observations. They also demonstrated a large spatial-temporal variability of 

stresses along the dam face. They postulated that stresses may be controlled by the rate of strain occurring in 
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the ice sheet. Strains are generated by water level changes, with a lesser, but significant contribution from 

thermal expansion.  Morse et al. (2009) pointed out, that in order to know the real average pressure on the 

dam, a significant amount of panels are required. It was shown that the estimated maximum average unit force 

on the dam (92 kN/m estimated from our 12 panels) could be significantly over- or under-estimated if there are 

insufficient panels to know how the loads are distributed. For example, if only 1 panel was placed on the dam, 

depending on its location, it would have measured no force at all or it may have measured a peak value of 180 

kN/m. Had 5 panels been placed on the dam, depending on their location, the estimated maximum force would 

have varied between 25 to 160 kN/m. For 9 panels, it would have been between 70 and 120 kN/m. This fact has 

important implications for determining safe design values. 

 

Taras et al. 2011 presented results of measurements of ice loads by three different types of sensors (Carter 

panels, BP gauges and Biaxial gauges) which were used in field during the last twenty years. Ice stresses were 

recorded at different depths in the ice sheet against or near the wall and at sites 5 m and 30 m away from the 

wall. Line load obtained from the three types of sensors tracked each other quite well and values are within the 

uncertainties. Significant ice load values (greater than 100 kN/m) were obtained for both dams during the 2011 

winter. The averaging of loads measured over a 25 m linear face of the dam reduced the peak load but was still 

30% larger than in the far field.  

 

Morse, (2011) the present data set from Barrett Chute does generally compliment findings published by Stander 

(2006), Morse et al. (2009) as well as Taras et al. (2009) and some other. However, in contrast to the previous 

reports from 2009, the 2011 ice loads were primarily thermally generated. In addition, the events of interest did 

not occur over a few days (as was observed previously) but rather over 6 to 8 hour periods.  The amount of rise 

measured here was on the order of 5.8 kPa/cm (as compared to 4 kPa/cm found previously at La Gabelle). 

However, the overall effect at Barrett is considerably less than that at La Gabelle, where water level fluctuations 

average four times that observed at the former site. Similarly, it was found that the fissure near the dam face at 

Barrett Chute grew by about 3.6 mm per day (5 mm during the heart of winter) as compared to 8.0 mm/day at 

La Gabelle. The data also show that quick thermal events (6-8 hours) can be significant (whereas previous field 

campaigns suggested that slow events (2-4 days) were the most important). Data here suggest a consistent rise 

of 80 kPa per degree Celsius rise in ice temperature. It was also shown to be independent of the rate of thermal 

increase. Events were generated by local flooding events, as well as global changes in air temperature. The data 

also suggest that the spatial variability of stress was much greater for water level induced events than to 

thermal events. 

 

Finally, the stresses were much greater (stresses up to 350 kPa) than those previously observed during thermal 

events. It was presented that for the ice sheet approximately 0.4 m thick, the line loads generated top out at 

140 kN/m. It should be noted here that previous thermal line loads reported by Comfort et al. and those 

estimated by Carter’s analysis suggest that an ice sheet should not be able to support more than 60 kN/m, see 

Eq. (79), prior to failure.  

 

Based on the work by Comfort et al. 2003 an Ice Loads Design Guide (Static Ice Loads On Hydro-Electric 

Structures 2003) was produced synthesizing the results obtained from various previous years, and establishing a 

statistical database that allows ice loads to be calculated in a coherent format for the long face of dam for 

various locations, water level change operational regimes, return periods and confidence levels. These ice loads 
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would be applicable to dam safety analyses. Stoplogs for various design cases  

may be also calculated using this Guide.  

 

Some information on vertical ice loads can be obtained from CAN/CSA-S6-06, Canadian Highway Bridge Design 

Code and S6.1-06, Commentary on CAN/CSA-S6-06, Canadian Highway Bridge Design Code. 

4.3. Sweden 
 

The values of the thermal ice loads in Sweden depend on the geographical regions and are in the range of 50 

and 200 kN/m (RIDAS 2008). In the south part of Sweden the value of 50 kN/m is used for Skåne, Blekinge, 

Halland, Bohuslän and Västergötland regions (fylke). Up to the line between Karlstad and Stockholm the values 

of 100 kN/m are recommended, and over this line, the values of 200 kN/m are suggested when considering the 

stability of dams. The ice loading mechanisms and statistics on ice conditions in Swedish seas (ice thickness, ice 

period etc.) were presented in the recommendation by Fransson and Bergdahl (2009).  

 

4.4. Norway 
 

In NVE (2003) it is suggested that the values of the thermal ice load in Norway are normally between 100 kN/m 

and 150 kN/m acting at 0.25 m below the higher water level (NVE 2003).  According to NVE (2003) the values of 

100 kN/m can be used without any considerations for dams in low durability class. The values lower than 100 

kN/m can be accepted in special cases if the reason for these values is presented. For example, ice pressure 

lower than 100 kN/m can be used for dams and some technical installations (gates) with a thermal heating 

system and with properly performed installation of the control equipment. 

 

In cases where the frequent water level fluctuations in the magazine occur, the combined ice pressure can be 

significantly larger than the thermal ice pressure. This could be applied, for example, for reservoirs and river 

power stations with day variations greater than ± 0.2 m. According to the Norwegian recommendations, the 

load will then largely depend on the ice, i.e. the amount of frost, and the upper limit of ice action can such cases 

is simply set to: 

 

5.1

max_ 250 hPice =  (945) 

 

 

where h is ice thickness, m. 

 

The maximum ice thickness is suggested to be equal:  

5.0

max 02.0 Fh =  (96) 

 

where F is amount of frost, °C days. Summary of amount of frost in the different regions of Norway could be 

found in the publications and manuals by Vegdirektoratet. 
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In some international publications (Kjeldgaard and Carstens 1980, Tsinker 1995) the values of ice load of 100 

kN/m for an average ice condition and 150-200 kN/m under especially unfavourable conditions are presented as 

typical values for Norway. Previously in 1970 the values of ice pressure 20 - 90 MPa  for Norway and 150-200 

MPa for Sweden were given by Starosolszky (1970).  

 

The regulations for the safety of water systems have until now been collected in a "Safety Guide for Water 

Systems" (in Norwegian - Sikkerhetshåndbok for vassdragsanlegg). In 2010 the new Dam Safety regulations 

came, which replace the previous versions of the regulations, and some of specific provisions from other 

guidelines.  

 

A research project has been carried out in Norway (EBL Kompetanse 2002). A literature study, in situ 

measurements of ice loads on Silvann dam in Narvik in the Northern Norway during winter 1998-1999 and re-

calculations of eight dams were presented in the research report.  The measured ice loads on Silvann dam 

ranged from 50 to 135 kN/m with ice thickness that ranged from 0.51 to 0.62 m (Hoseth and Fransson 1999).  

 

Ice pressure measurements in a small Treserviour at Taraldsvikfossen, also near Narvik , have been ongoing 

since winter season 2012-2013. The reservoir is located 213 m above sea level and has a surface area of 

approximately 1000 m2, is not in service and maintained as a back-up for drinking water supply. It is confined by 

a straight-sided concrete dam, 6 m high. A fraction of the waters of a creek, Taraldsvikelva, enters the reservoir 

during most of the year, keeping the water in the reservoir at the level of the spill way. The water level is 0.5 m 

below the dam surface, except during surges (Petrich et al. 2014). Ice forms in the reservoir each year in fall and 

persists through approximately May, with the highest loads seen typically during the first three months of a year 

(https://ndat.no/dam/).  

 

Pressure cells were frozen into the ice and recorded both compression and, to a limited degree, tension. 

Different configurations and locations of the cells along the dam and in the entire reservoir were presented.  

Recorded pressures at a single measurement cell ranged from about 0.2 MPa in compression to -0.1 MPa in 

tension for the thermal loading. Various effects resulted in stresses at the reservoir, including thermal expansion 

and water level fluctuations or other mechanical events, are presented. The dominance of one or other, or the 

combination of those processes varied between seasons (Petrich et al. 2014; Petrich et al. 2015, Petrich et al. 

2016, O'Sadnick et al. 2016). Unfortunately, the values of the line load are not clearly presented. The preliminary 

calculated line loads are around 100 kN/m (Petrich and Arntsen 2018 ) and, based the data available from the 

web-site (April 2019 , https://ndat.no/dam/), do not exceed 150 kN/m.  

 

An attempt to present trends and regional differences in thermal ice loads on dams which are expected to be 

significant in Norway, was made by Petrich and Arntsen (2018).  According to presented estimations, locations 

with less than freezing degree days of 500 °C days are expected to see seasonal maximum lines loads rarely 

exceeding 100 kN/m, while locations with less than 800 °C days will rarely exceed 150 kN/m. With the exception 

of reservoirs at a few locations, 200 kN/m are expected to be rarely exceeded anywhere in Norway in the 2010s. 

The highest line loads are expected in Northern Norway, in particular in the plateaus of Finnmark. Other areas of 

significant line loads lie in the mountains along the Norwegian-Swedish border and inland in Southern Norway. 

Reservoirs near the coast and East of the mountains see low to moderate ice loads.  The long-term trend is 

toward lower ice loads. The regional dependence of the magnitude of the trend is non-trivial, suggesting 

changing climate has regionally different fingerprints throughout Norway. 

https://ndat.no/dam/
https://ndat.no/dam/
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4.5. Russia 
 

The comparison of calculated results with measured data has been performed by Timco et al. 1996 using among 

others the Russian recommendation SN-76-66 which is almost 50 years old. Russian standard SNiP 2.06.04.82 

(1995) originating from river ice actions on bridge piers is an updated version of SN-76-66. Previously, SNiP 

2.06.04.82 (1995) was applied to offshore applications. 

 

Overview over past and current Russian standards, guidelines and recommendations are presented below.  

 

Previous versions of the Russian Standard:  

[1] Guidelines for determination of river ice loads on structures СН 76-66 -1966 - Указания по определению 

ледовых нагрузок на речные сооружения СН 76-66 - 1966 

[2] Loads and impacts on Hydraulic structures (from waves, ice and ships) SNiP II-57-75 – 1976 -Нагрузки и 

воздействия на гидротехнические сооружения (волновые, ледовые и от судов) SNiP II-57-75 – 1976 

[3] Loads and impacts on Hydraulic structures (from waves, ice and ships) SNiP II-57-75 – 1982-Нагрузки и 

воздействия на гидротехнические сооружения (волновые, ледовые и от судов) SNiP II-57-75 – 1982 

 [4] Loads and impacts on Hydraulic structures (from waves, ice and ships) SNiP 2.06.04-82* - 1982-Нагрузки и 

воздействия на гидротехнические сооружения (волновые, ледовые и от судов) SNiP 2.06.04-82* 

[5] Loads and impacts on Hydraulic structures (from waves, ice and ships) SNiP 2.06.04-82* - 1995 (not approved 

version) -Нагрузки и воздействия на гидротехнические сооружения (волновые, ледовые и от судов) SNiP 

2.06.04-82* - 1995 

 

Current Russian version:  

[6] Loads and impacts on Hydraulic structures (from waves, ice and ships) SNiP 2.06.04-82*, SP 38.13330.2012 – 

2014 

 

Additionally: 

Р 31.3.07-01. Guidelines for the calculation of loads and impacts from waves, ships and ice on sea hydraulic 

engineering constructions, 2001 -Р 31.3.07-01. Указания по расчету нагрузок и воздействий от волн, судов и 

льда на морские гидротехнические сооружения, 2001 

Text STO Gazprom 2-3.7-29-2005 method of calculating ice loads on the ice-resistant fixed platform -Текст СТО 

Газпром 2-3.7-29-2005 Методика расчета ледовых нагрузок на ледостойкую стационарную платформу. 

 

Using SNiP 2.06.04.82 (1995), the horizontal thermal ice load could be calculated as a function of the air 

temperature difference and corresponding "reduction ice thickness". This reduction ice thickness could be 

estimated as a sum of snow thickness, average ice thickness measured during the period of changing in the air 

temperature and additional thickness of ice depended on wind velocity. Ice load acts at 0.25hc m below the 

water level, where hc is an average ice thickness measured during the period of changing in the air temperature.  

 

Vertical ice loads by SNiP 2.06.04.82 (1995) can be determined as a non-linear function of the maximum ice 

thickness and the water level changes. It should be noticed that the updated version of SNiP 2.06.04.82 (1995) 



Norut Narvik REPORT 2019/19 

53 

 

contents a simplified approach for estimation of both horizontal and vertical loads compared to the previous 

version SNiP 2.06.04.82 (1982).   

 

Recommendations CO34.21.145-2003 (applied from July 2005) presents only an updated approach for 

calculations of dynamic loads on the hydro-electrical structures and bridges from moving ice floe and ice ridges.  

 

The last version SNiP 2.06.04-82*, SP 38.13330.2012 – 2014 [5] gives the guidelines for calculation of:  

- Horizontal ice load (MN/m) due to the thermal expansion (paragraph 7.13) 

- Vertical ice load (MN/m) due to change in the water level   

 

- Estimation of line ice load by SNiP SP 38.13330.2012 – 2014  

 

The horizontal line load in MPa/m2 due to the thermal expansion could be obtained by the graphical 

representations presented on the figures in SNiP 2.06.04-82* - 1995 and  SP 38.13330.2012 – 2014. 

 

The values should be selected based on three parameters: values of the change in the air temperature (-10C, -

20C, -30C), the average ice thickness hi at the time of the considered thermal event and the apparent ice 

thickness ℎ𝑎𝑝𝑝. The interval of the air changing should not be less than 5 hours and not more than 20 days.  

The apparent ice thickness could be estimated as:   

 

𝒉𝒂𝒑𝒑 = 𝒉𝒊 + 𝟏. 𝟒𝟑 ∙ 𝒉𝒔 + 𝒉𝒂𝒅𝒅 (957) 

         

The values of the additional ice thickness ℎ𝑎𝑑𝑑 could be found in Table 3 for different values of the air 

temperature changing and the average wind speed, m/s. The values of the additional ice thickness could be 

found in the table for the case when ice is covered by snow and for different wind speed values (1-10 m/s).  

The total line load in kN/m could be found from Figure 27.  
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Figure 27.  Estimation of line ice load (SNiP SP 38.13330.2012 – 2014).  

Table 3  

 
Previous versions of the Russian standard (SNiP 2.06.04-82*, SNiP II-57-75) include some of the mathematical 

basic for calculation of the thermal loads. 

 

- Estimation of line ice load by SNiP 2.06.04-82*-1982 

 

According to SNiP 2.06.04-82*, the line load (MN/m) on the structure due to the thermal expansion of ice 

(salinity less than 2‰) could be determined by following formula:  
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𝒒 = 𝒉𝒎𝒂𝒙𝒌𝒑𝒕 (98) 

 

where ℎ𝑚𝑎𝑥 is maximal ice thickness in m, k is coefficient dependent on the length of the ice edge and 𝑝𝑡 is ice 

pressure in MPa.  

The coefficient k is set to unit for the ice length less or equal to 50. For the ice length of 70, 90 and 120 m, the 

coefficients are 0.9, 0.8, 0.7, respectively. For the ice length of 150 m and more, the coefficient is 0.6.    

Then the ice pressure, MPa, is calculated as sum of elastic and plastic deformations: 

 

𝒑𝒕 = 𝟎. 𝟎𝟓 + 𝟏𝟏 ∙ 𝟏𝟎−𝟓𝝂𝒕,𝒂𝜼𝒊𝝋, (99) 

  

where  𝜈𝑡,𝑎 is maximum change of the air temperature for 6 hours, 𝜂𝑖  is coefficient of ice viscosity and 𝜑 is 

dimensionless parameter determined by the graphs in the standard, see Figure 28. The coefficient of ice 

viscosity 𝜂𝑖   could be determined by equations: 

 

for  𝒕𝒊 ≥ −𝟐𝟎℃ : 𝜼𝒊 = (𝟑. 𝟑 − 𝟎. 𝟐𝟖𝒕𝒊 + 𝟎. 𝟎𝟖𝟑𝒕𝒊
𝟐)𝟏𝟎𝟐 (100) 

 

for  𝒕𝒊 < −𝟐𝟎℃ : 𝜼𝒊 = (𝟑. 𝟑 − 𝟏. 𝟖𝟓𝒕𝒊)𝟏𝟎𝟐    (101) 

 

  

 

where 𝑡𝑖 is the temperature of ice, ℃, calculated by: 

 

𝒕𝒊 = 𝒕𝒃𝒉𝒓𝒆𝒍 +
𝝂𝒕,𝒂 𝒕

𝟐
𝝍 (102) 

 

 

 here:  𝑡𝑏 is initial air temperature, ℃ 

  t is time interval, h, between two measurements of air temperature 

                            ℎ𝑟𝑒𝑙  is relative thickness of ice covered by snow, m: 

 

𝒉𝒓𝒆𝒍 =
𝒉𝒎𝒂𝒙

𝒉𝒓𝒆𝒅
 (103) 

 

     

    ℎ𝑟𝑒𝑑 is apparent ice thickness, m, which could be estimated as:   

 

                                                                      𝒉𝒓𝒆𝒅 = 𝒉𝒎𝒂𝒙 + 𝟏. 𝟒𝟑 ∙ 𝒉𝒔,𝒎𝒊𝒏 +
𝟐.𝟑

𝜶
 (104) 

 

 

where 

ℎ𝑠,𝑚𝑖𝑛is minimum snow thickness for considered time, m, based on the 

measurements. Otherwise, the ℎ𝑠,𝑚𝑖𝑛 = 0 
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𝛼 is coefficient of thermal conductivity (at the air-snow surface), W/m2, 

estimated by empirical formulas:  

With snow :   

                                                                                 𝜶 = 𝟐𝟑√𝝂𝒘,𝒎 + 𝟎. 𝟑 (105) 

Without snow :  

                                                                                 𝜶 = 𝟔√𝝂𝒘,𝒎 + 𝟎. 𝟑 (106) 

  

where 𝜈𝑤,𝑚 is average weed speed, m/s.  

𝜓 is dimensionless parameter determined by the graphs in the standard, 

see Figure (28) 

 

Both 𝜓  and 𝜑  could be estimated using the apparent ice thickness  ℎ𝑟𝑒𝑙  and factor 𝐹0: 

                                                                                 𝑭𝟎 =
𝟒∙𝟏𝟎−𝟑𝒕

𝒉𝒓𝒆𝒅
𝟐  (107) 

 

 

Load due to the inclined side of the structure (angles less than 40⁰) could be ignored.  

 

For salinity ice 𝑆 ≥ 2‰, the line load could be estimated by equation (96) using the ice pressure value 𝑝𝑡 =

0.1 MPa. 

 

No values of typical thermal or vertical ice loads are presented in the Russian Standards. In some literature 

sources (Starosolszky 1970, Tsinker 1995 and Kocahan and Rodionov 2003) it was mentioned that in Siberian 

regions of Russia ice pressure of 300 kPa was commonly used whereas for somewhat less severe conditions, 

such as Caucasus and St. Petersburg region, ice pressures ranging from 150 to 200 kPa are common used.   

 

Assume the air temperature is changed from to 0 C to - 10C ( ∆𝜃 = 10°𝐶 ), duration of the thermal event is 6 

hours, the ice thickness hi  is 0.8 m, wind speed is 1m/s and no snow on the ice surface. Based on the curves in 

the SNiP SP 38.13330.2012 – 2014, the thermal ice load is estimated to be about 160 kN/m. Unfortunately, in 

the case of the show cover of 10 cm, the line ice load could not be estimated by the graphs because of the 

average and apparent ice thicknesses in the graphs presented only up to 1.2 m, but the calculated value of 

happ=1,4 m in the current example. If the speed of wind is suggested to be 5 m/s, the estimated ice load is 

under 100 kN/m.  

 

The line ice load was also calculated by SNiP 2.06.04-82* - 1982.  As presented in Table 4, the values of 

calculated line ice loads are under 50 kN/m. As it could be seen from this example, the values of ice loads 

calculated by SNiP 2.06.04-82* - 1982 are much lower than values obtained by new Russian standard. However, 

the background for the curves in Figure 27 are not presented.  
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Figure 28.  Estimation of the paraments in the model (SNiP 2.06.04-82*-1982). 

 

 Table 4 Line ice load calculated by SNiP 2.06.04-82* - 1982 

 Without snow With snow 

hmax, m 0.8 0.8  

hred,m 1.14 1.03  

hrel ,m 0.70 0.78 

F0 0.0186 0.0226 

𝜓   Approx. 0.05 Approx. 0.13 

𝜑 Approx. 0.01 Approx. 0.05 

Ice pressure kN/m2 51.7  58.7  

Line ice load kN/m 41.3  46.95 
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4.6. Other countries 
 

Finland 

A Finnish Guideline for the loads of structures (Finnish RIL-144, (2001) is mentioned in some publications. 

However, this standard is available only in Finnish, and currently, no information in English have been found 

about values and calculation models for determination of the thermal ice loads.   

 

Austria 

According to EBL Kompetanse report (2002), the ice load on the dam can be estimated as 146 kN/m based on 

the criterion which is suggested for the design phase. However, for safety calculations and other analyses during 

drift operation of the dams, the ice loads on the dam face can vary between 14- 48 kN/m.  

 

Japan and China 

In the EBL Kompetanse report (2002) it was mentioned that the comparison of the thermal ice load for different 

countries including Japan and China, was also presented by Billfalk et al. (1996). Unfortunately, this comparison 

contents some errors and incorrect information. 

  

5. Summary  
 

An ice sheet will expand when it is subjected to an increase in temperature. During winter time, the air 

temperature continually changes, and as results, ice sheet expansion leads to a load on structures. Knowledge of 

the level of load is important for the design of hydroelectric dams and water storage reservoirs.  

 

The first approximation of the thermal ice loads at different locations and climatic zones was traditionally done 

on bases of available empirical values. Several theories have been proposed to calculate the thermal ice loads 

but, unfortunately, the comparison of some models with measured data showed a wide disparity, and no model 

predicted the measured loads (Timco et al. 1996). 

 

The basis for the calculation of the stress and strain in the ice can be a rheological equation where the rate of 

strain is given as a function of stress and the rate of change of stress. Furthermore, the rate of strain is a 

function of the rate of change of ice temperature. When the strain rates at different levels of the ice cover and 

the rheological model for ice are known; and calculation of the temperature variation is presented, the thermal 

pressure can be computed numerically step by step. So, generally it seems that there are two main steps 

towards the estimation of thermal ice pressure are estimation of the ice temperature or its derivative and 

calculation of the stress-strain state in the ice.  

 

Already in 1922, Royen (1922) proposed a simple analytical expression of the maximum pressure as a function of 

initial temperature and the rate of the temperature rise. The creep law suggested by Royen was based on 

experimental creep curves, and the temperature is assumed to be uniform over the ice thickness.  
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Several experimental investigations were carried out in the period until 1960, and the results of these 

experiments were usually summarized in graphs and diagrams. These earlier laboratory measurements with 

uniaxial load and only a few in situ measurements were probably made with poor instrumentation as such the 

results were not generally reliable. The results were used later by others research for determination of the 

constants and coefficients in the models and for verifying of proposed rheological and temperature models. 

 

Several rheological models have been used to calculate thermal ice pressures, given for the rate of change of the 

temperature in ice. The laboratory investigations presented after 1968 contained usually tests with both uniaxial 

and biaxial load. To present the results of the laboratory tests, Lindgren tried to fit the parameters in a linear 

viscoelastic model composed of a Maxwell and a Kelvin-Voigt element couplet in series. Drouin and Michel 

(1971) used a nonlinear model considering the number and multiplication rate of dislocations in the ice. For 

calculation of the temperature profile in the ice for arbitrarily changes of air temperature a graphical variant of 

Schmidt difference scheme was used in Lundgren model (1964) while the model proposed by Drouin and Michel 

(1971) predicts rate of temperature increase at various ice depth assuming a sinusoidal temperature rise.   

 

Some of investigators acknowledged that linear viscous-elastic models give an unsatisfactory description of the 

stress-strain relationship of ice. Bergdahl (1978) proposed a simple nonlinear rheological model composed of a 

linear spring in series a nonlinear dashpot. The Arrhenius equation was employed to describe the effect of 

temperature on the creep rate of ice. This model compared to the previously models, appears to best describe 

the behaviour of ice with the least numbers of unknown parameters and further it was improved by some 

researchers. 

 

Cox (1984) modified the Bergdahl’s (1978) model by introducing a new strain rate function based on the 

experimental work by Drouin and Michel (1971) which showed a very strong temperature dependence of creep 

rate, and additionally, a numerical algorithm based on Newton's method was used to solve the nonlinear 

equation. The proposed rheological model by Fransson (1988) for S1 ice is basically the same as the model by 

Bergdahl (1978) and Cox (1984). However, one difference is that one empirical constant adjusted to field data.  
 

The differential equation can be solved numerically using a finite difference scheme. However, the lack of an 

analytical solution of the nonlinear rheological equation is one obstacle that has to be overcome with help of the 

computer calculations. Another obstacle is that the constants cannot be obtained from simple material tests on 

the actual ice type passing the transient creep. In this situation it was suggested by Fransson (1988) to use an 

approximate stress model using the Royen's empirical equation which was expressed in a more general way, 

with nonlinear dependence of the temperature. In addition, Fransson (1988) proposed a two-step process for 

determination of the ice pressure. A simple analytical expression was employed for determination of the 

maximum ice pressure at the centre of ice cove by assuming a nonlinear pressure distribution through the ice. 

The temperature rise at the centre of the ice was approximated by a straight line.  

 

During several decades the most severe uncertainties about the calculation of ice pressure concern cracks in the 

ice cover. The methods for calculation of temperature distribution and deformation of the ice could be accurate 

for an ice cover without cracks. Metge (1976) presented the basic assumptions about cracks in the ice and drew 

some important conclusion which should be incorporated into the methods for calculating thermal ice pressure. 

It is still difficult to present how much the calculated maximum pressure should be reduced due to effects of the 
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dry cracks and/or the weakness of the ice bridges in the wide cracks. However, an attempt to present influence 

of dry and wide cracks was made by Fransson (1988).  

 

Only some of the proposed models were based on fitting of the field data and were presented as an empirical 

formula to predict the pressure of ice sheet. Usually these empirical models can require several input 

parameters. In most situations very limited information is available for the actual ice conditions at the location 

of the structure. A simple design formula that may serve as guidance for engineers can and should be 

established for calculation of thermal-induced ice pressure on the structures (Fransson 1988).  

 

Carter et al. (1998) proposed that thermal ice loads are limited by the instability of ice blocks between two or 

three parallel cracks along a dam wall. Their measurements indicate that the ice pressure changes with 

increasing water level; the maximum values were about 150 kN/m.  

 

A number of research programs have been conducted over the past 15 years to investigate ice loads on hydro-

electric dams. Comfort et al. (1996, 2003) completed an 11 years investigation. Carter et al. carried out 

measurements as well for Hydro-Québec (Carter et al., 1997, 1998).  According to Comfort et al. (2003) the 

thermal ice load were comprised  of two parts: residual load, which are loads that were presented before the 

start of the loading event and line load increases produced by ice temperature rises, which result from air 

temperature rises and/or precipitation, particularly snowfalls. Although it was recognized that this approach is 

not strictly correct from the standpoint of ice rheological behaviour. It was suggested that considerable higher 

ice loads than traditional values can occur when significant, but not excessive, changes in reservoir levels are 

expected. The algorithm for calculation of the loads produced by a combination of water level and ice 

temperature change was presented, and factors controlling the thermal loads are discussed.  

 

In some countries, such as Canada and USA, the recommended thermal ice loads varies between 150 and 220 

kN/m depended on ice thicknesses. The values of the thermal ice loads in Sweden depend on the geographical 

regions and are in the range of 50 and 200 kN/m. The maximum thermal ice pressure of 250 kN/m with ice 

thickness of 0.6 m has been measured during the laboratory experiment by Löfquist (1952 or 1954) in Sweden. 

 

The values of ice pressure between 150-300 kPa are described in the literature for Russia. However, these values 

are presented from old sources dated from 1966 - 1970. The values of the thermal and vertical ice loads can be 

calculated using equations in the Russian standard.  

 

In Norway, the values of the thermal ice loads are between 100 and 150 kN/m. In most cases the value of 100 

kN/m (and sometimes lower) can be accepted for calculations for all regions in Norway. However, the measured 

maximum ice load value was registered as 135 kN/m during the investigation at Silvann dam in the Northern 

part of Norway. Previously it was suggested, that new measurement programs should be performed in Norway 

to obtained a better basis for development of the design recommendations, see EBL Kompetanse report (2002). 

New measurements have been done since 2012 in the Northern Norway. The results showed, that the 

preliminary calculated line loads are around 100 kN/m und do not exceed a maximum value of 150 kN/m.  

  

The Ice Loads Design Guide with a calculation program (Static Ice Loads On Hydro-Electric Structures 2003) was 

produced synthesizing the results obtained from various previous years in Canada, and establishing a statistical 
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database that allows ice loads to be calculated in a coherent format for the long face of dam for various 

locations, water level change operational regimes, return periods and confidence levels.  

 

Whereas recent studies (Carter et al. 1998 and Comfort et al. 2003) indicate that ice forces could be well above 

those recommended by the Canadian Dam Association (150kN/m), some public agencies have, in some cases, 

actually reduced their design values for smaller dams to 100 kN/m. If these dams are truly unsafe, mitigation 

measures should be defined and applied as soon as possible (Morse et al. 2009). On the other hand, should ice 

forces not present a safety risk, then investing in dam reinforcement may be a misuse of public funds. Thus, it is 

important to know what constitutes a safe, realistic and practical design value for ice thrust against linear 

structures. Due to this need a new project is carried out now in Canada to determine reservoir ice forces on 

dams. 
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