
Citation: Ali, W.; Shaheen, T.; Toor,

H.G.; Akram, F.; Uddin, M.Z.;

Hassan, M.M. Selection of Investment

Policy Using a Novel Three-Way

Group Decision Model under

Intuitionistic Hesitant Fuzzy Sets.

Appl. Sci. 2023, 13, 4416. https://

doi.org/10.3390/app13074416

Academic Editors: Hong-Zhong

Huang and Kiril Tenekedjiev

Received: 2 February 2023

Revised: 9 March 2023

Accepted: 24 March 2023

Published: 30 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Selection of Investment Policy Using a Novel Three-Way Group
Decision Model under Intuitionistic Hesitant Fuzzy Sets
Wajid Ali 1 , Tanzeela Shaheen 1, Hamza Ghazanfar Toor 2 , Faraz Akram 2 , Md. Zia Uddin 3

and Mohammad Mehedi Hassan 4,*

1 Department of Mathematics, Air University, E-9, Islamabad 44000, Pakistan
2 Biomedical Engineering Department, Riphah International University, Islamabad 44000, Pakistan
3 Software and Service Innovation, SINTEF Digital, 0373 Oslo, Norway
4 Information Systems Department, College of Computer and Information Sciences, King Saud University,

Riyadh 11543, Saudi Arabia
* Correspondence: mmhassan@ksu.edu.sa

Abstract: In today’s fast-paced and dynamic business environment, investment decision making
is becoming increasingly complex due to the inherent uncertainty and ambiguity of the financial
data. Traditional decision-making models that rely on crisp and precise data are no longer sufficient
to address these challenges. Fuzzy logic-based models that can handle uncertain and imprecise
data have become popular in recent years. However, they still face limitations when dealing with
complex, multi-criteria decision-making problems. To overcome these limitations, in this paper, we
propose a novel three-way group decision model that incorporates decision-theoretic rough sets and
intuitionistic hesitant fuzzy sets to provide a more robust and accurate decision-making approach
for selecting an investment policy. The decision-theoretic rough set theory is used to reduce the
information redundancy and inconsistency in the group decision-making process. The intuitionistic
hesitant fuzzy sets allow the decision makers to express their degrees of hesitancy in making a
decision, which is not possible in traditional fuzzy sets. To combine the group opinions, we introduce
novel aggregation operators under intuitionistic hesitant fuzzy sets (IHFSs), including the IHF
Aczel-Alsina average (IHFAAA) operator, the IHF Aczel-Alsina weighted average (IHFAAWA )

operator, the IHF Aczel-Alsina ordered weighted average (IHFAAOWA ) operator, and the IHF
Aczel-Alsina hybrid average (IHFAAHA ) operator. These operators have desirable properties
such as idempotency, boundedness, and monotonicity, which are essential for a reliable decision-
making process. A mathematical model is presented as a case study to evaluate the effectiveness of
the proposed model in selecting an investment policy. The results show that the proposed model
is effective and provides more accurate investment policy recommendations compared to existing
methods. This research can help investors and financial analysts in making better decisions and
achieving their investment goals.

Keywords: intuitionistic fuzzy sets; intuitionistic hesitant fuzzy sets; three-way decision; decision-theoretic
rough sets; Aczel-Alsina aggregation operators; decision making

1. Introduction

Many scientists are currently researching problems related to vagueness [1]. Discov-
ering effective knowledge from ambiguous data has become a major area of research [2],
leading to the development of several techniques for identifying uncertain information,
such as fuzzy set (FS) theory [3], quotient space theory [4], and rough set theory (RST) [5].
These theories aim to address issues based on ambiguity and uncertainty. The theory of
FSs, created by Zadeh [3], has been extended by many investigators according to their
needs [6–8]. Every fuzzy set has a pair of components that include a function of membership
providing a membership grade in the range of [0, 1]. In 1986, Atanassov [9] proposed the
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concept of an intuitionistic fuzzy set (IFS) to express ambiguous and complex information
with the aid of membership as well as non-membership grades, where the sum of both
grades cannot exceed 1. Another approach to cope with vagueness was formulated by
Torra [10], who described a hesitant fuzzy set (HFS). An HFS agrees to the membership
grade holding a set of possible values of the interval from 0 to 1 and is an expanded form
of FS. The idea of HFS is widely applied in several complications. Most scholars have
critically investigated HF data accumulation procedures and their effects in DM [11–13].
Recently, Tahir et al. [14] introduced the concept of an intuitionistic hesitant fuzzy set
(IHFS), which is a fusion of IFS and HFS. In IHFS, the grades reflect the structure of a
collection of possible values ranging from [0, 1]. IHFS has developed as a powerful tool for
explaining the fuzziness of DM complexities.

Aggregation operators play a vital role in fuzzy logic, as they combine multiple fuzzy
sets into a single value that represents overall fuzzy information. Yager [15,16] proposed
power average and power geometric aggregation operators, while Zhang et al. [17] pre-
sented Dombi power Heronian mean aggregation operators. Xu et al. [18,19] defined some
novel geometric aggregation operators for IFSs, and Ayub [20] extended Bonferroni mean
aggregation for a dual hesitant environment. Hadi et al. [21] explained the Hamacher
mean operators for selecting the best option during decision making. Tahir et al. [14]
established power aggregation operators for IHFSs for decision making. Triangular norms
(T.N) and triangular co-norms (T.CN) are two types of binary operations used in fuzzy logic
to combine fuzzy sets. These are based on triangular-shaped membership functions that
represent uncertainty and vagueness. The T.N was introduced by Menger [22], and new
procedures were introduced by Aczel and Alsina [23] under the names Aczel-Alsina T.N
and Aczel-Alsina T.CN. Ahmmad et al. [24] produced Aczel-Alsina aggregation operators
for the IFR environment, while Senapati et al. [25] explored novel Aczel-Alsina opera-
tors under hesitant fuzzy information and applied them in cyclone disaster assessment.
Ashraf et al. [26] proposed single-valued neutrosophic Aczel-Alsina and utilized them in
the decision-making process. Wang et al. [27] worked on the Aczel-Alsina Hamy mean op-
erators for T-spherical information. Other researchers have also explored the Aczel-Alsina
aggregation operators in depth [28–31].

The three-way decision (3WD) model, an extension of the rough set theory (RST), is
a valuable tool for uncertain classification problems [32,33]. By using a set of thresholds,
the 3WD model divides the universe into three zones: acceptance, deferment, and rejec-
tion [34]. Thus, three-way decision theory has found numerous applications in solving
complex problems in various fields [35,36]. DTRSs, a more extensive version of RST, have
played a significant role in improving three-way decisions by incorporating the Bayesian
decision technique [37]. Proposed by Yao et al. [38], DTRSs involve rational decision se-
mantics that reflect relevant risks. To obtain 3WD with DTRSs, the minimum total risk is
calculated. Zhang et al. [39] introduced the technique for ranking alternatives based on
DTRSs, while Qian et al. [40] extended this concept to multi-organizational DTRSs. In an
attempt to integrate different theories, Liu et al. [41] introduced fuzzy data with three-way
decision-theoretic rough sets, while Ali et al. [42] focused on DTRSs with single-valued
neuromorphic data. Furthermore, several models and approaches for DTRSs have been
proposed by experts [43,44].

After conducting the analysis mentioned above, we have developed a new, more
generalized, effective, and advanced approach. We created novel Aczel-Alsina aggregation
operators for intuitionistic hesitant fuzzy data and further developed a three-way decision
model based on the concept of decision-theoretic rough sets for IHFSs. Figure 1 presents
a flow chart of the complete details of the proposed model. This paper contributes in the
following ways:

1. First, we presented novel aggregation operators and basic operational laws of IHFSs,
exploring the fundamental notion of Aczel-Alsina T.N and T.CN . Using Aczel-
Alsina T.N and T.CN , we developed a series of novel operators, such as IHFAAWA
operators, and verified their novelty with some properties.
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2. To test the feasibility and reliability of our proposed operators, we designed a few spe-
cial cases, including IHFAA-ordered weighted (IHFAAOWA ) and IHFAA-hybrid
weighted (IHFAAHWA ) average operators with their fundamental properties.

3. Additionally, we designed a novel three-way decision-theoretic rough set model in
this article. This approach utilized new steps for 3WD, including the design of Aczel
Alsina aggregation operators and the development of score function and accuracy
function to classify participants.

4. Using the proposed model, we provided a case study of business, where making
the best decision for investment is a significant issue for investors. To address this
issue, we developed a model consisting of different companies, and according to the
Bayesian theory of risk, we discussed cost parameter tables from experts in detail
under the variation of conditional probability.

5. We discussed an influenced study to visualize the effectiveness of the parametric
values of the conditional probabilities on the results of our presented model.

6. Finally, we compared our developed approach with existing models of AOs to check
its validity, authenticity, and effectiveness.
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The rest of the paper is organized as follows: we quickly go over some of the core
concepts of Aczel-Alsina T.N s and some generalizations of fuzzy sets and revisit the
idea of DTRS in Section 2. In Section 3, we reorganize three-way decision rules based on
DTRS using aggregation operators for IHFNs. In Section 4, we describe the series of novel
Aczel-Alsina aggregation operation rules for the IHFNs, such as the IHF Aczel-Alsina
weighted averaging (IHFAAWA ) operator, the IHF Aczel-Alsina order weighted averag-
ing (IHFAAOWA ) operator, and the IHF Aczel-Alsina hybrid averaging (IHFAAHA )
operator, and their useful features. In Section 5, we develop an algorithm for handling
3WD difficulties, where the characteristic values are represented as IHF data using the
IHFAAWA operator. In Section 6, an illustration of choosing a suitable company for
investment evaluated by the suggested model is also given. We discuss how a parameter
affects the classification order of options, and, to show the superiority and sensitivity of
the developed approach, a comparative analysis is added in Section 7. Finally, Section 8
concludes the paper.

2. Preliminaries

In this section, we review several important theories of intuitionistic hesitant fuzzy
sets and some concepts related to Aczel-Alsina T.N s, T.CN , and aggregation operators.
The Table 1 is added to show the description of symbols used in the article.

Table 1. List of abbreviations.

Symbols Description Symbols Description
FS Fuzzy Set Ai Alternatives

IHFS Intuitionistic Hesitant
Fuzzy Sets Ω State of Yes for Action

RS Rough Set ¬Ω State of No for Action

DTRS Decision-Theoretic
Rough Set MG Membership Grade

3WD Three-Way Decision NMG Non-Membership Grade
DM Decision-Making ξ Cost Parameter Values
Scr Score Function Hac Accuracy Function

2.1. A Basic Review of Intuitionistic Hesitant Fuzzy Sets

Atanassov [9] proposed the theory of IFS as an extension of FS. While FS provides the
degree of membership of an object in a specific set [0, 1], IFS provides both the degree of
membership and the degree of non-membership simultaneously.

Definition 1 [9]. An IFSW on U is denoted via the two mappings m(e) and n(e). Mathematically,
it is shown by the following structure:

W = 〈e, mW (e), nW (e))|e ∈ U〉 (1)

where mW (e) : U → [0, 1] and nW (e) : U → [0, 1] represents the MG and NMG including the
condition 0 ≤ m(e) + n(e) ≤ 1, for each e ∈ U.

For every IFSW in U, we denote pW (e) = 1−mW (e)− nW (e), ∀ e ∈ U. Then pW (e)
is called as the indeterminacy grade of e toW .

Tahir et al. [14] introduced a more generalized version of IFSs by combining them with
HFS, known as IHFSs. In IHFSs, the MG and NMG represent the collection of elements
from [0, 1]. The fundamental definition and operations are provided below.

Definition 2 [14]. An IHFSW on U is symbolized via the two mappings m(e) and n(e). Mathe-
matically, it is shown by the following structure:

W = 〈e, mW (e), nW (e))|e ∈ U〉 (2)
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where mW (e) and nW (e) are collection of several numbers from [0, 1], indicating the possible MGs
and NMGs of the object e ∈ U to the collectionW with the condition that 0 ≤ max(mW (e)) +
max(nW (e)) ≤ 1, respectively.

For convenience, throughout the studies, (m(e), n(e)) is considered as IHFN.

Definition 3. For any IHFNs W = (mW , nW ), the score Scr(W) and accuracy Hac(W)
functions are defined and denoted as

Scr(W) =
S(mW )− S(nW)

2
, Scr(W) ∈ [−1, 1] (3)

Hac(W) =
S(mW) + S(nW)

2
, Hac(W) ∈ [0, 1] (4)

where, S(mW) =
sum o f all elements in (mW )

order o f (mW )
, S(nW) =

sum o f all elements in (nW )
order o f (nW )

.

Definition 4 [14]. SupposeW1 = (m1, n1),W2 = (m2, n2) are intuitionistic hesitant fuzzy sets
(IHFSs), and a few fundamental operations are characterized as follows:

(i) W1 ⊕ W2 = ∪a1ε m1
a2ε m2
b1ε n1
b2ε n2

({a1 + a2 − a1a2}, {b1b2})

(ii) W1 ⊗ W2 = ∪a1ε m1
a2ε m2
b1ε n1
b2ε n2

({a1a2}, {b1 + b2 − b1b2 )

(iii) λW1 = ∪aεm1
bεn1

(
1− (1− a)λ, bλ

)
, λ > 0

(iv) Wλ
1 = ∪aεm1

bεn1

(
(a)λ, 1− (1− b)λ

)
, λ > 0

(v) W c
1 = (bn1 , am1)

Definition 5. LetWj =
(
mj , nj

)
be a group of IHFS and the weights j = ( 1, 2, . . . , n)

T

forWj, and ∑n
j=1 j = 1. Then, the IHFPWA operator is a function IHFPWA: Wn → W where

IHFPWAω(W1, W2, . . . , Wn) =

n
⊕

j = 1
( j
(
1 + T

(
Wj
)
Wj
)

∑n
j=1 j(1 + T(Wj))

= ∪
ajεmj
bjεnj

1−
n

∏
j=1

(1− (aj)

j((1+T(Wj))

∑n
j=1 ωj(1+T(Wj)) ,

n

∏
j=1

(
bj
) j(1+T(Wj))

∑n
j=1 j(1+T(Wj))


where,

T
(
Wj
)
= ∪

mjεWj
njεWj

∑n
i = 1
i 6= j

jSup
(
Wj , Wi

) 
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Definition 6. For IHFSsWj =
(
mj , nj

)
, with their weights j =

(
1, 2, . . . , j

)T such that
j > 0 and ∑n

j=1 j = 1. A function IHFPOWA: Wn → W , is defined as

IHFPOWA (W1, W2, . . . , Wn) =

n
⊕

j = 1
( j

(
1 + T

(
Wσ(j)

)
Wσ(j)

)
∑n

j=1 j(1 + T(Wσ(j)))

= ∪
aσ(j)εmj
bσ(j)εnj

1−
n

∏
j=1

(1− (aσ(j))

( j(1+T(Wσ(j)))

∑n
j=1 j(1+T(Wσ(j))) ,

n

∏
j=1

(
bσ(j)

) ( j(1+T(Wσ(j)))

∑n
j=1 j(1+T(Wσ(j)))



2.2. An Overview of Aczel-Alsina Operators

Triangular norms (T.N s) are a particular class of functions that can be utilized to
explain the intersection of fuzzy logic and FSs. Menger [22] first introduced the concept of
T.N s, which have been used in various decision-making and data-aggregation applications.
In this section, we discuss the essential concepts that are vital for the development of
this paper.

Definition 7. A mapping A′: [0, 1]×[0, 1] → [0, 1] is a T.N s is satisfied following propertie
∀ l, m, n ∈ [0, 1],

(i) Symmetry: A′ (l , m ) = A′ (m, l ).
(ii) Associativity: A′ (l , A′ (m, n )) l = A′ (A′ (l , m ), n ).
(iii) Monotonicity: A′ (l , m ) ≤ A′ (l, n ) if m ≤ n
(iv) One Identity: A′ (1, l ) = l.

Examples of T.N s are→ ∀ l, m, n ∈ [0, 1],

(i) Product triangular norm: A′pro (l, m) = l. m;
(ii) Minimum triangular norm: A′min (l, m) = min (l, m).
(iii) Lukasiewicz triangular norm: A′luk (l, m) = max (l + m− 1, 0).
(iv) Drastic triangular norm:

A′dra(l, m) =


l, i f m = 1
m, i f l = 1
0. otherwise

Definition 8. A mapping B′ : [0, 1]×[0, 1]→ [0, 1] is T.CN s if the following axioms are satisfied:
∀ l, m, n ∈ [0, 1],

(i) Symmetry: B′ (l, m) = B′ (m, l).
(ii) Associativity: B′ (l, B′ (m, n )) = B′ (B′ (l, m ), n ).
(iii) Monotonicity: B′ (l, m ) ≤ B′ (l, n ) if m ≤ n.
(iv) Zero Identity: B′ (0, l ) = l.

Examples of T.CN s are→ ∀ l, m, n ∈ [0, 1]

(i) Probabilistic sum triangular co norm: B′PS (l, m) = l +m− l, m;
(ii) Maximum triangular co norm: B′max (l, m) = max (l , m).
(iii) Lukasiewicz triangular co norm: B′luk (l, m) = min {l + m, 1}.
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(iv) Drastic triangular co norm:

B′dra(l, m) =


l, i f m = 0
m, i f l = 0
1. otherwise

Definition 9 [23]. Aczel-Alsina presented novel T.N s and T.CN s which are represented as

A′ϕ
Ǎ
(l, m) =


A′dra(l, m), i f ϕ = 0
min(l, m), i f ϕ = ∞

e−((−logl)ϕ+(−log m)ϕ)
1/ϕ

, otherwise

and

B′ϕ
Ǎ
(l, m) =


B′dra(l, m), i f ϕ = 0
max(l, m) i f ϕ = ∞

1− e−((−log(1−l))ϕ+(−log (1−m))ϕ)
1/ϕ

, otherwise

2.3. Three-Way Decision Based on DTRS

DTRS is a well-known model for three-way decision-making based on Bayesian
decision theory that minimizes the risk of multiple decisions [38]. The resulting approach
is similar to hypothesis testing in statistics. In hypothesis testing, a hypothesis is accepted
if there is sufficient evidence supporting it, rejected if there is sufficient evidence refuting
it, and needs further evaluation if there is insufficient evidence supporting or refuting it.
This interpretation justifies three-way decision-making based on the risk or cost of various
decisions and requires an understanding of the cost of acquiring and applying evidence.

The 3WDM with DTRS theory [38] is succinctly explained here. It begins with a
set of states (Ω, ¬Ω) designating, respectively, that components are in Ω and not in Ω.
For both of these states, a series of actions is taken as Ac = {aP, aB, aN}, where aP, aB
and aN, respectively, represent the classification of an object e’s acceptance (e ∈ Pos(Ω)),
deferment (e ∈ Bnd(Ω)), and rejection (e ∈ N eg(Ω)) decision. The positive region
Pos(Ω), boundary region Bnd(Ω), and negative region N eg(Ω) are three disjoint regions.
Moreover, as indicated in Table 2, a matrixM = {ξστ}3×2 (σ = P, B, N, and τ = P, N)
provides the cost parameters. The costs associated with the actions aP , aB , and aN when an
element goes to Ω are ξPP , ξBP , and ξNP . However, the expenses for the corresponding
three actions are denoted by ξPN , ξBN , and ξNN when an item does not belong to Ω.

Table 2. Cost parameter matrix.

Actions\States Ω ¬Ω

aP ξPP ξPN
aB ξBP ξBN
aN ξNP ξNN

Since Pr(Ω|[e]) + Pr(¬Ω|[e]) = 1, by using the Bayesian risk decision theory [38],
for the element e, the classification losses R(aσ|[e]) associated with the three actions are
expressed as follows:

R(aP |[e]) = ξPPPr(Ω|[e]) + ξPNPr(¬Ω|[e])
R(aB |[e]) = ξBPPr(Ω|[e]) + ξBNPr(¬Ω|[e])
R(aN |[e]) = ξNPPr(Ω|[e]) + ξNNPr(¬Ω|[e])

For the minimum-loss decisions, the DTRS theory presents the following decision rules:

(1) If R(aP|[e]) ≤ R(aB|[e]) and R(aP|[e]) ≤ R(aN|[e]), then e ∈ Pos(Ω).
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(2) If R(aB|[e]) ≤ R(aP|[e]) and R(aB|[e]) ≤ R(aN|[e]), then e ∈ Bnd(Ω).
(3) If R(aN|[e]) ≤ R(aP|[e]) and R(aN|[e]) ≤ R(aB|[e]), then e ∈ N eg(Ω).

According to the Bayesian decision process [38], always choose the action plan with
the lowest decision-making risk as the first choice.

3. A New DTRS Model Based on Intuitionistic Hesitant Fuzzy Sets

In this section, we will create a DTRS model for IHFSs based on 3WDs. First, we
will construct a cost parameter matrix with the IHFNs presented in Table 3. As shown
in Table 3, the valuesW

(
ξxy
)

correspond to IHFNs (x, y = (P, B, N). W(ξPP ), W(ξBP ),
andW(ξNP ) represent the degrees of the loss of IHFNs due to taking action of aP , aB , and
aN when the element belongs to the state Ω. On the other hand,W(ξN ),W(ξBN ), and
W(ξNN ) represent the degrees of the loss caused when the element belongs to the state
¬Ω.

Table 3. Intuitionistic hesitant risk information.

Ω ¬Ω

aP W(ξPP ) = (mN(ξPP ), nN(ξPP )) W(ξPN ) = (mN(ξPN ), nN(ξPN ))
aB W(ξBP ) = (mN(ξBP ), nN(ξBP )) W(ξBN ) = (mN(ξBN ), nN(ξBN ))
aN W(ξNP ) = (mN(ξNP ), nN(ξNP )) W(ξNN ) = (mN(ξNN ), nN(ξNN ))

Given the prerequisites of

ξPP ≤ ξBP ≤ ξNP , ξNN ≤ ξBN ≤ ξPN

Based on (1)–(3), the expected losses R(aσ|[e])(σ = P , B, N ) under different actions
can be denoted as follows:

R(aP |[e]) =W(ξPP )Pr(Ω|[e])⊕W(ξPN )Pr(¬Ω|[e])
R(aB |[e]) =W(ξBP )Pr(Ω|[e])⊕W(ξBN )Pr(¬Ω|[e])
R(aN |[e]) =W(ξNP )Pr(Ω|[e])⊕W(ξNN )Pr(¬Ω|[e])

According to the operations of IHFNs, the expected losses can be further presented as

R(aP |[e]) =
[
1− (1−mW (ξPP ))

Pr(Ω|[e])(1−mN(ξPN ))
Pr(¬Ω|[e]), (nW (ξPP ))

Pr(Ω|[e])(nW (ξPN ))
Pr(¬Ω|[e])

]
R(aB |[e]) =

[
1− (1−mW (ξBP ))

Pr(Ω|[e])(1−mW (ξBN ))
Pr(¬Ω|[e]), (nW (ξBP ))

Pr(Ω|[e])(nW (ξBN ))
Pr(¬Ω|[e])

]
R(aN |[e]) =

[
1− (1−mW (ξNP ))

Pr(Ω|[e])(1−mW (ξNN ))
Pr(¬Ω|[e]), (nW (ξNP ))

Pr(Ω|[e])(nW (ξNN ))
Pr(¬Ω|[e])

]
The score functions for expected losses are designed for the above actions.

Scr(R(aP |[e])) =
[

1− (1−mW (ξPP ))
Pr(Ω|[e])(1−mW (ξPN ))

Pr(¬Ω|[e])−
(nW (ξPP ))

Pr(Ω|[e])(nW (ξPN ))
Pr(¬Ω|[e])

]

Scr(R(aB |[e]) =
[

1− (1−mW (ξBP ))
Pr(Ω|[e])(1−mW (ξBN ))

Pr(¬Ω|[e])−
(nW (ξBP ))

Pr(Ω|[e])(nW (ξBN ))
Pr(¬Ω|[e])

]

Scr(R(aN |[e])) =
[

1− (1−mW (ξNP ))
Pr(Ω|[e])(1−mW (ξNN ))

Pr(¬Ω|[e])−
(nW (ξNP ))

Pr(Ω|[e])(nW (ξNN ))
Pr(¬Ω|[e])

]
The accuracy functions for expected losses are designed for the above actions.

Hac (R(aP |[e])) =
[

1− (1−mW (ξPP ))
Pr(Ω|[e])(1−mW (ξPN ))

Pr(¬Ω|[e])+

(nW (ξPP ))
Pr(Ω|[e])(nW (ξPN ))

Pr(¬Ω|[e])

]
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Hac(R(aB |[e]) =
[

1− (1−mW (ξBP ))
Pr(Ω|[e])(1−mW (ξBN ))

Pr(¬Ω|[e])+

(nW (ξBP ))
Pr(Ω|[e])(nW (ξBN ))

Pr(¬Ω|[e])

]

Hac(R(aN |[e])) =
[

1− (1−mW (ξNP ))
Pr(Ω|[e])(1−mW (ξNN ))

Pr(¬Ω|[e])+

(nW (ξNP ))
Pr(Ω|[e])(nW (ξNN ))

Pr(¬Ω|[e])

]
With the concept of score functions, we develop some novel decision rules.

(1) If Scr(R(aP |[e])) ≤ Scr(R(aB|[e])) and Scr(R(aP |[e])) ≤ Scr(R(aN |[e])) then e ∈ Pos.
(2) If Scr(R(aB|[e])) ≤ Scr(R(aP |[e])) and Scr(R(aB|[e])) ≤ Scr(R(aN |[e])) then e ∈ Bond.
(3) If Scr(R(aN |[e])) ≤ Scr(R(aP |[e])) and Scr(R(aN |[e])) ≤ Scr(R(aB|[e])) then e ∈ Neg.

4. Aczel-Alsina Operators for Intuitionistic Hesitant Fuzzy Sets

The following section explains the Aczel-Alsina operations for IHFSs and investigates
various fundamental characteristics of these functions. The triangular norm A′ and trian-
gular co-norm B′ are characterized based on Aczel-Alsina, and the product A′Ǎ and sum
B′Ǎ, are presented for IHFSsW1 andW2 as shown below.

W1 ⊗ W2
=
{
< e, A′Ǎ

{
mW1(e), mW2(e)

}
, B′Ǎ

{
nW1(e), nW2(e)

}
>: e ∈ U}

W1 ⊕ W2
=
{
< e, B′Ǎ

{
mW1(e), mW2(e)

}
, AǍ

{
nW1(e), nW2(e)

}
>: e ∈ U}

Definition 10. Let W1 =
(
mW1 , nW1

)
and W2 =

(
mW2 , nW2

)
be two intuitionistic hesitant

fuzzy numbers and au, bu ∈ mW1 and au, bu ∈ nW2(u = 1, 2, 3 . . . , p′) , with i ≥ 1 and Ω > 0.

Here, we consider ρj =
(

1
p′ ∑

p′
u=1 aumj

)
and φj =

(
1
p′ ∑

p′
u=1 bunj

)
as MG and NMG for IHFNs

for Aczel-Alsina aggregation operators. Then, AA operations based on IHFNs are defined as

(i) W1 ⊕ W2 = 〈1− e−((− log (1−ρ1))
i+(−log(1−ρ2))

i)
1/i

, e−((−log(φ1))
i+(−log(φ2))

i)
1
i 〉

(ii) W1 ⊗ W2 = 〈e−((−log(ρ1))
i+(−log(ρ2))

i)
1/i

, 1− e−((−log(1−(φ1)))
i+(−log(1−(φ2)))

i)
1
i 〉

(iii) ΩW = 〈1− e−(Ω (−log(1−(ρ)))i)
1/i

, e−(Ω (−log(φ))i)
1
i 〉

(iv) WΩ = 〈e−(Ω (−log(ρ))i)
1/i

, 1− e−(Ω (−log(1−(φ)))i)
1
i 〉

Theorem 1. For two IHFNsW1 =
(
mW1 , nW1

)
and W2 =

(
mW2 , nW2

)
, with i ≥ 1, Ω > 0.

We have

(i) W1 ⊕ W2 =W2 ⊕ W1
(ii) W1 ⊗ W2 =W2 ⊗ W1
(iii) Ω(W1 ⊕ W2) = ΩW1 ⊕ ΩW2

(iv) (W1 ⊗ W2)
Ω =WΩ

1 ⊗ WΩ
2

(v) WΩ1 ⊗ WΩ2 =W (Ω1+Ω2)

Proof. For the three IHFNsW , W1 andW2 and Ω, Ω1, Ω2 > 0 , as indicated in Definition
10, we have
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(i) W1 ⊕ W2

= 〈1− e−((− log (1−(ρ1)))
i+(−log(1−(ρ2)))

i)
1
i , e−((−log(φ1))

i+(−log(φ2))
i)

1
i 〉

= 〈1− e−((− log (1−(ρ1)))
i+(−log(1−(ρ1)))

i)
1
i , e−((−log(φ2))

i+(−log(φ1))
i)

1
i 〉

=W2 ⊕ W1

(ii) It is straightforward.

(iii) let f = 1− e−((− log (1−(ρ2)))
i+(−log(1−(ρ1)))

i)
1
i then log(1− f ) = −((− log(1− (ρ2)))

i + (−log(1− (ρ1)))
i)

1
i using this, we get Ω(W1 ⊕ W2) = Ω〈1−

e−((− log (1−(ρ1)))
i+(−log(1−(ρ2)))

i)
1
i , e−((−log(φ1))

i+(−log(φ2))
i)

1
i 〉 = 〈1−

e−(Ω(− log (1−(ρ1)))
i+(−log(1−(ρ2)))

i)
1
i , e−(Ω(−log(φ1))

i+(−log(φ2))
i)

1
i 〉 = 〈1−

e−(Ω(− log (1−(ρ1)))
i)

1
i , e−(Ω(−log(φ1))

i)
1
i 〉 ⊕ 〈1− e−(Ω (−log(1−(ρ2)))

i)
1
i ,

e−(Ω (−log(φ2))
i)

1
i 〉 = ΩW1 ⊕ ΩW2

(iv) Ω1W ⊕ Ω2W = 〈1− e−(Ω1 (−log(1−(ρ)))i)
1
i , e−(Ω1 (−log(φ))i)

1
i 〉 ⊕ 〈1−

e−(Ω1 (−log(1−(ρ)))i)
1
i , e−(Ω1 (−log(φ))i)

1
i 〉 = 〈1− e−((Ω1+Ω2) (−log(1−(ρ)))i)

1
i ,

e−((Ω1+Ω2) (−log(φ))i)
1
i 〉 = (Ω1 + Ω2)W

(v) (W1 ⊗ W2)
Ω = 〈e−((−log(ρ1))

i+(−log(ρ2))
i)

1
i , 1− e−((−log(1−(φ1)))

i+(−log(1−(φ2)))
i)

1
i

〈Ω = 〈e−(Ω(−log(ρ1))
i+(−log(ρ2))

i)
1
i , 1− e−(Ω(−log(1−(φ1)))

i+(−log(1−(φ2)))
i)

1
i 〉

= 〈e−(Ω(−log(ρ1))
i)

1
i , 1− e−(Ω(−log(1−(φ1)))

i)
1/i

〉 ⊗ 〈e−(Ω (−log(ρ2))
i)

1
i , 1−

e−(Ω (−log(1−(φ2)))
i)

1
i 〉 =WΩ

1 ⊗ WΩ
2

(vi) WΩ1 ⊗ WΩ2 = 〈e−(Ω1 (−log(ρ))i)
1
i , 1− e−(Ω1 (−log(1−(φ)))i)

1
i 〉 ⊗ 〈e−(Ω2 (−log(ρ))i)

1
i ,

1− e−(Ω2 (−log(1−(φ)))i)
1
i 〉 = 〈e−((Ω1+Ω2) (−log(ρ))i)

1
i , 1− e−((Ω1+Ω2) (−log(1−(φ)))i)

1
i 〉

=W (Ω1+Ω2) �

Intuitionistic Hesitant Fuzzy Aczel-Alsina Average Operators

Now, we will introduce some IHF average aggregation operators based on the Aczel-
Alsina operations.

Definition 11. For IHFNsWi =
(
mWi , nWi

)
, (i = 1, 2, . . . , n), the weight = ( 1, 2, . . . , n)

T

for theWi, (i = 1, 2, . . . , n) with i> 0, i ∈ [0, 1] and ∑n
i=1 i = 1. Then IHFAAWA operator

is a function: IHFAAWA : (W)n →W defined as

IHFAAWA (W1,W2 . . . ,Wn) = ⊕n
i=1( iWi) = 1W1 ⊕ 2W2 ⊕, . . . ,⊕ nWn

From Definition 11, we obtain the following theorem for IHFNs.

Theorem 2. Suppose Wi =
(
mWi , nWi

)
, (i = 1, 2, . . . , n) is an accumulation of IHFNs. The

assigned weight = ( 1, 2, . . . , n)
T for each Wi. The obtained result of IHFNs applying

IHFAAWA operator is again IHFN:

IHFAAWA (W1,W2, . . . ,Wn) = ⊕n
i=1( iWi)

= 〈1− e−(∑
n
i=1 i(−log(ρi)))

1/i
, e−(∑

n
i=1 i(−log(φi))

i)
1/i

〉
(5)
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Proof. Through the applying of the mathematical induction technique, we are able to prove
the Theorem in the following manner:

(I) Let i = 2, then

1W1 = 〈1− e−( 1(− log (1−ρ1)))
1/i

, e−( 1(− log(φ1))
i)

1/i

〉

2W2 = 〈1− e−( 2(− log (1−ρ2)))
1/i

, e−( 2(− log(φ2))
i)

1/i

〉

Based on the Definition 10, we obtain

IHFAAWA (W1,W2) = 1W1 ⊕ 2W2

= 〈1− e−( 1(− log (1−ρ1))
i)

1/i

,

e−( 1(− log(φ1))
i)

1/i

〉 ⊕ 〈1− e−( 2(− log (1−ρ2))
i)

1/i

,

e−( 2(− log(φ2))
i)

1/i

〉
= 〈1− e−( 1(− log (1−ρ1))

i+ 2(− log (1−ρ2))
i)

1/i

, e−( 1(− log(φ1))
i+ 2(− log(φ2))

i)
1/i

〉
= 〈1− e−(∑

2
i=1 i(− log (1−ρi))

i)
1/i

, e−(∑
2
i=1 i(− log(φi))

i)
1/i

〉

Hence, Equation (5) is satisfied for i = 2.
(II) Consider Equation (5) is fulfilled for i = k, then it is obtained

IHFAAWA (W1,W2, . . . ,Wk) = ⊕k
i=1( iWi)

= 〈1− e−(∑
k
i=1 i(− log (1−ρi)

i ))
1/i

, e−(∑
k
i=1 i(− log(φi))

i)
1/i

〉

Now, for i = k+1, we get

IHFAAWA (W1,W2, . . . ,Wk,Wk+1) = ⊕k
s=1( iWi) ⊕ ( k+1Wk+1)

= 〈1− e−(∑
k
i=1 i(− log (1−ρi))

i)
1/i

,

e−(∑
k
i=1 i(− log(φi))

i)
1/i

〉 ⊕ 〈1− e−( k+1(− log (1−ρk+1))
i)

1/i

,

e−( k+1(− log(φk+1))
i)

1/i

〉
= 〈1− e−(∑

k+1
i=1 i(− log (1−ρi))

i)
1/i

, e−(∑
k+1
i=1 i(− log(φi))

i)
1/i

〉

Thus Equation (5) is valid for i = k + 1.
(I), (II) implies that it can be deduced; Equation (5) is satisfied for any i.
Using the IHF AA WA operator, we could successfully illustrate the related features.

�

Property 1. (Idempotency). If allWi =
(
mWi , νWi

)
, (i = 1, 2, . . . , n) are equal, that is, Wi = W

for all i, then IHFAAWA (W1,W2, . . . ,Wi) =W .

Property 2. (Boundedness). If all Wi =
(
mWi , νWi

)
be a set of IHFNs. Consider W− =

min(W1,W2, . . . ,Wn) andW+ = max(W1,W2, . . . ,Wn). Then,

W− ≤ IHFAAWA (W1,W2, . . . ,Wn) ≤ W+

Property 3. (Monotonicity). If allWi andW ′i being two sets of IHFNs. LetWi ≤ W ′i f or all i

then IHFAAWA (W1,W2, . . . ,Wn) ≤ IHFAAWA
(
W ′1,W ′2, . . . ,W ′n

)
.

Now, we produce IHF Aczel-Alsina ordered weighted averaging (IHFAAOWA )
operations.
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Definition 12. SupposeWi =
(
mWi , νWi

)
, being an accumulation of IHFNs and the assigned

weight = ( 1, 2, . . . , n)
T for each Wi, (i = 1, 2, . . . , n) with i> 0, i ∈ [0, 1] and

∑n
i=1 i = 1. Then IHFAAOWA operator is a function:→IHFAAOWA : Wn →W de-

fined as
IHFAAWA(W1,W2 . . . ,Wn) = ⊕n

s=1

(
iWσ(i)

)
= 1Wσ(1) ⊕ 2Wσ(2) ⊕, . . . ,⊕ nWσ(n)

where (σ(1), σ(2), . . . , σ(n)) are the permutation of (i = 1, 2, . . . , n), containing Wσ(n−1) ≥
Wσ(n) for all(i = 1, 2, . . . , n).

From Definition 12, we obtain the result shown below.

Theorem 3. Suppose Wi =
(
mWi , νWi

)
, being an accumulation of IHFNs. the weight =

( 1, 2, . . . , n)
T for eachWi, (i = 1, 2, . . . , n). The aggregated result of IHFNs by IHFAAOWA

operator is also IHFN:

IHFAAOWA (W1,W2, . . . ,Wn) = ⊕n
s=1

(
iWσ(i)

)
= 〈1− e−(∑

n
i=1 i(− log (1−ρσ(i))))

1/i
, e−(∑

n
i=1 i(− log(φσ(i)))

i)
1/i

〉
(6)

where (σ(1), σ(2), . . . , σ(n) ) are the permutation of every i, containingWσ(n−1) ≥ Wσ(n) for all
(i = 1, 2, . . . , n).

The associated attributes can successfully be confirmed by applying the IHFAAOWA
operator.

Property 4. (Idempotency). If all Wi =
(
mWi , νWi

)
, (i = 1, 2, . . . , n) are equivalent, that is,

Wi =W for all i, then IHFAAOWA (W1,W2, . . . ,Wi) =W .

Property 5. (Boundedness). If all Wi =
(
mWi , νWi

)
, being a group of IHFNs. Let W− =

min(W1,W2, . . . ,Wn) andW+ = max(W1,W2, . . . ,Wn). Then,

W− ≤ IHFAAOWA (W1,W2, . . . ,Wn) ≤ W+

Property 6. (Monotonicity). If allWi andW ′i are two sets of IHFNs. LetWi ≤ W ′i f or all i

then IHFAAOWA (W1,W2, . . . ,Wn) ≤ IHFAAOWA
(
W ′1,W ′2, . . . ,W ′n

)
.

Property 7. (Commutativity). LetWi andW ′i be two sets of IHFNs, then IHFAAOWA (W1,W2, . . . ,
Wn) = IHFAAOWA (W ′1,W ′2, . . . ,W ′n)whereW ′i (s = 1,2, . . . , n) is any permutation ofWi (i = 1,2,
. . . , n)

Definitions 11 and 12 provide a direction for developing hybrid aggregation operators
which are defined below.

Definition 13. SupposeWi =
(
mWi , nWi

)
, being an accumulation of IHFNs. The assigned weight

= ( 1, 2, . . . , n)
T for eachWi and a new

.
W i = n iWi. Then IHFAAHA operator is a

function: IHFAAHA : Wn →W defined as

IHFAAHA (W1,W2 . . . ,Wn) = ⊕n
i=1

(
i

.
Wσ(i)

)

= 1
.
Wσ(1) ⊕ 2

.
Wσ(2) ⊕, . . . ,⊕ n

.
Wσ(n)
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where (σ(i)) represents the permutation of all i, containing
.
Wσ(n−1) ≥

.
Wσ(n) for all (i = 1, 2, . . . , n).

Definition 13 gives us the idea of following theorem.

Theorem 4. For IHFNsWi =
(
mWi , νWi

)
. The result using IHFAAHA operator for IHFNs

is still an IHFN,

IHFAAHA (W1,W2, . . . ,Wn) = ⊕n
s=1

(
i

.
Wσ(i)

)
= 〈1− e−(∑

n
i=1 i(− log (1−ρσ(i))))

1/i
, e−(∑

n
i=1 i(− log(φσ(i)))

i)
1/i

〉

Proof. The proof is omitted. �

Theorem 5. The IHFAAHA operators are a generalization of the IHFAAWA and IHFAA
OWA operators.

Proof. (1) let =
(

1
n , 1

n , . . . 1
n

)T
. Then

IHFAAHA (W1,W2, . . . ,Wn)

= 1
.
Wσ(1) ⊕ 2

.
Wσ(2) ⊕ . . . ,⊕ n

.
Wσ(n)

= 1
n

(
1

.
Wσ(1) ⊕

.
Wσ(2) ⊕ . . . ,

.
Wσ(n)

)
= 1Wσ(1) ⊕ 2Wσ(2) ⊕ . . . ,⊕ nWσ(n)

= IHFAAWA (W1,W2, . . . ,Wn)

(2) let =
(

1
n , 1

n , . . . 1
n

)
. Then

IHFAAHA (W1,W2, . . . ,Wn)

= 1
.
Wσ(1) ⊕ 2

.
Wσ(2) ⊕ . . . ,⊕ n

.
Wσ(n)

= 1Wσ(1) ⊕ 2Wσ(2) ⊕ . . . ,⊕ nWσ(n)
= IHFAAOWA (W1,W2, . . . ,Wn)

which completes the proof. �

5. An Algorithm for Three-Way Decision Making under Intuitionistic Hesitant
Fuzzy Environment

This section demonstrates the use of IHFAA operators for three-way decision making
through intuitionistic hesitant fuzzy data. We outline five steps for selecting 3WD rules for
different participants. Let A = {aP , aB , aN } be the group of actions, and S = {Ω, ¬Ω}
be the set of states. Let C = {Pr(Ω|[e]), Pr(¬Ω|[e])} be the conditional probability vector,
where Pr(Ω|[e]) + Pr(¬Ω|[e]) = 1. Figure 2 displays the established algorithm of the
developed approach.

Step 1. Evaluate the intuitionistic hesitant fuzzy matrix according to the actual condition,

W(ξPP ) = (mN(ξPP ), nN(ξPP )),W(ξPN ) = (mN(ξPN ), nN(ξPN ))

W(ξBP ) = (mN(ξBP ), nN(ξBP )), W(ξBN ) = (mN(ξBN ), nN(ξBN ))

W(ξNP ) = (mN(ξNP ), nN(ξNP )), W(ξNN ) = (mN(ξNN ), nN(ξNN ) )
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Step 2. For alternatives Ai(i = 1, 2, . . . , m), calculate all the IHF numbers Aij(j = 1, 2, . . . , m)
into a general result Ai utilizing IHFAAWA operator in the following:

Ai = IHFAAWA (W1,W2, . . . ,Wn) = ⊕n
i=1

(
iWσ(i)

)
= 〈1− e−(∑

n
i=1 i(− log (1−(ρσ(i))))

i)
1/i

, e−(∑
n
i=1 i(− log(φσ(i)))

i)
1/i

〉

Step 3. Calculate the expected losses of R(aσ|[Ai]) for taking actions.
Step 4. Aggregate the score function Scr(R(aσ|[Ai])) , varied according to total IHF

information (Ai), (i = 1, 2, . . . , n).
Step 5. According to the 3WD rules (4)–(6) to acquire the corresponding decisions.
Step 6. End

6. Numerical Example

An investigative example is provided in this part for making the best decision to invest
in a company to minimize loss or risk and obtain maximum profit.

6.1. Explanation of the Problem

At the present time, businessmen face many problems, but one of the most significant
and sensitive issues is where to invest to maximize benefits while minimizing risks. Several
theories have been proposed [38,41] by researchers to address this question, including
Bayesian risk theory [44]. In this section, we propose a model to help businessmen make
investment decisions more easily. Our model is based on the DTRS approach, which divides
the investment space into three regions: accepted, rejected, and boundary regions.

Let us consider the case of Mr. X, who plans to invest in a business and has identified
four globally ranked companies to evaluate for investment opportunities. To make the best
investment decision with low business risk, four experts Ek(k = 1, 2, 3, 4) have been hired
to evaluate the risk of each company. The assigned weights allocated by the experts are
ω = (0.4, 0.2, 0.1, 0.3)T . Suppose the conditional probabilities for all four companies are the
same, i.e., Pr

(
Ω
∣∣[xj

])
= 0.5. In this scenario, a decision result is required.

6.2. The Decision-Making Steps

Step 1: The risk of each company is evaluated by four experts based on their compre-
hensive situation, and the results are presented in Tables 4–7.
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Table 4. The risk given by E1.

A1 A2
Ω ¬Ω Ω ¬Ω

aP ({0.1, 0.3}, {0.1, 0.4}) ({0.12, 0.31}, {0.23, 0.14}) ({0, 0.3}, {0.3, 0.4}) ({0.08, 0.34}, {0.23, 0.4})
aB ({0.2, 0.1}, {0.1, 0.2}) ({0.12, 0.3}, {0.08, 0.2}) ({0.1, 0.2}, {0, 0.1}) ({0.52, 0.11}, {0.5, 0.1})
aN ({0.2, 0.3}, {0.2, 0.2}) ({0.5, 0.1}, {0.2, 0.34}) ({0, 0.1}, {0.1, 0.2}) ({0.43, 0.16}, {0.1, 0.14})

A3 A4
Ω ¬Ω Ω ¬Ω

aP ({0, 0.3}, {0.1, 0.1}) ({0.34, 0.2}, {0.15, 0.1}) ({0.2, 0.4}, {0.1, 0.2}) ({0.2, 0.23}, {0.4, 0.08})
aB ({0.2, 0.5}, {0.1, 0.2}) ({0.32, 0.5}, {0.09, 0.2}) ({0, 0.6}, {0.1, 0.2}) ({0.3, 0.54}, {0.1, 0.2})
aN ({0.1, 0.1}, {0.1, 0.3}) ({0.1, 0.13}, {0.1, 0.23}) ({0.1, 0.2}, {0.1, 0.3}) ({0.14, 0.2}, {0.34, 0.23})

Table 5. The risk given by E2.

A1 A2
Ω ¬Ω Ω ¬Ω

aP ({0.32, 0.67}, {0.15, 0.1}) ({0.23, 0.67}, {0.23, 0.15}) ({0.73, 0.26}, {0.12, 0.15}) ({0.15, 0.26}, {0.43, 0.15})
aB ({0.71, 0.29}, {0.12, 0.09}) ({0.43, 0.29}, {0.13, 0.12}) ({0.51, 0.44}, {0.15, 0.27}) ({0.42, 0.23}, {0.15, 0.2})
aN ({0.81, 0.18}, {0.09, 0.1}) ({0.81, 0.26}, {0.18, 0.1}) ({0.56, 0.32}, {0.11, 0.12}) ({0.03, 0.86}, {0.25, 0.12})

A3 A4
Ω ¬Ω Ω ¬Ω

aP ({0.61, 0.08}, {0.04, 0.14}) ({0.19, 0.08}, {0.22, 0.14}) ({0.33, 0.67}, {0.18, 0.2}) ({0.14, 0.67}, {0.09, 0.2})
aB ({0.32, 0.26}, {0.18, 0.09}) ({0.22, 0.26}, {0.18, 0.18}) ({0.5, 0.4}, {0.14, 0.24}) ({0.45, 0.4}, {0.14, 0.14})
aN ({0.56, 0.18}, {0.2, 0.32}) ({0.56, 0.28}, {0.32, 0.32}) ({0.81, 0.1}, {0.12, 0.05}) ({0.23, 0.43}, {0.12, 0.15})

Table 6. The risk given by E3.

A1 A2
Ω ¬Ω Ω ¬Ω

aP ({0.2, 0.4}, {0.18, 0.27}) ({0.12, 0.4}, {0.56, 0.27}) ({0.1, 0.2}, {0.27, 0.18}) ({0.05, 0.2}, {0.09, 0.18})
aB ({0.7, 0.14}, {0.21, 0.08}) ({0.64, 0.14}, {0.62, 0.08}) ({0.12, 0.25}, {0.14, 0.21}) ({0.12, 0.3}, {0.45, 0.21})
aN ({0.3, 0.5}, {0.37, 0.12}) ({0.3, 0.24}, {0.37, 0.21}) ({0.5, 0.1} , {0.22, 0.19} ) ({0.15, 0.1}, {0.12, 0.19})

A3 A4
Ω ¬Ω Ω ¬Ω

aP ({0.52, 0.18}, {0.11, 0.19}) ({0.13, 0.18}, {0.23, 0.19}) ({0.14, 0.29}, {0.12, 0.22}) ({0.24, 0.29}, {0.21, 0.22})
aB ({0.25, 0.35}, {0.12, 0.62}) ({0.25, 0.35}, {0.12, 0.43}) ({0.74, 0.2}, {0.15, 0.25}) ({0.45, 0.2}, {0.43, 0.25})
aN ({0.36, 0.54}, {0.17, 0.27}) ({0.36, 0.67}, {0.17, 0.21}) ({0.122, 0.61}, {0.27, 0.13})({0.12, 0.45}, {0.31, 0.13})

Table 7. The risk given by E4.

A1 A2
Ω ¬Ω Ω ¬Ω

aP ({0.13, 0.23}, {0.18, 0.27}) ({0.29, 0.23}, {0.18, 0.21}) ({0.15, 0.18}, {0.27, 0.15}) ({0.15, 0.43}, {0.09, 0.15})
aB ({0.21, 0.14}, {0.12, 0.05}) ({0.54, 0.14}, {0.12, 0.17}) ({0.08, 0.52}, {0.14, 0.19}) ({0.19, 0.52}, {0.27, 0.19})
aN ({0.16, 0.22}, {0.5, 0.1}) ({0.43, 0.45}, {0.17, 0.1}) ({0.13, 0.22} , {0.2, 0.19} ) ({0.13, 0.45}, {0.2, 0.36})

A3 A4
Ω ¬Ω Ω ¬Ω

aP ({0.22, 0.13}, {0.09, 0.19}) ({0.11, 0.13}, {0.45, 0.19}) ({0.09, 0.18}, {0.12, 0.11}) ({0.09, 0.3}, {0.25, 0.11})
aB ({0.07, 0.35}, {0.12, 0.25}) ({0.25, 0.35}, {0.34, 0.25}) ({0.34, 0.12}, {0.15, 0.27}) ({0.42, 0.12}, {0.15, 0.27})
aN ({0.33, 0.11}, {0.17, 0.29}) ({0.33, 0.19}, {0.17, 0.65}) ({0.12, 0.37}, {0.09, 0.13}) ({0.12, 0.51}, {0.09, 0.56})

Step 2: The operator is applied to integrate the evaluation information from individual
decisionmakers into collective information (assume i = 1 ).

Step 3: The expected losses are calculated by assuming constant probability for all the
alternatives mentioned above, and the results are listed in Table 8.
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Table 8. Aggregation of risk values by operators.

Alternatives aP aB aN
A1 (0.1431, 0.5163) (0.1760, 0.4986) (0.1574, 0.4456)
A2 (0.0986, 0.5133) (0.1339, 0.4485) (0.1379, 0.5046)
A3 (0.0940, 0.4764) (0.1537, 0.5255) (0.1546, 0.3858)
A4 (0.1343, 0.4794) (0.1286, 0.4967) (0.1848, 0.4840)

Step 4. Aggregate the score numbers of each company, denoted as Scr(Ai) and the
results are presented in Table 9.

Table 9. Score results of expected losses.

Alternatives\Decision Accepted Boundary Rejected
A1 −0.3732 −0.3226 −0.2882
A2 −0.4147 −0.3146 −0.3666
A3 −0.3824 −0.3717 −0.2312
A4 −0.3451 −0.3681 −0.2991

Step 5. Based on the 3WD rules (4)–(6), the corresponding decision rule for each
company can be determined. Currently, the investment judgment of each company largely
depends on the expected value of its expected losses. The final decision result of each
company is presented in Table 10.

Table 10. Decision results.

Alternatives A1 A2 A3 A4
Decision Accepted Accepted Accepted Boundary

Step 6. A1, A2, and A3 are chosen as the suitable companies for investment for Mr. X.

7. The Effect of the Conditional Probabilities in this Method

Suppose the conditional probability values are changed from 0.30 to 0.70 in steps of 0.1,
and the decision results based on rules (4)–(6) are listed in Table 11. To present the situation
more intuitively where the 3WD results of each alternative change with the conditional
probability, we show the results in Figure 3.

Table 11. Effects of the probability values.

Probability Accepted Boundary Rejected
0.3 {A1, A2, A3} {A4} {∅}
0.4 {A1, A2, A3} {A4} {∅}
0.5 {A1, A2, A3} {A4} {∅}
0.6 {A1, A2,} {A3, A4} {∅}
0.7 {A1, A2,} {A3, A4} {∅}

During the variation of the conditional probability values, some differences in results
occur, but the changes seem to be very small. At a conditional probability of 0.3–0.5, alter-
natives A1–A3 are classified as accepted, and A4 is in the boundary region for investment,
fortunately with no alternative in the rejected region. When the conditional probability is
increased, a minor change is observed. At 0.6–0.7, A1 and A2 remain in the positive region
for investors, and A3 moves to the boundary region. Alternatives A3 and A4 are in the
unclear environment.
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Based on Figure 3, we can conclude that A1 and A2 are classified as accepted, while
A4 is in the unclear environment. The classification of A3 depends on the value of the
probability. It is a positive outcome that, in this scenario, there is no alternative in the
rejected region. However, it is important to note that in other situations, the rejected region
may not be empty.

Comparative Analysis

In this section, we applied several existing AOs to the information provided by the
decisionmakers in Tables 5–8 to evaluate the validity and feasibility of our proposed
methodologies. We compared our approach with IFWA [19], IFWG [18], IvIFAAWA [31],
IvIFAAWG [45], HFAAW [25], IFDWA [46], FDWG [46], IFRAAWA [24], IFRAAOW [24],
IFRAAHA [24], IHFPWA [14], and IHFPG [14] methods. The results of existing AOs
operators are shown in Table 12.

Table 12. Comparison of proposed and existing techniques.

Method Environment
Classification

Accepted Boundary Rejected
IFWA [19] IFNs X X x
IFWG [18] IFNs X X x

IvIFAAWA [31] IvIFNs X X x
IvIFAAWG [45] IvIFNs X X x

HFAAW [25] HFNs X X x
IFDWA [46] IFNs X X x
IFDWG [46] IFNs X X x

IFRAAWA [24] IFRNs X X x
IFRAAOWA [24] IFRNs X X x
IFRAAHA [24] IFRNS X x x
IHFPWA [14] IHFNs {A1, A2 } {A3, A4} {∅}
IHFPWG [14] IHFNs {A1, A2,} {A3, A4} {∅}

IHFAAWA (Proposed) IHFNs {A1, A2, A3} {A4} {∅}

1. The analysis of Table 12 suggests that our proposed approach is more general than
existing models.

2. Our proposed model also provides more flexible acceptance results compared to
Mahmood’s IFPWA [14].
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3. Additionally, we observed that IFWA [19], IFWG [18], HFAAW [25], IFDWA [46],
IFDWG [46], IFRAAWA [24], IFRAAOW [24], and IFRAAHA [24] effectively handle
intuitionistic fuzzy and hesitant fuzzy data. However, there are certain situations
where these approaches may not be suitable. This demonstrates the dependability
and effectiveness of the proposed model for decisionmakers.

4. Table 12 also highlights that Senapati et al. developed IvIFAAWA [31] and IvI-
FAAWG [45] operators for interval valued intuitionistic fuzzy information, but com-
parison studies have shown that these approaches are not effective for intuitionistic
hesitant fuzzy data. Therefore, our proposed approach provides a solution to address
more complex and vague situations.

Figure 4 provides a visual representation of the comparison studies presented in
Table 12.
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8. Conclusions

Our paper focuses on the three-way decision model, a powerful tool for decision mak-
ing based on object attributes. This model has gained popularity due to its effectiveness in
real-life situations such as the business, medical, and technology fields. However, decision-
makers often struggle with a lack of information and time. To address these challenges,
we utilized intuitionistic hesitant fuzzy sets (IHFSs), which include membership-grade
(MG) and non-membership grade (NMG) sets, and developed IHFAAHA operators for
three-way decision making.

One of the key contributions of our paper is the presentation of novel aggregation op-
erators and basic operational laws of IHFSs. We explored the fundamental notion of Aczel-
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Alsina T.N and T.CN and developed a series of novel operators, such as IHFAAWA
operators. We tested the feasibility and reliability of our proposed operators by designing
special cases, such as IHFAA-ordered weighted (IHFAAOWA ) and IHFAA-hybrid
weighted (IHFAAHWA ) average operators with their fundamental properties. Further-
more, we developed a novel three-way decision-theoretic rough set model that utilized
new steps for 3WD, such as designing Aczel-Alsina aggregation operators and developing
score and accuracy functions to classify participants. We provided a case study in business
to showcase the effectiveness of our proposed model in addressing investment decision
making. We constructed a model consisting of different companies and used the Bayesian
theory of risk to discuss the cost parameter tables from experts in detail under the vari-
ation of conditional probability. We also discussed an influenced study to visualize the
effectiveness of the parametric values of the conditional probabilities on the results of our
presented model.

We compared our developed approach with existing AO models to demonstrate
its validity, authenticity, and effectiveness. Our operators and techniques have practical
applications in various fields, including networking analysis, risk assessment, and cognitive
science, in uncertain situations. We will further investigate our novel techniques in the
scope of multi-criteria development in the fuzzy environment and examine the idea behind
our suggested methods within the perspective of square root fuzzy information [47,48].
Additionally, we will examine our ongoing research using a temporal intuitionistic fuzzy
system [49,50].
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