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Abstract: An intuitionistic hesitant fuzzy set is an extension of the fuzzy set which deals with uncertain 

information and vague environments. Multiple-attribute decision-making problems (MADM) are one 

of the emerging topics and an aggregation operator plays a vital role in the aggregate of different 

preferences to a single number. The Aczel-Alsina norm operations are significant terms that handle the 

impreciseness and undetermined data. In this paper, we build some novel aggregation operators for the 

different pairs of the intuitionistic hesitant fuzzy sets (IHFSs), namely as Aczel-Alsina average and 

geometric operators. Several characteristics of the proposed operators are also described in detail. 

Based on these operators, a multi-attribute decision-making algorithm is stated to solve the decision-

making problems. A numerical example has been taken to display and validate the approach. A 

feasibility and comparative analysis with existing studies are performed to show its superiority.  
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1. Introduction 

Modern decision science considers multiple-attribute decision-making (MADM) to be a crucial topic 

of research that can decide the appropriate options in accordance with numerous salient qualities [1,2]. 

When faced with traditional MADM problems, decision-makers (DMs) typically apply clear figures 

to convey their preferences for the alternative. However, due to a lack of information, a lack of 

resources, a lack of time, and a lack of quality values, many subjective attribute values are more easily 

expressed using fuzzy data than by using actual numbers. The theory of fuzzy sets (FSs) was created 

by Zadeh [3], which many investigators later extended according to the need [4–6]. For every fuzzy 

set, there exists a set of components and their corresponding membership functions, which assigns a 

degree of membership to each component in the range of [0,1]. Atanassov [7] offered an intuitionistic 

fuzzy set (IFS) in 1986. The use of membership and non-membership grades in an IFS allows for the 

representation of ambiguous and complex information, subject to the constraint that the sum of both 

grades cannot surpass 1. Another parallel methodology to cope with vagueness was made by Torra [8], 

who defined a hesitant fuzzy set (HFS). An HFS permits the membership grade occupying a set of 

possible results of the interval from 0 to 1. HFS is an extended structure of FS that finds a broad 

application in various complex scenarios. Several scholars have conducted a thorough investigation 

into the procedures for accumulating HF data and their impact on decision making [9,10].  

Mahmood et al. [11] proposed the concept of intuitionistic hesitant fuzzy sets (IHFS) involves the 

combination of IFS and HFS, where the resulting grades are expressed as a collection of potential 

results ranging from 0 to 1. Certainly, an IHFS has been established as a powerful instrument for 

clarifying the fuzziness of the DM difficulties. To achieve this kind of point, Yager [12,13] founded a 

power average (PA) operator and executes it to MADM problems. Zhang et al. [14] presented Heronian 

mean aggregation operators for generalization of FSs. Xu et al. [15] introduced several new geometric 

aggregation operators for IFSs. Senapati et al. [16] described an MADM approach for intuitionistic fuzzy 

set information. Ayub [17] expanded the Bonferroni mean aggregation for dual hesitant circumstances. 

Hadi et al. [18] described the Hamacher mean operators to find the best selection during DM.  

Triangular norms (𝑇. 𝒩) play a vital role during decision-making. The notion of 𝑇. 𝒩 was first 

introduced in the supposition of probabilistic metric spaces by Menger [19]. Drosses [20] presented 

some generalized t-norms structures. Descharijver [21] used the abovementioned notion on the 

intuitionistic fuzzy environment. Boixader [22] also investigated some t-norms and t-conorms during 

his research. Similarly, a few scholars have investigated this area deeply [23–25]. A concept of 

triangular norms [26–28] have extensively reviewed recent well-organized research on the qualities 

and related elements of 𝑇. 𝒩𝑠. Aczel and Alsina [29] introduced new procedures in 1982 under the 

names Aczel Alsina 𝑇. 𝒩  and Aczel-Alsina 𝑇. 𝐶𝒩 , which prioritize changeability with parameter 

activity. Ye et al. [30] introduced Aczel-Alsina operators for Z-Numbers and applied in MADM. In the 

literature, some approaches related to MADM problems, we refer you to read the articles [16,31–36]. 

It is observed from the above literature that several algorithms are addressed by the various 

researchers to handle MADM problems. However, in this existing literature, it is found that they have 

considered that all the attributes are independent to each other. However, in day-today life problems, 

one parameter may influence others and thus, it is necessary to consider the information during the 

analysis. Another feature obtained from the review is that during the information collection phase, an 

expert may provide more than one decision on a single information. Thus, the model of the 

intuitionistic hesitant fuzzy set plays a vital role. Furthermore, the IHFS is a generalization of the 
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existing theories. It is vital to convey the shaky facts in a much more beneficial way so that the best 

option(s) for the MADM concerns may be selected. It is critical to cope with how to take the 

relationship between input arguments into consideration as well. From this inspiration, we combine 

two novel frameworks Intuitionistic hesitant fuzzy sets and Aczel-Alsina aggregation operators. Based 

on the aggregation operators and under the data of intuitionistic hesitant fuzzy, the multiple attributes 

decision making techniques is investigated. 

The main impact of this article is described as below: 

1) Consider the environment of IHFS to handle the uncertainties in the data. In this set, set of 

values are considered in terms of membership and non-membership values. 

2) Utilizing the feature of the Aczel-Alsina norm operators, we define several weighted 

aggregation operators, namely intuitionistic hesitant fuzzy weighted averaging and geometric 

operators. Additionally, we stated their fundamental properties. 

3) To design a novel MADM algorithm based on the defined operators. 

4) To produce a numerical example to display the applicability of the stated algorithm and 

compare their results with existing studies. 

The remaining parts of the article are arranged below. Section 2 delivers a short overview of the 

basic concepts. In Section 3, we state the series of Aczel-Alsina aggregation operation rules for the 

IHFNs such as the 𝐼𝐻𝐹𝒜𝒜𝑊𝐴δ  operator, the 𝐼𝐻𝐹𝒜𝒜𝑂𝑊𝐴δ  operator, and the 𝐼𝐻𝐹𝒜𝒜𝑊𝐴δ 

operator, and their effective attributes. Section 4 presents a multiple-attribute decision making 

(MADM) algorithm that utilizes IHF data and the 𝐼𝐻𝐹𝐴𝐴𝑊𝐴𝛿  operator to represent characteristic 

values. In Section 5, an example is given to establish the use of the proposed model for selecting a 

gadget. Section 6 concludes the paper. 

2. Preliminaries 

This section covers the fundamental models of IHFSs and several ideas associated with Aczel-

Alsina 𝑇. 𝒩𝑠, 𝑇. 𝐶𝒩, and aggregation operators. The most commonly used abbreviations in the paper 

are summarized in Table 1. 

Table 1. Symbols with description. 

Symbols Description Symbols Description 

FS Fuzzy Set 𝑇. 𝒩𝑠 Triangular Norms 

IHFS Intuitionistic Hesitant Fuzzy Sets 𝑇. 𝐶𝒩 Triangular Co-Norms 

MADM Multiple-attribute  

Decision Making 

IHFPWA Intuitionistic hesitant fuzzy 

power weighted average 

MG Membership Grades 𝐼𝐻𝐹𝒜𝒜𝐴 Intuitionistic hesitant fuzzy  

Aczel-Alsina average 

NMG Non-membership Grades 𝐼𝐻𝐹𝒜𝒜𝑊𝐴 Intuitionistic hesitant fuzzy  

Aczel-Alsina weighted average 

DM Decision-maker 𝐼𝐻𝐹𝒜𝒜𝑂𝑊𝐴δ Intuitionistic hesitant fuzzy  

Aczel-Alsina ordered weighted 

average 

𝑺𝒄𝒓 Score Function ℋ𝑎𝑐 Accuracy Function 
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2.1. An overview of intuitionistic hesitant fuzzy sets 

Atanassov [7] suggested the idea of IFS as a development of FS. While FS gives the membership 

grade of an element within a specific collection in the range of [0, 1], IFS supplies both the membership 

grade (MG) and non-membership grade (NMG) instantaneously.  

Definition 1. [7] The IFS 𝐻 over the universe 𝑈 is represented by a pair of mappings, 𝓂(𝑠) and 

𝓃(𝑠), which can be mathematically expressed using the following form:  

𝐻 = 〈𝑠, 𝓂𝐻(𝑠), 𝓃𝐻(𝑠))|𝑠 ∈  𝑈〉.        (1) 

The functions 𝑚𝐻(𝑠) and 𝑛𝐻(𝑠) denote the MG and NMG, respectively, for a given 𝑠 ∈ 𝑈, subject 

to the condition that their sum is between 0 and 1 (i.e., 0 ≤  𝑚(𝑠) + 𝑛(𝑠) ≤ 1). 

For any IFS H defined over 𝑈, the indeterminacy grade of an element 𝑒 with respect to 𝐻 is 

denoted as 𝓅𝐻(𝑠) and is defined as 𝓅𝐻(𝑠) = 1 − 𝓂𝐻(𝑠) − 𝓃𝐻(𝑠), ∀ 𝑠 ∈ 𝑈. 

Mahmood et al. [11] proposed the combination of IFS with HFS results in a more generalized 

form, identified as IHFSs. In IHFSs, both the membership grade and non-membership grade denotes 

a set of values ranging from 0 to 1. The basic definition and operations are presented as follow: 

Definition 2. [11] An IHFS 𝐻 defined over U is represented by a pair of mappings, 𝑚(𝑠) and 𝑛(𝑠), 

which can be mathematically expressed using the following form:  

𝐻 = 〈𝑠, 𝓂𝐻(𝑠), 𝓃𝐻(𝑠))|𝑠 ∈  𝑈〉       (2) 

The mappings 𝑚𝐻(𝑠)  and 𝑛𝐻(𝑠)  represent a set of possible membership grades (MGs) and non-

membership grades of the elements s ∈ U to the group 𝐻, where the values are between 0 and 1. 

The condition that  0 ≤  𝑚𝑎𝑥(𝑚𝐻(𝑒))  +  𝑚𝑎𝑥(𝑛𝐻(𝑒))  ≤  1  is also satisfied. For the sake of 

convenience, (𝑚(𝑒), 𝑛(𝑒)) is commonly referred to as an IHFN throughout the study. 

Definition 3. The functions for “score 𝑆𝑐𝑟 (𝐻)  and accuracy” 𝐻𝑎𝑐(𝐻)  are designed and 

symbolized for any IHFNs 𝐻 = (𝑚𝐻, 𝑛𝐻) as follows: 

𝑆𝑐𝑟(𝐻) =
𝑆(𝓂𝐻 )−𝑆(𝓃𝐻)

2
, 𝑆𝑐𝑟(𝐻) ∈ [−1,1]      (3) 

𝐻𝑎𝑐(𝐻) =
𝑆(𝓂𝐻)+𝑆(𝓃𝐻)

2
, 𝐻𝑎𝑐(𝐻) ∈ [0,1].      (4) 

Where, 𝑆(𝓂𝐻) =
𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 (𝓂𝐻)

𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 (𝓂𝐻)
, 𝑆(𝓃𝐻) =

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 (𝓃𝐻)

𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 (𝓃𝐻)
. 

Definition 4. [11] Let 𝐻1  =  (𝑚1, 𝑛1) and 𝐻2  =  (𝑚2, 𝑛2) be IHFSs, and the basic operations are 

defined as below: 

(i) 𝐻1  ⊕ 𝐻2  =  ⋃ ({𝑎1 + 𝑎2 − 𝑎1𝑎2}, {𝑏1𝑏2})𝑎1𝜀 𝓂1
𝑎2𝜀 𝓂2
𝑏1𝜀 𝓃1
𝑏2𝜀 𝓃2

 

(ii) 𝐻1  ⊗ 𝐻2  =  ⋃ ({𝑎1𝑎2}, {𝑏1 + 𝑏2 − 𝑏1𝑏2})𝑎1𝜀 𝓂1
𝑎2𝜀 𝓂2
𝑏1𝜀 𝓃 1
𝑏2𝜀 𝓃2

 

(iii) 𝜆𝐻1 = ⋃ ({1 − (1 − 𝑎)𝜆}, {𝑏𝜆})𝑎𝜀𝓂1
𝑏𝜀𝓃1

, 𝜆 > 0 
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(iv) 𝐻1
𝜆  =  ⋃ ({(𝑎)𝜆}, {1 − (1 − 𝑏)𝜆})𝑎𝜀𝓂1

𝑏𝜀𝓃1

, 𝜆 > 0 

(v) 𝐻1
𝑐  = ({𝑏𝓃1

}, {𝑎𝓂1
}). 

Definition 5. Consider a set of IHFSs represented as 𝐻𝑗  =  (𝑚𝑗, 𝑛𝑗), and let 𝛿𝑗  =  (𝛿1, 𝛿2, . . . , 𝛿𝑛)𝑇 

denote the weights for 𝐻𝑗 , where ∑ 𝛿𝑗
𝑛
𝑗=1  =  1 . “The IHFPWA operator is a mapping IHFPWA”: 

𝐻𝑛→W such that: 

𝐼𝐻𝐹𝑃𝐻𝐴𝛿(𝐻1, 𝐻2, … , 𝐻𝑛)  =  

𝑛
⨁

𝑗 = 1
(𝛿𝑗(1 + 𝑇(𝐻𝑗)𝐻𝑗)

∑ 𝛿𝑗(1 + 𝑇(𝑛
𝑗=1 𝐻𝑗))

 

= ⋃ (1 − ∏ (1 − (𝑎𝑗)
 

𝛿𝑗((1+𝑇(𝐻𝑗)) 

∑ 𝜔𝑗(1+𝑇(𝑛
𝑗=1 𝐻𝑗))

,   𝑛
𝑗=1 ∏ (𝑏𝑗)

𝛿𝑗(1+𝑇(𝐻𝑗)) 

∑ 𝛿𝑗(1+𝑇(𝑛
𝑗=1 𝐻𝑗))𝑛

𝑗=1 )𝑎𝑗𝜀𝓂𝑗

𝑏𝑗𝜀𝓃𝑗

, 

where 

𝑇(𝐻𝑗) = ⋃ (∑ 𝛿𝑗𝑆𝑢𝑝(𝐻𝑗 , 𝐻𝑖)
𝑛
𝑖=1
𝑖≠𝑗

)𝓂𝑗𝜀𝐻𝑗

𝓃𝑗𝜀𝐻𝑗

. 

Definition 6. Let 𝐻𝑗  =  (𝑚𝑗, 𝑛𝑗)  denote a set of IHFSs with their corresponding weights 𝛿𝑗  =

 (𝛿1, 𝛿2, . . . , 𝛿𝑛)𝑇 where 𝛿𝑗  >  0 and ∑ 𝛿𝑗
𝑛
𝑗=1  =  1. The IHFPOWA operator is a mapping IHFPOWA: 

𝐻𝑛  →  𝐻, described as: 

𝐼𝐻𝐹𝑃𝑂𝐻𝐴𝛿(𝐻1, 𝐻2, … , 𝐻𝑛) =

𝑛
⨁

𝑗 = 1
(𝛿𝑗(1 + 𝑇(𝐻𝜎(𝑗))𝐻𝜎(𝑗)) 

∑ 𝛿𝑗(1 + 𝑇(𝑛
𝑗=1 𝐻𝜎(𝑗)))

 

= ⋃ (1 − ∏ (1 − (𝑎𝜎(𝑗))
 

(𝛿𝑗(1+𝑇(𝐻𝜎(𝑗))) 

∑ 𝛿𝑗(1+𝑇(𝑛
𝑗=1 𝐻𝜎(𝑗)))

,   𝑛
𝑗=1 ∏ (𝑏𝜎(𝑗))

(𝛿𝑗(1+𝑇(𝐻𝜎(𝑗))) 

∑ 𝛿𝑗(1+𝑇(𝑛
𝑗=1 𝐻𝜎(𝑗)))𝑛

𝑗=1 )𝑎𝜎(𝑗)𝜀𝓂𝑗

𝑏𝜎(𝑗)𝜀𝓃𝑗

. 

2.2. An overview of Aczel-Alsina operators 

The specific class of functions known as triangular norms (𝑇. 𝒩𝑠) can be used to interpret the 

intersection of fuzzy logic and FSs. Menger [19] created an idea of 𝑇. 𝒩𝑠 . The concepts that are 

essential for the development of this article are widely used in various applications related to data 

aggregation and decision-making. In the following sections, we will discuss these key concepts in detail. 

Definition 7. A function 𝐶: [0, 1]×[0, 1] → [0, 1] is a 𝑇. 𝒩𝑠 is fulfilled following characters, 

∀ 𝑒, 𝑓, 𝑔 ∈ [0, 1], 

(i) Symmetry: 𝐶 (𝑒, 𝑓) = 𝐶 (𝑓, 𝑒). 

(ii) Associativity: 𝐶 (𝑒, 𝐶 (𝑓, 𝑔)) 𝑒= 𝐶 (𝐶 (𝑒, 𝑓), 𝑔). 

(iii) Monotonicity: 𝐶 (𝑒, 𝑓) ≤ 𝐶 (𝑒, 𝑔) if 𝑓 ≤ 𝑔 

(iv) One Identity: 𝐶 (1, 𝑒) = 𝑒. 

Examples of 𝑇. 𝒩𝑠 are: ∀ 𝑒, 𝑓, 𝑔 ∈ [0, 1], 
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(i) Product 𝑇. 𝒩: C𝑝𝑟𝑜 (𝑒, 𝑓) = 𝑒. 𝑓; 

(ii) Minimum 𝑇. 𝒩: C𝑚𝑖𝑛 (𝑒, 𝑓) = min (𝑒, 𝑓). 

(iii) Lukasiewicz 𝑇. 𝒩: C𝑙𝑢𝑘 (𝑒, 𝑓) = max (𝑒+𝑓 − 1, 0). 

(iv) Drastic 𝑇. 𝒩: 

C𝑑𝑟𝑎 (𝑒, 𝑓) ={
𝑒,           𝑖𝑓  𝑓 = 1
𝑓,           𝑖𝑓  𝑒 = 1
 0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

Definition 8. The function 𝐷 : [0, 1]×[0, 1] → [0, 1] is 𝑇. 𝐶𝒩𝑠  if the following properties are 

convinced: ∀ 𝑒, 𝑓, 𝑔 ∈ [0, 1], 

(i) Symmetry: 𝐷 (𝑒, 𝑓) = 𝐷 (𝑓 , 𝑒). 

(ii) Associativity: 𝐷 (𝑒, 𝐷 (𝑓 , 𝑔)) 𝑒= 𝐷 (𝐷 (𝑒 , 𝑓), 𝑔). 

(iii) Monotonicity: 𝐷 (𝑒, 𝑓) ≤ 𝐷 (𝑒, 𝑔) if 𝑓 ≤ 𝑔 

(iv) Zero Identity: 𝐷 (0, 𝑒) = 𝑒 ; 

Examples of 𝑇. 𝐶𝒩𝑠 are: ∀ 𝑒, 𝑓, 𝑔 ∈ [0, 1], 

(i) Probabilistic sum 𝑇. 𝐶𝒩:  𝐷PS (𝑒, 𝑓) = 𝑒 +𝑓 − 𝑒, 𝑓; 

(ii) Maximum 𝑇. 𝐶𝒩: 𝐷𝑚𝑎𝑥 (𝑒, 𝑓) = max (𝑒, 𝑓). 

(iii) Lukasiewicz 𝑇. 𝐶𝒩: 𝐷luk (𝑒, 𝑓) = min {𝑒 + 𝑓, 1}. 

(iv) Drastic 𝑇. 𝐶𝒩: 

𝐷𝑑𝑟𝑎 (𝑒, 𝑓) ={
𝑒,           𝑖𝑓  𝑓 = 0
𝑓,           𝑖𝑓  𝑒 = 0
 1,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

Definition 9. [29] Aczel-Alsina offered a unique triangular norms and triangular co-norms described as:  

𝐶
Ǎ

𝜑(𝑒, 𝑓) = {

𝐶𝑑𝑟𝑎(𝑒, 𝑓),                                    𝑖𝑓 𝜑 = 0

𝑚𝑖𝑛(𝑒, 𝑓),                                    𝑖𝑓 𝜑 = ∞

 𝑒−((− 𝑙𝑜𝑔 𝑙)𝜑+ (−𝑙𝑜𝑔 𝑚)𝜑)
1

𝜑⁄
,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and 

𝐷
Ǎ

𝜑(𝑒, 𝑓) = {

𝐷𝑑𝑟𝑎(𝑒, 𝑓),                                                       𝑖𝑓 𝜑 = 0

𝑚𝑎𝑥(𝑒, 𝑓)                                                      𝑖𝑓 𝜑 = ∞

 1 − 𝑒−((− 𝑙𝑜𝑔(1−𝑙))𝜑+ (− log(1−𝑚))𝜑)
1

𝜑⁄
,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

3. Aczel-Alsina operators for intuitionistic hesitant fuzzy sets 

In this section, we will explore the 𝒜𝒜  operations for IHFSs and examine the major properties 

of these mappings. 

The Aczel-Alsina 𝑇. 𝒩  𝐶  and 𝑇. 𝐶𝒩  𝐷  are used to define the product 𝐶Ǎ  and sum 𝐷Ǎ 

operations for IHFSs 𝐻1 and 𝐻2 as follows: 

𝐻1  𝐻2 = {< 𝑠, 𝐶Ǎ{𝓂𝐻1
(𝑠), 𝓂𝐻2

(𝑠)}, 𝐷Ǎ{𝓃𝐻1
(𝑠), 𝓃𝐻2

(𝑠)} >: 𝑠 ∈ 𝑈} 



18027 

AIMS Mathematics  Volume 8, Issue 8, 18021–18039. 

𝐻1  𝐻2 = {< 𝑠, 𝐷Ǎ{𝓂𝐻1
(𝑠), 𝓂𝐻2

(𝑠)}, 𝐶Ǎ{𝓃𝐻1
(𝑠), 𝓃𝐻2

(𝑠)} >: 𝑠 ∈ 𝑈}. 

Definition 10. Consider 𝐻1 = (𝑚1, 𝑛1 )  and 𝐻2 = (𝑚2, 𝑛2)  be two IHFSs, where 𝑎𝑢, 𝑏𝑢 ∈
𝑚1 𝑎𝑛𝑑 𝑎𝑢, 𝑏𝑢 ∈ 𝑛2  such that 𝑢 = 1,2 … , 𝑝′  with ℶ ≥  1  and 𝜏 >  0 . Let 𝜌𝑗 =

(
1

𝑝′ ∑ 𝑎𝑢(𝑚𝑗)
𝑝′

𝑢=1

)  𝑎𝑛𝑑 𝜙𝑗 = (
1

𝑝′ ∑ 𝑏𝑢(𝑛𝑗)
𝑝′

𝑢=1

) be the membership grade and non-membership grade for 

IHFNs for Aczel-Alsina aggregation operators. The Aczel-Alsina operations for intuitionistic hesitant 

fuzzy numbers (IHFNs) can be described as follows: 

(i) 𝐻1 𝐻2 =< 1 − 𝑒−((− log(1−𝜌1))ℶ+ (−𝑙𝑜𝑔(1−𝜌2))
ℶ

)

1
ℶ

,   𝑒−((−𝑙𝑜𝑔(𝜙1))
ℶ

+ (−𝑙𝑜𝑔(𝜙2))
ℶ

)

1
ℶ

> 

(ii) 𝐻1  𝐻2 = 〈𝑒
−((−𝑙𝑜𝑔(𝜌1))

ℶ
+ (−𝑙𝑜𝑔(𝜌2))

ℶ
)

1
ℶ

, 1 − 𝑒
−((−𝑙𝑜𝑔(1−(𝜙1)))

ℶ
+ (−𝑙𝑜𝑔(1−(𝜙2)))

ℶ
)

1
ℶ

〉  

(iii) 𝜏H = 〈1 − 𝑒
−(𝜏 (−𝑙𝑜𝑔(1−(𝜌)))

ℶ
)

1
ℶ

,   𝑒−(𝜏 (−𝑙𝑜𝑔(𝜙))
ℶ

)

1
ℶ

〉  

(iv) H𝜏 = 〈𝑒−(𝜏 (−𝑙𝑜𝑔(𝜌))
ℶ

)

1
ℶ

,   1 − 𝑒
−(𝜏 (−𝑙𝑜𝑔(1−(𝜙)))

ℶ
)

1
ℶ

〉. 

Theorem 1. For two IHFNs 𝐻1 = (𝓂W1
, 𝓃W1

) 𝑎𝑛𝑑 𝐻2 = (𝓂W2
, 𝓃W2

), with ℶ  1, 𝜏 > 0. We have  

(i) 𝐻1 𝐻2 = 𝐻2 𝐻1 

(ii) 𝐻1 𝐻2 = 𝐻2 𝐻1 

(iii) 𝜏(𝐻1 𝐻2) = 𝜏𝐻1𝜏 𝐻2 

(iv) (𝐻1 𝐻2)𝜏 = 𝐻1
𝜏 𝐻2

𝜏 

(v) 𝐻𝜏1 𝐻𝜏2 = 𝐻(𝜏1+𝜏2). 

Proof. For three IHFNs 𝐻, 𝐻1, 𝐻2 and for 𝜏, 𝜏1, 𝜏2  >  0, as defined in Definition 10, the following 

relations hold: 

(i) 𝐻1 𝐻2 

= 〈1 − 𝑒
−((− log(1−(𝜌1)))

ℶ
+ (−𝑙𝑜𝑔(1−(𝜌2)))

ℶ
)

1
ℶ

 ,   𝑒−((−𝑙𝑜𝑔(𝜙1))
ℶ

+ (−𝑙𝑜𝑔(𝜙2))
ℶ

)

1
ℶ

〉  

= 〈1 − 𝑒
−((− log(1−(𝜌1)))

ℶ
+ (−𝑙𝑜𝑔(1−(𝜌1)))

ℶ
)

1
ℶ

 ,   𝑒−((−𝑙𝑜𝑔(𝜙2))
ℶ

+ (−𝑙𝑜𝑔(𝜙1))
ℶ

)

1
ℶ

〉  

= 𝐻2 𝐻1. 

(ii) It is straightforward. 

(iii) Let 𝑓 = 1 − 𝑒
−((− log(1−(𝜌2)))

ℶ
+ (−𝑙𝑜𝑔(1−(𝜌1)))

ℶ
)

1
ℶ

then 𝑙𝑜𝑔(1 − 𝑓) = − ((− log(1 − (𝜌2)))
ℶ

+

 (−𝑙𝑜𝑔(1 − (𝜌1)))
ℶ
)

1

ℶ

. 

Using this, we get  

𝜏(𝐻1 𝐻2) 

= 𝜏 〈1 − 𝑒
−((− log(1−(𝜌1)))

ℶ
+ (−𝑙𝑜𝑔(1−(𝜌2)))

ℶ
)

1
ℶ

 ,   𝑒−((−𝑙𝑜𝑔(𝜙1))
ℶ

+ (−𝑙𝑜𝑔(𝜙2))
ℶ

)

1
ℶ

〉  

= 〈1 − 𝑒
−(𝜏(− log(1−(𝜌1)))

ℶ
+ (−𝑙𝑜𝑔(1−(𝜌2)))

ℶ
)

1
ℶ

 ,   𝑒−(𝜏(−𝑙𝑜𝑔(𝜙1))
ℶ

+ (−𝑙𝑜𝑔(𝜙2))
ℶ

)

1
ℶ

〉   
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= 〈1 − 𝑒−(𝜏(− log(1−(𝜌1)))
ℶ

)

1
ℶ

 ,   𝑒−(𝜏(−𝑙𝑜𝑔(𝜙1))
ℶ

)

1
ℶ

〉 

〈1 − 𝑒
−(𝜏 (−𝑙𝑜𝑔(1−(𝜌2)))

ℶ
)

1
ℶ

 ,   𝑒−(𝜏 (−𝑙𝑜𝑔(𝜙2))
ℶ

)

1
ℶ

〉  

= 𝜏𝐻1 𝜏𝐻2. 

(iv)  𝜏1𝐻 𝜏2𝐻 = 〈1 − 𝑒
−(Τ1 (−𝑙𝑜𝑔(1−(𝜌)))

ℶ
)

1
ℶ

 ,   𝑒−(𝜏1 (−𝑙𝑜𝑔(𝜙))
ℶ

)

1
ℶ

〉 

 〈1 − 𝑒
−(𝜏1 (−𝑙𝑜𝑔(1−(𝜌)))

ℶ
)

1
ℶ

 ,   𝑒−(𝜏1 (−𝑙𝑜𝑔(𝜙))
ℶ

)

1
ℶ

〉 

= 〈1 − 𝑒
−((𝜏1+Τ2) (−𝑙𝑜𝑔(1−(𝜌)))

ℶ
)

1
ℶ

, 𝑒−((𝜏1+Τ2) (−𝑙𝑜𝑔(𝜙))
ℶ

)

1
ℶ

〉  

= (𝜏1 +  𝜏2)𝐻. 

(v) (𝐻1 𝐻2)𝜏 

= 〈𝑒−((−𝑙𝑜𝑔(𝜌1))
ℶ

+ (−𝑙𝑜𝑔(𝜌2))
ℶ

)

1
ℶ

, 1 − 𝑒
−((−𝑙𝑜𝑔(1−(𝜙1)))

ℶ
+ (−𝑙𝑜𝑔(1−(𝜙2)))

ℶ
)

1
ℶ

〉Τ 

= 〈𝑒−(𝜏(−𝑙𝑜𝑔(𝜌1))
ℶ

+ (−𝑙𝑜𝑔(𝜌2))
ℶ

)

1
ℶ

, 1 − 𝑒
−(𝜏(−𝑙𝑜𝑔(1−(𝜙1)))

ℶ
+ (−𝑙𝑜𝑔(1−(𝜙2)))

ℶ
)

1
ℶ

〉 

= 〈𝑒−(𝜏(−𝑙𝑜𝑔(𝜌1))
ℶ

)

1
ℶ

, 1 − 𝑒
−(𝜏(−𝑙𝑜𝑔(1−(𝜙1)))

ℶ
)

1
ℶ

〉 

 〈𝑒−(𝜏 (−𝑙𝑜𝑔(𝜌2))
ℶ

)

1
ℶ

, 1 − 𝑒
−(Τ (−𝑙𝑜𝑔(1−(𝜙2)))

ℶ
)

1
ℶ

〉 

= 𝐻1
𝜏 𝐻2

𝜏. 

(vi)  𝐻𝜏1 𝐻𝜏2 

= 〈𝑒−(Τ1 (−𝑙𝑜𝑔(𝜌))
ℶ

)

1
ℶ

,   1 − 𝑒
−(𝜏1 (−𝑙𝑜𝑔(1−(𝜙)))

ℶ
)

1
ℶ

〉 〈𝑒−(𝜏2 (−𝑙𝑜𝑔(𝜌))
ℶ

)

1
ℶ

,   1

− 𝑒
−(Τ2 (−𝑙𝑜𝑔(1−(𝜙)))

ℶ
)

1
ℶ

〉 

= 〈𝑒−((𝜏1+𝜏2) (−𝑙𝑜𝑔(𝜌))
ℶ

)

1
ℶ

,   1 − 𝑒
−((𝜏1+𝜏2) (−𝑙𝑜𝑔(1−(𝜙)))

ℶ
)

1
ℶ

〉 

= 𝐻(𝜏1+𝜏2). 

Intuitionistic hesitant fuzzy Aczel-Alsine average aggregation operators 

We will now present several “average aggregation operators using the Aczel-Alsina operations”. 

Definition 11. For a collection of IHFNs, denoted by 𝐻𝑖 = (𝑚𝐻𝑖
, 𝑛𝐻𝑖

), ∀𝑖 ∈ 𝑁,  the weight vector 

𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑛)𝑇  is defined for these IHFNs, where 𝛿𝑖  >  0, 𝛿𝑖 ∈ [0,1]  and ∑ 𝛿𝑖
𝑛
𝑖=1 = 1 . The 

𝐼𝐻𝐹𝐴𝐴 𝐻𝐴 operator is a mapping IHF𝐴𝐴 𝐻𝐴: 𝐻𝑛 → 𝐻, which is designed as below: 

𝐼𝐻𝐹𝒜𝒜𝐻𝐴𝛿(𝐻1, 𝐻2 … , 𝐻𝑛) = 𝑖=1
𝑛 (𝛿𝑖𝐻𝑖) = 𝛿1𝐻1  𝛿2𝐻2 , … , 𝛿𝑛𝐻𝑛. 

The following theorem can be derived from Definition 11 for IHFNs. 

Theorem 2. Consider we have a gathering of IHFNs, 𝐻𝑖 = (𝑚𝐻𝑖
, 𝑛𝐻𝑖

), 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 𝑁, with assigned 

weights 𝛿. When the 𝐼𝐻𝐹𝐴𝐴 𝐻𝐴𝛿 operator is applied to these IHFNs, the obtained result is also an 

IHFN. 

𝐼𝐻𝐹𝒜𝒜𝐻𝐴𝛿(𝐻1, 𝐻2, … , 𝐻𝑛) = 𝑖=1
𝑛 (𝛿𝑖𝐻𝑖) = 〈1 − e−(∑ 𝛿𝑖

𝑛
𝑖=1 (−log (𝜌𝑖)))

1
ℶ⁄

, e−(∑ 𝛿𝑖
𝑛
𝑖=1 (− log(𝜙𝑖))ℶ)

1
ℶ⁄

〉.
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 (5) 

Proof. The theorem can be proven using a mathematical induction as follows:  

(I) Consider 𝑖 = 2, we get 

𝛿1𝐻1 = 〈1 − e−(𝛿1(− log(1−𝜌1)))
1

ℶ⁄

,   e−(𝛿1(− log(𝜙1))ℶ)
1

ℶ⁄

〉  

𝛿2𝐻2 = 〈1 − e−(𝛿2(− log(1−𝜌2)))
1

ℶ⁄

,   e−(𝛿2(− log(𝜙2))ℶ)
1

ℶ⁄

〉. 

Using Definition 10, we can derive the following: 

𝐼𝐻𝐹𝒜𝒜𝐻𝐴𝛿(𝐻1, 𝐻2) = 𝛿1𝐻1𝛿2𝐻2

= 〈1 − e−(𝛿1(− log(1−𝜌1))ℶ)
1

ℶ⁄

,   e−(𝛿1(− log(𝜙1))ℶ)
1

ℶ⁄

〉 〈1

− e−(𝛿2(− log(1−𝜌2))ℶ)
1

ℶ⁄

,   e−(𝛿2(− log(𝜙2))ℶ)
1

ℶ⁄

〉  

= 〈1 − e−(𝛿1(− log(1−𝜌1))ℶ+𝛿2(− log(1−𝜌2))ℶ)
1

ℶ⁄

,   e−(𝛿1(− log(𝜙1))ℶ+𝛿2(− log(𝜙2))ℶ)
1

ℶ⁄

〉  

= 〈1 − e−(∑ 𝛿𝑖
2
𝑖=1 (− log(1−𝜌𝑖))ℶ)

1
ℶ⁄

,   e−(∑ 𝛿𝑖
2
𝑖=1 (− log(𝜙𝑖))ℶ)

1
ℶ⁄

〉. 

Therefore, Eq (5) is fulfilled for 𝑖 = 2. 

(II) Assume that for 𝑖 = 𝑘, Eq (5) subsequently fulfills, and the following expression is obtained. 

𝐼𝐻𝐹𝒜𝒜𝐻𝐴𝛿(𝐻1, 𝐻2, … , 𝐻𝑘) = 𝑖=1
𝑘 (𝛿𝑖𝐻𝑖) = 〈1 −

e−(∑ 𝛿𝑖
𝑘
𝑖=1 (− log(1−𝜌𝑖)ℶ ))

1
ℶ⁄

,   e−(∑ 𝛿𝑖
𝑘
𝑖=1 (− log(𝜙𝑖))ℶ)

1
ℶ⁄

〉. 

Now, considering the case of 𝑖 = 𝑘 + 1, we obtain: 

𝐼𝐻𝐹𝒜𝒜𝐻𝐴𝛿(𝐻1, 𝐻2, … , 𝐻𝑘, 𝐻𝑘+1) = 𝑠=1
𝑘 (𝛿𝑖𝐻𝑖)(𝛿𝑘+1𝐻𝑘+1) = 〈1 −

e−(∑ 𝛿𝑖
𝑘
𝑖=1 (− log(1−𝜌𝑖)ℶ ))

1
ℶ⁄

,   e−(∑ 𝛿𝑖
𝑘
𝑖=1 (− log(𝜙𝑖))ℶ)

1
ℶ⁄

〉 〈1 −

e−(𝛿𝑘+1(− log(1−𝜌𝑘+1)ℶ ))
1

ℶ⁄

,   e−(𝛿𝑘+1(− log(𝜙𝑘+1))ℶ)
1

ℶ⁄

〉 = 〈1 −

e−(∑ 𝛿𝑖
𝑘+1
𝑖=1 (− log(1−𝜌𝑖)ℶ ))

1
ℶ⁄

,   e−(∑ 𝛿𝑖
𝑘+1
𝑖=1 (− log(𝜙𝑖))ℶ)

1
ℶ⁄

〉. 

Therefore, we have shown that Eq (6) is valid for 𝑖 = 𝑘 + 1, assuming that it is valid for 𝑖 = 𝑘.  

From (I) and (II), it can be concluded that Eq (6) holds for all values of 𝑖. 

Using the 𝐼𝐻𝐹𝒜𝒜𝐻𝐴 operator, we were able to effectively demonstrate the relevant characteristics. 

Property 1. (Idempotency). If 𝐻𝑖 = (𝑚𝐻𝑖
, 𝜈𝐻𝑖

)  for all 𝑖 ∈ 𝑁  are equal, that is, 𝐻𝑖 = 𝐻 , then 

applying 𝐼𝐻𝐹𝐴𝐴𝐻𝐴𝛿  operator on 𝐻1, 𝐻2, … , 𝐻𝑖 results in 𝐻. 

Property 2. (Boundedness). If a set of IHFNs, 𝐻𝑖 = (𝑚𝐻𝑖
, 𝑛𝐻𝑖

), is given, where i=1,2,...,n, then let 

𝐻− = 𝑚𝑖𝑛 (𝐻1𝐻2 … , 𝐻𝑛) and 𝐻+ = 𝑚𝑎𝑥 (𝐻1𝐻2 … , 𝐻𝑛). Then, it follows that: 

𝐻− ≤ 𝐼𝐻𝐹𝐴𝐴𝐻𝐴𝛿 (𝐻1 𝐻2, … , 𝐻𝑛 ) ≤ 𝐻+. 

Property 3. (Monotonicity). For 𝐻𝑖  and  𝐻𝑖
′  be two IHFNs. Let 𝐻𝑖 ≤ 𝐻𝑖

′  for all 𝑖  hen  

𝐼𝐻𝐹𝒜𝒜𝐻𝐴𝛿(𝐻1,𝐻2, … , 𝐻𝑛) ≤ 𝐼𝐻𝐹𝒜𝒜𝐻𝐴𝛿(𝐻1,
′ 𝐻2,

′ … , 𝐻𝑛
′ ). 

We will now introduce IHF Aczel-Alsina ordered weighted averaging (𝐼𝐻𝐹𝐴𝐴𝑂𝐻𝐴𝛿) operations. 

Definition 12. Consider we have a collection of IHFNs 𝐻𝑖 = (𝑚𝐻𝑖
, 𝜈𝐻𝑖

 ), (𝑖 = 1,2, … , 𝑛),  and 

weights assigned to each IHFN, 𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑛  )𝑇 and 𝛿𝑖 ∈ [0,1]. The 𝐼𝐻𝐹𝐴𝐴𝑂𝐻𝐴𝛿 operator 
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can be defined as a function: 𝐼𝐻𝐹𝐴𝐴𝑂𝐻𝐴𝛿: 𝐻𝑛 → 𝐻. 

IHF‐ 𝒜𝒜‐ WA(𝐻1, 𝐻2 … , 𝐻𝑛) = 𝑠=1
𝑛 (𝛿𝑖𝐻𝜎(𝑖)) 

= 𝛿1𝐻𝜎(1)  𝛿2𝐻𝜎(2) , … , 𝛿𝑛𝐻𝜎(𝑛). 

Where (𝜎(1), 𝜎(2), … , 𝜎(𝑛)) are the permutations of ∀𝑖 ∈ 𝑁, containing 𝐻𝜎(𝑛−1) ≥ 𝐻𝜎(𝑛), ∀𝑖. 

The following result was obtained from Definition 12. 

Theorem 2. The result of applying the 𝐼𝐻𝐹𝐴𝐴𝑂𝐻𝐴 operator on an accumulation of IHFNs 𝐻𝑖 =
(𝑚𝐻𝑖

 , 𝜈𝐻𝑖
 ), (𝑖 = 1,2, … , 𝑛) with assigned weights 𝛿 𝑎𝑛𝑑  ∑ 𝛿𝑖 = 1𝑛

𝑖=1  is also an IHFN. 

𝐼𝐻𝐹𝒜𝒜𝑂𝐻𝐴𝛿(𝐻1, 𝐻2, … , 𝐻𝑛) = 𝑠=1
𝑛 (𝛿𝑖𝐻σ(𝑖)) = 〈1 −

e−(∑ 𝛿𝑖
𝑛
𝑖=1 (−log (1−ρσ(𝑖))))

1
ℶ⁄

,   e−(∑ 𝛿𝑖
𝑛
𝑖=1 (− log(𝜙σ(𝑖)))

ℶ
)

1
ℶ⁄

〉.      (6) 

Where (𝜎(1), 𝜎(2), … , 𝜎(𝑛)) are the permutations of every 𝑖, containing 𝐻𝜎(𝑛−1) ≥ 𝐻𝜎(𝑛). 

The properties related to 𝐼𝐻𝐹𝐴𝐴𝑂𝐻𝐴𝛿 operator can be verified by utilizing it. 

Property 4. If 𝐻𝑖 = (𝑚𝐻𝑖
, 𝜈𝐻𝑖

)  for all 𝑖 ∈ 𝑁  are equal, that is, 𝐻𝑖 = 𝐻 , then applying 

𝐼𝐻𝐹𝐴𝐴𝑂𝐻𝐴𝛿  operator on 𝐻1, 𝐻2, … , 𝐻𝑖 results in 𝐻. 

Property 5. If a set of IHFNs, 𝐻𝑖 = (𝑚𝐻𝑖
, 𝑛𝐻𝑖

) , is given, where i=1,2,...,n, then let 𝐻− =

𝑚𝑖𝑛 (𝐻1𝐻2 … , 𝐻𝑛) and 𝐻+ = 𝑚𝑎𝑥 (𝐻1𝐻2 … , 𝐻𝑛). Then, it follows that: 

𝐻− ≤ 𝐼𝐻𝐹𝐴𝐴𝑂𝐻𝐴 (𝐻1 𝐻2, … , 𝐻𝑛 ) ≤ 𝐻+. 

Property 6. For 𝐻𝑖   and  𝐻𝑖
′  be two IHFNs. Let 𝐻𝑖 ≤ 𝐻𝑖

′  for all 𝑖  then  

𝐼𝐻𝐹𝒜𝒜𝑂𝐻𝐴𝛿(𝐻1,𝐻2, … , 𝐻𝑛) ≤ 𝐼𝐻𝐹𝒜𝒜𝐻𝐴𝛿(𝐻1,
′ 𝐻2,

′ … , 𝐻𝑛
′ ). 

Property 7. Let 𝐻𝑖  and  𝐻𝑖
′  be two sets of IHFNs, then 𝐼𝐻𝐹𝒜𝒜𝑂𝐻𝐴𝛿(𝐻1,𝐻2, … , 𝐻𝑛) =

𝐼𝐻𝐹𝒜𝒜𝑂𝐻𝐴𝛿(𝐻1,
′ 𝐻2,

′ … , 𝐻𝑛
′ ) where 𝐻𝑖

′(𝑖 ∈ 𝑁) is any permutation of 𝐻𝑖 (𝑖 ∈ 𝑁). 

Below is the definition of a hybrid aggregation operator that can be developed based on Definitions 11 

and 12. 

Definition 13. Assuming that we have an accumulation of IHFNs denoted by 𝐻𝑖 = (𝑚𝐻𝑖
, 𝑛𝐻𝑖

), a set 

of assigned weights 𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑛)𝑇  for each 𝐻𝑖 , and a new IHFN 𝐻̇𝑖 = 𝑛𝛿𝑖𝐻𝑖,  the 

𝐼𝐻𝐹𝐴𝐴𝐻𝐴𝛿  operator is defined as a function 𝐼𝐻𝐹𝐴𝐴𝐻𝐴𝛿: 𝐻𝑛  →  𝐻. 

𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ(𝐻1, 𝐻2 … , 𝐻𝑛) = 𝑖=1
𝑛 (𝛿𝑖𝐻̇𝜎(𝑖)) 

= 𝛿1𝐻̇𝜎(1)  𝛿2𝐻̇𝜎(2) , … , 𝛿𝑛𝐻̇𝜎(𝑛). 

Where (𝜎(𝑖)) signifies the permutation of all 𝑖, holding 𝐻̇𝜎(𝑛−1) ≥ 𝐻̇𝜎(𝑛). 

Definition 13 leads to the following theorem:  

Theorem 3. The application of the 𝐼𝐻𝐹𝐴𝐴 𝐻𝐴𝛿 operator on the IHFNs 𝐻𝑖 = (𝑚𝐻𝑖
, 𝜈𝐻𝑖

 ) yields a 

result that is also an IHFN. 

𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ(𝐻1, 𝐻2, … , 𝐻𝑛) = 𝑠=1
𝑛 (𝛿𝑖𝐻̇σ(𝑖)) = 〈1 −

e−(∑ 𝛿𝑖
𝑛
𝑖=1 (−log (1−𝜌σ(𝑖))))

1
ℶ⁄

,   e−(∑ 𝛿𝑖
𝑛
𝑖=1 (− log(𝜙σ(𝑖)))

ℶ
)

1
ℶ⁄

〉. 

Proof. Proof is not provided. 

Theorem 4. The 𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ operators are simplifications of the 𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ and 𝐼𝐻𝐹𝒜𝒜𝑂𝐻𝐴δ 

operators. 
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Proof. 

(1) Let 𝛿 = (
1

𝑛
,

1

𝑛
, …

1

𝑛
)

𝑇

Then 

𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ(𝐻1, 𝐻2, … , 𝐻𝑛) 

= 𝛿1𝐻̇σ(1)𝛿2𝐻̇σ(2)… ,𝛿𝑛𝐻̇σ(n) 

=
1

𝑛
(𝛿1𝐻̇σ(1)𝐻̇σ(2)… ,𝐻̇σ(𝑛)) 

= 𝛿1𝐻σ(1)𝛿2𝐻σ(2)… ,𝛿𝑛𝐻σ(𝑛) 

= 𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ(𝐻1, 𝐻2, … , 𝐻𝑛). 

(2) Let 𝛿 = (
1

𝑛
,

1

𝑛
, …

1

𝑛
). Then 

𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ(𝐻1, 𝐻2, … , 𝐻𝑛) 

= 𝛿1𝐻̇σ(1)𝛿2𝐻̇σ(2)… ,𝛿𝑛𝐻̇σ(n) 

= 𝛿1𝐻σ(1)𝛿2𝐻σ(2)… ,𝛿𝑛𝐻σ(𝑛) 

= 𝐼𝐻𝐹𝒜𝒜𝑂𝐻𝐴δ(𝐻1, 𝐻2, … , 𝐻𝑛), 

which completes the proof. 

4. MADM algorithm under intuitionistic hesitant fuzzy environment 

This part shows the usage of 𝐼𝐻𝐹𝒜𝒜  operators to MADM through intuitionistic hesitant fuzzy data. 

Suppose 𝐴𝑖 , ∀𝑖 is distinct groups of alternatives and 𝐺 =  {𝐺1, 𝐺2, … , 𝐺𝑛} is the collection of attributes. 

The assigned weight 𝛿 =  (𝛿𝑗), ∀𝑗  for all attributes, where ∑ 𝛿𝑗
𝑛
𝑗=1 = 1. Let the IHF decision matrix 

𝓡 = (𝒴𝑖𝑗)
𝑚×𝑛

 be given to the decision maker, where IHFNs 𝒴𝑖𝑗 = ({𝓂H𝑖𝑗}, {𝓃H𝑖𝑗
})  represents 

alternatives. Therefore, the IHF decision matrix (D.Mat) ℛ may be stated in the following shape, 

ℛ =

.

.
𝛿1

𝛿2

⋮
𝛿𝑚

 
𝐺1 𝐺2 ⋯ 𝐺𝑛

(

𝒴11
𝒴21

𝒴12
𝒴22

⋯
𝒴1𝑛
𝒴2𝑛

⋮ ⋱ ⋱ ⋮
𝒴𝑚1 𝒴𝑚2 ⋯ 𝒴𝑚𝑛

),

        (7) 

where each one of the 𝒴𝑖𝑗 = (𝓂H𝑖𝑗
, 𝓃H𝑖𝑗

) contributes to IHFN. The preceding procedures must be 

utilized to set up the MADM method in the IHF information. The 𝐼𝐻𝐹𝒜𝒜𝐻𝑨𝛅 operator is used to 

pick the best alternative. The detailed process is described in the following steps. 

Step 1. Convert the IHF decision matrix ℛ = (𝒴𝑖𝑗)
𝑚×𝑛

 into normalization matrix ℛ̅ = (𝒴̅𝑖𝑗)
𝑚×𝑛

  

𝒴̅𝑖𝑗 = {
𝒴𝑖𝑗    𝑓𝑜𝑟 𝑏𝑒𝑛𝑖𝑓𝑖𝑡 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝐺𝑛,

(𝒴𝑖𝑗)
𝑐
    𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 𝐺𝑛,

,       (8) 

where (𝒴𝑖𝑗)
𝑐
is the complement of 𝒴𝑖𝑗, so as (𝒴𝑖𝑗)

𝑐
= ({𝓃H𝑖𝑗}, {𝓂H𝑖𝑗

}). 

Normalization is needed whenever two kinds of attributes (cost attributes and benefit attributes) 

explains the alternatives otherwise skipped this step. 

Step 2. For participants 𝐴𝑖(𝑖 = 1,2, … , 𝑚) determine all the IHF values 𝒴𝑖𝑗(𝑗 = 1,2, … , 𝑚) into an 
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overall conclusion 𝒴̅𝑖 applying the 𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ operator as below: 

𝒴̅𝑖 = 𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ(𝐻1, 𝐻2, … , 𝐻𝑛) = 𝑠=1
𝑛 (𝛿𝑖𝐻σ(𝑖)) = 〈1 −

e
−(∑ 𝛿𝑖

𝑛
𝑖=1 (− log(1−(𝜌σ(𝑖))))

ℶ
)

1
ℶ⁄

, e−(∑ 𝛿𝑖
𝑛
𝑖=1 (− log(𝜙σ(𝑖)))

ℶ
)

1
ℶ⁄

〉. 

Step 2. Aggregate the score function 𝑆𝑐(𝒴̅𝑖),  varied on the total IHF information (𝒴̅𝑖), (𝑖 =

1,2, … , 𝑛) that one can order for the alternative 𝐴𝑖 to choose excellent selection 𝐴𝑖. In the event that 

there is relationship between scores functions 𝑆𝑐(𝒴̅𝑖) , then we continue to calculate the accuracy 

amounts of 𝐻𝑎𝑐(𝒴̅𝑖), and on the basis of accuracy, alternative results are ranked.  

Step 3. Grade the whole participants 𝐴𝑖 on the way to take the best one based on score values on the 

other way using accuracy value. 

The flowchart of the stated algorithm is given in Figure 1. 

 

Figure 1. Flow chart of the proposed algorithm. 
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5. Numerical example 

In this section, an investigative example is presented to illustrate the utilization of the proposed 

strategy in selecting the best mobile phone available on the market. The aim of the proposed approach 

is to simplify the decision-making process for consumers by providing a systematic and structured 

method of evaluating options based on their individual needs and preferences. 

5.1. Explanation of the problem 

In today’s world, the mobile phone has become the most essential device for every individual. 

Various companies offer a wide range of options with varying qualities, making it difficult to determine 

the best device suitable for an individual's needs. The decision-making process can be daunting and 

unpleasant for those looking to make a purchase. However, to overcome this challenge, a proposed 

approach can be utilized to assist the common man in society with making purchasing decisions, 

whether it be for a mobile phone, car, bungalow, or other products. Let us consider Mr. Noor Zeb, who 

plans to buy a versatile version of an android. He visits the market, and after pre-screening, he received 

five different advanced gadgets for advanced assessment. He has to plan based on the four subsequent 

parameters: (𝑖) 𝐺1 is a long-lasting battery and crystal-clear display. (𝑖𝑖) 𝐺2 is the accessible mobile 

phone price and attractive in weight and size. (𝑖𝑖𝑖 ) 𝐺3  is the wrap-speed processing and storage 

capacity. (𝑖𝑣) 𝐺4 is versatile camera and built-in security. The assigned weight is allocated by experts 

as 𝜔 =  (0.4,0.2,0.1,0.3)𝑇 the five devices 𝐴𝑖(𝑖 = 1, … 5) are to be evaluated in indistinctness with 

IHF information (chosen from [11]). Table 2 shows the attributes and alternatives details. 

Table 2. IHF information table. 

Altenative 𝑮𝟏  𝑮𝟐  𝑮𝟑 𝑮𝟒  

𝑨𝟏 {{0.1,0.3}, {0.1,0.4}} {{0.0,0.3}, {0.3,0.4}} {{0.0,0.3}, {0.1,0.1}} {{0.2,0.4}, {0.1,0.2}} 
𝑨𝟐 {{0.1,0.0}, {0.2,0.2}} {{0.0,0.1}, {0.1,0.2}} {{0.1,0.1}, {0.1,0.3}} {{0.1,0.2}, {0.1,0.3}} 
𝑨𝟑 {{0.3,0.2}, {0.2,0.1}} {{0.1,0.2}, {0.0,0.1}} {{0.2,0.5}, {0.2,0.1}} {{0.0,0.6}, {0.2,0.1}} 
𝑨𝟒 {{0.3,0.1}, {0.2,0.5}} {{0.3,0.5}, {0.1,0.1}} {{0.1,0.0}, {0.1,0.2}} {{0.3,0.2}, {0.2,0.2}} 
𝑨𝟓 {{0.2,0.1}, {0.5,0.1}} {{0.1,0.4}, {0.1,0.2}} {{0.2,0.2}, {0.5,0.2}} {{0.3,0.5}, {0.2,0.2}} 

Step 1. Consider that ℶ = 1, using the IHF𝒜𝒜WA operator to compute the general alternative values 

𝒴̅𝑖(𝑖 = 1, … ,5) of five participants 𝐴𝑖,  

𝒴1 = (0.100943, 0.507031), 
𝒴2 = (0.038361, 0.48483), 

𝒴3 = (0.121264, 0.398785), 

𝒴4 = (0.115598,0.509434), 
𝒴5 = (0.121435,0.533009). 

Step 2. Aggregate the score numbers 𝑆𝑐𝑟(𝒴𝑖) of the general IHFNs of 𝒴𝑖, 

𝑆𝑐𝑟(𝒴1) = −0.40609, 
𝑆𝑐𝑟(𝒴2) = −0.44647, 
𝑆𝑐𝑟(𝒴3) = −0.27752, 
𝑆𝑐𝑟(𝒴4) = −0.39384 

𝑆𝑐𝑟(𝒴5) = −0.41157. 

Step 3. Classify all the five gadgets 𝐴𝑖(𝑖 = 1, … 5) respectively the result of the score function of 

the general 𝑆𝑐𝑟(𝒴𝑖)(𝑖 = 1,2, … ,5) IHFNs as  
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𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴5 ≻ 𝐴2. 

From this ranking order, we obtain 𝐴3, which is chosen as the most suitable mobile phone for Mr. 

Noor Zeb. 

5.2. The effect of the parameter ℶ in this method 

We apply various values of the parameter ℶ  within the aforementioned methodologies to 

categorize the five alternatives (𝐴𝑖) to show the effects of the varied amounts of the parameter ℶ. In 

Table 3 and graphically in Figure 2, the ordering implications of the five participants (𝐴𝑖) using the 

𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ  operator are shown. It is reflected that as the amount of ℶ  for the 𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ 

operator is improved, then scores of the alternatives also rises regularly. However, the corresponding 

ordering stays the same (i.e., 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴5 ≻ 𝐴2). This indicates that the suggested procedures 

contain the characteristic of isotonicity, allowing the DM to select the best result in accordance with 

their favorites.  

Table 3. Score values obtained by changing parameter. 

ℶ 𝓢𝓬𝓸𝓻𝓮 𝓨𝟏 𝓢𝓬𝓸𝓻𝓮 𝓨𝟐 𝓢𝓬𝓸𝓻𝓮 𝓨𝟑 𝓢𝓬𝓸𝓻𝓮 𝓨𝟒 𝓢𝓬𝓸𝓻𝓮 𝓨𝟓 Ranking 

1 -0.40609 -0.44647 -0.27752 -0.39384 -0.41157 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴5 ≻ 𝐴2 

2 -0.21117 -0.23049 -0.34755 -0.21114 -0.17601 𝐴5 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴3 

3 -0.88225 -0.87951 -0.74294 -0.87521 -0.9093 𝐴3 ≻ 𝐴4 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴5 

4 -0.92782 -0.93167 -0.79014 -0.91952 -0.95151 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5 

5 -0.95132 -0.95898 -0.81069 -0.94251 -0.97166 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5 

10 -0.98552 -0.9949 -0.74868 -0.97795 -0.99622 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5 

20 -0.9947 -0.99976 -0.14491 -0.98994 -0.99978 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5 

50 -0.998 -1 0 -0.99601 -1 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴2 

Additionally, as seen in Figure 2, we can deduce that the level of products of the choices are 

identical whether results of ℶ are altered in the example, and the reliable grading outcomes shows the 

solidity of the suggested 𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ operators. 

 

Figure 2. Score values of the alternatives for various values ℶ by IHF𝒜𝒜WA operator. 
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5.2. Comparative analysis 

In the current part, we compared the presented techniques with the 𝐼𝐻𝐹𝐻𝑃 [11] and 𝐼𝐻𝐹𝑃𝐺 

aggregation operators and 𝐼𝐹𝒜𝒜  𝐻 [16]. The comparative values are recorded in Table 4 and the 

results are geometrically represented in Figure 3. 

Table 4. Comparative results. 

𝑻𝒆𝒄𝒉𝒏𝒊𝒒𝒖𝒆𝒔 𝓢𝓬𝓸𝓻𝓮 𝓨𝟏 𝓢𝓬𝓸𝓻𝓮 𝓨𝟐 𝓢𝓬𝓸𝓻𝓮 𝓨𝟑 𝓢𝓬𝓸𝓻𝓮 𝓨𝟒 𝓢𝓬𝓸𝓻𝓮 𝓨𝟓 Ranking 

Mahmood et 

al. [11] 

IHFPWA 

0.2112 −0.0498 0.3706 0.118 0.156 𝐴3 ≻ 𝐴1 ≻ 𝐴5

≻ 𝐴4 ≻ 𝐴2 

Mahmood et 

al. [11] 

IHFPWG 

0.1897 −0.1476 0.196 0.1008 0.1196 𝐴3 ≻ 𝐴1 ≻ 𝐴5

≻ 𝐴4 ≻ 𝐴2 

 

Senapati et 

al. [16] 

IF𝓐𝓐WA 

−0.17694 −0.38131 −0.13638 −0.22612 −0.21063 𝐴3 ≻ 𝐴1 ≻ 𝐴5

≻ 𝐴4 ≻ 𝐴2 

Proposed 

Model 

−0.92782 
 

−0.93167 
 

−0.79014 
 

−0.91952 
 

−0.95151 
 

𝐴3 ≻ 𝐴4 ≻ 𝐴1

≻ 𝐴2 ≻ 𝐴5 

In the following, we employ the established methodology to suggest a prospective evaluation of 

four potential emerging technology firms for commercialization. 

 

Figure 3. Graphically representation of comparison study. 

1) Table 4 and Figure 3 guides that 𝐼𝐹𝐻𝐴  operators are a specific form of the established 

𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ  model and occurs when the set of MG and set of NMG is taken as a singleton. 
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Therefore, our developed method is more general in contrast with IFWA operators, as described by 

Senapati et al. [16]. 

2) Table 4 and Figure 3 directed that 𝐼𝐻𝐹𝐻𝐴  operators are a specific form of the established 

𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ  model and comes about by supposing ℶ = 1.  Therefore, our approach is more 

effective in contrast with IHFWA operators, as described by Mahmood et al. [11]. 

3) The calculating complexity of our approaches is lesser than existing models such as the IHFWA and 

𝐼𝐻𝐹𝐻𝐺 operators [11]. When this happens, the recommended solutions contain a parameter that may 

modify the calculated value based on the real decision demands and confines frequent already-

existing IHF aggregation operators. Appropriately, the assistance is that the developed model 

proves a superior intensity of agreement and flexibility.  

4) The principal benefit of our suggested model over Mahmood’s 𝐼𝐻𝐹𝐻𝐴  operator is that the 

𝐼𝐻𝐹𝒜𝒜𝐻𝐴δ operator has the attractive feature of monotonically increasing with respect to the 

parameter ℶ, allowing decision-makers to select the proper result with respect to their risk favorites. 

If the decision-maker prefers risk, we may set the parameter's value as low as is practicably possible; 

if the decision-maker is risk averse, we can set the parameter's value as high as is practicably 

possible. As a result, the decision-maker can use the best result of the parameter by their risk 

tolerance and concrete requirements. The practice described in this assessment is superior to the 

other existing approaches, according to the judgments and investigation realized above. 

6. Conclusions 

The article begins by examining the Aczel-Alsina 𝑇. 𝒩 and 𝑇. 𝐶𝒩 in the IHF environment and 

proposes new operating rules for IHFNs while exploring their characteristics. Based on these 

functional laws, the article introduces exclusive aggregation operators, where the 𝐼𝐻𝐹𝐴𝐴 𝐻𝐴𝛿 

operator, 𝐼𝐻𝐹𝐴𝐴 𝑂𝐻𝐴𝛿   operator, and 𝐼𝐻𝐹𝐴𝐴 𝐻𝐴𝛿  operator were designed to conform to the 

conditions where the allocated opinions are IHFNs. Furthermore, the article investigates the MADM 

problem using the Aczel-Alsina aggregating operators and IHF data, resulting in various approaches 

to solve IHF MADM issues. To demonstrate the proposed method's feasibility and effectiveness, the 

article presents a useful example. Additionally, the article analyzes the parameter of Aczel-Alsina and 

discusses its effects on the alternatives, and the pictorial form helps to understand the importance of 

this factor. A comparative analysis is also discussed with existing and proposed approaches, 

highlighting the established model's benefits in detail, including its geometrical approach. 

Although the proposed method provides a broader model to address the decision-making process, 

which is accompanied by the uncertainty aspect through considering the satisfaction and dissatisfaction 

degrees of the information, the utilization of the proposed approach on high-dimensional problems still 

deserves further exploration. To resolve this problem, we intend to create a more adaptable 

mathematical frameworks in the future, which should allow us to record a noticeable greater range of 

evaluation. Additionally, we can generalize our approach, which will allow the expanse of the approach of 

the application to deal with practical cases. Finally, we can range the method to the different types of 

decision-making difficulties and some new generalizations of fuzzy situations such that Interval-valued 

IHF data and q-rung orthopair fuzzy sets along with the diverse application on the different areas, such as 

the multiobjective intelligent model [38], feature extraction [39], etc. 
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