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Capacitative deionization (CDI) technique is widely pursued for the removal and recovery of ionic contaminants from
wastewater, as it does not leave secondary waste and can operate at low voltages < 1.2V vs. reversible hydrogen elec-
trode (RHE) (Suss, 2015; Pastushok, 2019; Ge, 2018). Most studies in literature concentrate on desalination, however
the removal of other ionic contaminants like nitrates, phosphates, sulphates, chlorides, and fluoride are also explored
(Zhang, 2022; Zhang, 2023; Chen, 2022; Martinez-Vargas, 2022). In a previous work (Krishnamurthy, 2022),
carbon-based electrodes were made from pine-based biomass and these electrodes were tested for their electrochem-
ical properties, through a series of complementary experimental methods. The goal of the present work is to perform a
techno-economic analysis (TEA) for the removal of ionic nitrate (NO3

–) and phosphate (H2PO4
–) contaminants from

wastewater using the electrochemical properties. The basis for the design was the removal of nitrates and phosphates
from a wastewater stream available at a flowrate of 44l/s and an initial nitrate and phosphate concentration of 1 mM.
The final concentration was fixed to be 0.1mMafter the removal of the ionic contaminants. The TEAwas based on the
information obtained from the characterization of the electrodes. The results showed that CDI process was economical
for nitrate removal compared to that of the phosphate removal due to the higher capacitance value. Sensitivity analysis
was further performed to evaluate the effect of the capacitance, the electrode replacement and the outlet concentration
on the capital and the operating expenditure values.
Supplementary data to this article can be found online at https://doi.
org/10.1016/j.sctalk.2023.100216.
auer–Emmett–Teller; CAPEX, Captial expenditure; OPEX, Operating expenditure.
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Figures and tables
Fig. 1.One the left, are electrodes made for this work. These are done by spray coating carbon on to a stainless-steel substrate. About 2 mg of carbon was coated form every
cm2 of area. On the right, adsorption desorption curves for N2 adsorption at 77 K are shown. The carbon synthesized from the pyrolysis of pine wood has a BET surface area of
700–800 m2/g while a commercial activated carbon from MERCK has a BET surface area of 903 m2/g.
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Fig. 2. (a) current vs potential in a cyclic voltammetry experiment (b) capacitance curve at different scanning rates for a 1 mM NH4NO3 solution. (c) summary of the
capacitance values at different electrolyte concentrations. Nitrates have a higher capacitance than phosphates. For the phosphates, the capacitance values <100 mM were
not measured due to high resistances. This figure is reproduced from our previous work [1].
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Fig. 3. Schematic of the batch test set up used for this work. It consists of a beaker with the electrolyte in which the working electrode, counter-electrode and reference elec-
trode are immersed and they are connected to a potentiostat. Theworking and the counter electrodes are the carbon-SS electrodes. Adsorption takes place when the potential
is supplied across the electrodes and desorption is carried out by stopping the current (0 V) or changing the polarity (-1 V).
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Fig. 4. (a) transient current responses in working electrode at different voltages. The capacity is obtained by integrating the area under the curve (b) Capacity vs voltage for
1 mM solutions of NH4NO3 and KH2PO4. The adsorption capacity increases with increasing voltage due to more migration of the ions and is consistent with the recent study
[2]. The adsorption capacity of the nitrates (NO3

−) was higher than that of the phosphate ions (H2PO4
−) and this is consistent with the findings of Macias et al. [3]. This is due

to the smaller ionic radii of the nitrate ion. The values of capacities are higher than the ones reported in literature [2,4,5] possibly due to the differences in the type of carbon
and in this work, the total capacity rather than the capacity due to the electrosorption effect alone is reported. (c) Phosphates show a bigger loss in capacity with respect to
cyclic adsorption-desorption studies probably due to incomplete removal. These results are discussed in our earlier publication [1].

S. Krishnamurthy et al. Science Talks 6 (2023) 100216

5



Fig. 5. (a) and (b) Capacity vs voltage for higher concentrations of nitrates and phosphates. As concentration increases, more ions are present which show an increase in the
current, thereby an increase in capacity is observed.
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Fig. 6. (a) Capital and operating expenditure (CAPEX and OPEX) for the removal of nitrates and phosphates. The inlet and outlet concentrations to the CDI unit are 1mMand
0.1 mM respectively. The cost functions were taken from the work of Hand et al. [6]., The capital expenditure is a function of the amount of carbon, stainless steel, binder
material and the frames along with the balance of plant. The operating expenditure is the sum of the energy and the labor costs. The higher CAPEX and OPEX for the phos-
phate solution is due to the lower capacitance (b). Bulk of the cost is from the balance of plant while the electrode and the frames come to about 30%. Thework of Hand et al.,
[6] calculates cost values based on the assumption of an ideal capacitor. Detailed cost values can only be obtained by solving a full model that is available in literature, which
considers axial and or traverse transport of ions [7–9].
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Fig. 7. The effect of outlet concentration on the CAPEX and OPEX are shown here. A higher outlet concentration means poorer separation and a lower number of electrode
pairs are required. The number of electrode pairs drops from 40,236 for 0.1 mM to 4400 for 0.9 mM. Overall energy consumption drops from 3.9 MJ to 0.44 MJ. The capac-
itance value is fixed to 8 F/g and one electrode replacement is considered for every five years.

Fig. 8. The effect of capacitance on the costs is shown here. Here the outlet concentration and the electrode replacement frequency are fixed to 0.1mMand 1 replacement for
5 years. Higher capacitance results in lower mass of electrodes, thereby lowering the costs. Mass of carbon drops from 800 kg to 11 kg (the electrodes become thinner). A
capacitance value of >50 does not seem to have any significant effects on costs.
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Fig. 9. The effect of electrode replacement frequency on the operating expenditure is shown. The fixed values are capacitance (8 F/g: Nitrate and 4 F/g Phosphate) and the
outlet concentration to 0.1 mM. The frequency of electrode replacement has a significant effect on phosphate removal due to the lower capacitance. Operating expenses
varied from 15,000–102,000 $ for Nitrate removal and 25,000–199,000 $ for Phosphate removal. The work does not consider competing ions [2,5] which may have
some effect on the adsorption of the nitrates and thereby affecting the process performance.
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Table 1
Summary of the electrosorption experiments. The table is reproduced from our previous work [1].
Electrolyte
C
O
A
A
L
C
C
B
E

Concentration
9

Capacity
(mol/kg)
Capacity
(mg/g)
H4NO3
 0.4 mM
 0.28
 22.25
N

1 mM
 1.43
 114.14

10 mM
 2.02
 161.6

100 mM
 3.76
 301.14

1 M
 5.43
 434.35
H2PO4
 0.2 mM
 0.08
 11.09
K

1 mM
 0.11
 14.7

10 mM
 0.14
 18.4
Table 2
Summary of the cost estimation for nitrate and phosphate removal. The calculations are based on the work of Hand et al., [6]. The
number of the stage is the same for the nitrates and phosphates since it is a function of the exit concentration.
Indicator
 Units
 NH4NO3
 KH2PO4
APEX
 US$
 44,546.5
 54,252.6

PEX
 US$
 15,003
 25,000

nnualised CAPEX
 US$
 9726.3
 11,846.3

nnualised OPEX
 US$
 3659.1
 6097.3

abour cost
 US$
 1336.4
 1627.6

ost of electrodes
 US$
 8621.9
 17,244

ost of other materials
 US$
 5925.1
 7279

alance of plant
 US$
 30,000
 30,000

nergy consumption
 MJ
 3.98
 3.98

umber of electrode pairs
 40,236
 40,326
N
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