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Abstract

In this paper, we evaluate the reasoning performance of six prominent OWL 2 DL reasoners, using
two collections of ontologies: ORE 2015 and the 21 largest ontologies from the NCBO BioPortal. We
observed that the majority of the reasoners were unable to successfully perform over half of the reasoning
tasks in the NCBO BioPortal dataset which includes some very large ontologies. Despite of being a
representative selection of the state-of-the-art OWL 2 DL reasoners, it came to our attention that many
of them are no longer being actively maintained. These findings serve as a cautionary message to the
OWL 2 reasoning community, emphasizing the need to focus research efforts towards keeping up with
the growing requirements posed by new and very large ontologies and knowledge graphs.

Keywords
OWL 2, Ontology, OWL 2 Reasoners, Performance Evaluation

1. Introduction

The notion of “Knowledge Graph” was coined by Google when they introduced a new service
to improve web search capabilities, where information was represented and stored as labeled
graphs!. Since then, Knowledge Graphs have gained significant attention from both industry
and academia. In short, a Knowledge Graph is a machine-readable collection of knowledge
represented as a labeled graph. A Knowledge Graph contains entities, such as people and
locations, and relations between them, such as “birthplace” and “work address”. Relevant
examples of knowledge graphs include Wikidata [1], DBpedia [2], and YAGO [3]. These
knowledge graphs, among many others, are defined using the Web Ontology Language version
2 (OWL 2) [4], which is a recommendation from the W3C. The OWL 2 specification defines two
semantics: (1) Direct Semantics and (2) RDF-based semantics. The former is known as OWL 2
DL and it is decidable. The OWL 2 specification also includes three tractable fragments with
polynomial reasoning time (EL, QL, RL). To store, exchange, and query knowledge graphs, the
W3C provides two additional recommendations: RDF 1.1 [5] and SPARQL 1.1 [6]. Triplestores
are graph databases that support these two recommendations. The evaluation presented in [7]
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demonstrated that state-of-the-art triplestores can handle very large knowledge graphs such as
Wikidata. However, most of these triplestores do not support OWL 2 DL, or they only support
one of the tractable fragments, such as OWL 2 RL. Apache Fuseki® is an example of the former
case, and RDFox® is an example of the latter case.

Because many triplestores do not support OWL 2 DL or only one of its fragments, it may not
be possible to guarantee the correctness of queries if the knowledge graph includes certain OWL
2 constructors. This could be the case with the knowledge graph YAGO 4 [3], which defines the
6 top classes as disjoint classes, meaning they cannot share any individuals. A careless extension
of YAGO 4 may easily violate these design restrictions, and only an OWL 2 DL reasoner might
be able to identify these violations. Therefore, it might be recommended to adopt an OWL 2 DL
reasoner when working with OWL 2 DL knowledge graphs. However, as many of the available
reasoners were designed to test different reasoning algorithms, optimizations, and extensions
beyond OWL 2 DL, deciding on an appropriate reasoner for a particular application can be
challenging.

In this paper, we evaluate the performance of six prominent OWL 2 DL reasoners, namely
Pellet [8], FaCT++ [9], JFact?, Openllet’, HermiT [10], and Konclude [11]. Except for Konclude,
these reasoners support the OWLAPI library®, which is one of the most relevant ontology and
semantic knowledge graph development frameworks. To test these reasoners, we selected two
collections of OWL 2 ontologies: ORE 2015 [12] and the 21 largest ontologies from the NCBO
BioPortal [13]. The evaluation scripts and results of this work can be found at the GitHub
repository’.

The remainder of the paper is structured as follows. Section 2 discusses related work. Section
3 describes the evaluation setup. Section 4 provides a detailed discussion of the evaluation
results. Finally, Section 5 concludes the paper and presents future work directions.

2. Related Work

During the past two decades, a number of benchmarks and frameworks have been introduced to
support the comparison and evaluation of the reasoners. Some of these benchmarks were based
on generating synthetic datasets such as [14, 15, 16, 17, 18]. These early initiatives were used
to test several representative reasoners at that time on a relatively low number of ontologies
and a small set of hand-crafted queries [19]. The LUBM benchmark [20], together with its
extensions - UOBM [21] and SLUBM [22], are the most representative and popular synthetic
benchmarks with varying sizes of instances for the university ontology. However, due to several
shortcomings in their design (e.g., sparsely interrelated data and very simple schemas), these
cannot be considered as meaningful benchmarks as many reasoners that achieved excellent
results in these benchmarks failed other ABox or TBox tests [23]. In contrast, using real-world
ontologies to evaluate the performance of the reasoners was a different direction where the
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results can be easily interpreted and exploited [24]. In this light, several benchmarks and
evaluations were introduced in [24, 25, 26, 27]. However, these works used just a small set of
ontologies and thus cannot be used to test the scalability of the reasoner. The ORE benchmark
which was a part of OWL Reasoner Evaluation (ORE) Competition [12] contains a large dataset
of ontologies of varying sizes sampled from different ontology libraries. This benchmark can be
used to evaluate the reasoners in terms of the coverage of OWL 2 constructors and scalability.

This work is motivated by the ORE competition in order to provide a thorough understanding
of state-of-the-art OWL 2 DL reasoners to assist developers in the selection of appropriate
solutions for their semantic applications. We focus only on reasoning performances as there were
several comprehensive surveys and comparisons of reasoners with regard to other aspects such
as query language, programming interface and OWL 2 constructors coverage as in [18, 28, 29].
In this light, a new evaluation of state-of-the-art reasoners with the stress on scalability and
large-scale knowledge graph is in need. There are several new releases of the reasoners since
the last ORE 2015 competition, while the most recent benchmark papers, such as OWL2Bench
(2020) [30] and the evaluation (2022) presented in [19], did not include all well-known reasoners
or focused mainly on energy profiling. Due to these shortcomings, we decided to conduct a
new performance evaluation using the most recent versions of the reasoners with the ORE 2015
dataset. In addition, in order to investigate how these reasoners can perform on very large and
modern ontologies, we selected the 21 largest ones from the NCBO BioPortal.

3. Evaluation Setup

The evaluation was conducted on Amazon Elastic Compute Cloud (EC2) r5. 2xlarge® instances
equipped with 8 vCPUs of Intel Xeon Platinum 8000 series processor at up to 3.1 GHz, 64 GB
RAM, Ubuntu 18.04 LTS, and 100 GB EBS gp3 volume which offers SSD-performance with
predictable, baseline performance of 3,000 IOPS and 125 MB/s throughput’.

3.1. Reasoners

We aim to evaluate the performance of state-of-the-art reasoners in order to support the selection
of appropriate libraries for semantic data processing and reasoning applications. In this regard,
we selected only OWL 2 DL reasoners that are still actively maintained within the last 10 years.
The reasoners should provide interfaces for OWLAPI (either version 4 or 5) - the ontology
development framework supported by most reasoners [29] - in order to enable the integration
into our benchmark programs. Based on those criteria, the following six reasoners: Pellet,
FaCT++, JFact, Openllet, HermiT, and Konclude are selected.

Table 1 lists the latest releases (before March 2023) of the evaluated reasoners. Except for Pellet
and FaCT++ which support OWLAPI 4, the others provide interfaces for the latest OWLAPI
5. Furthermore, as Konclude only provides a standalone version with support for OWLLink
protocol'?, the OWLLink-OWLAPI library was used to integrate the reasoner into OWLAPL
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Table 1
List of the evaluated reasoners.

Reasoners Version OWL.API Release Repository

Version Date
Pellet 2.4.0 4.5.20 18.4.2015 | https://github.com/ignazio1977/pellet
FaCT++ 1.6.5 4.5.20 31.12.2016 | https://bitbucket.org/dtsarkov/factplusplus
JFact 5.0.3 5.1.19 23.09.2018 | https://github.com/owlcs/jfact
Openllet 2.6.5 5.1.19 27.09.2019 | https://github.com/Galigator/openllet
HermiT 1.4.5.519 5.1.19 18.02.2020 | https://github.com/owlcs/hermit-reasoner
OWLLink 2.0.0 5.1.19 21.12.2018 | https://github.com/ignazio1977/owllink-owlapi
Konclude 0.7.0-1138 5.1.19 19.06.2021 | https://github.com/konclude/Konclude

3.2. Datasets

The evaluation has been carried out on two datasets: ORE 2015 [12] and NCBO BioPortal [13]
ontologies. The ontologies are binned by size into the following groups: very small (less than
1K axioms), small (1K - 10K axioms), medium (10K - 100K axioms), large (100K - 1M axioms),
very large (1M - 10M axioms), and huge (more than 10M axioms), as illustrated in Figure 1.

(a) ORE 2015 Ontologies (b) ORE 2015 Ontologies
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Figure 1: Distribution of the ontologies in each dataset.

ORE 2015 contains 1920 ontologies from the OWL Reasoner Evaluation 2015 Competition
dataset!!
size ontologies. Regarding the reasoning task realization, we only consider ontologies with
more than 100 ABox axioms. This process results in a subset of 624 ontologies for the realization
task.

NCBO BioPortal is one of the largest libraries of biomedical ontologies and terminologies.
Ontologies have been selected by taking the 20 largest ones in this portal. Additionally, the
GALEN ontology [31] was also added to this dataset as it is known to be one of the most difficult
ontologies for tableau reasoners. This ontology contains many cyclic axioms, which result

, which can be used to evaluate the performance of the reasoners on small and medium-
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in very large models and an extremely long time to classify and realize [32]. Table 2 shows
the statistics of those 21 ontologies. This dataset is used to evaluate the performance of the
reasoners on very large real-world ontologies and knowledge graphs.

Table 2
NCBO Bio-ontologies statistics: number of Classes, Ind[ividuals], Axioms, Logical Axioms, TBox, ABox,
Data Prop[erties], and Obj[ect] Prop[erties]. The list were ordered by total number of axioms.

Ontology Classes Ind Axioms /l;o,.glcal TBox ABox Data Obj
xioms Prop | Prop

GALEN 23,136 0 63,324 37,696 36,205 0 0 950
HOOM 117,829 1 461,823 222,011 221,980 1 2 12
OCHV 115,645 0 505,642 173,501 173,475 0 1 17
FMA 104,721 2 791,248 296,460 296,329 2 29 139
SNMI 109,156 109,150 998,278 490,449 109,047 381,376 6 21
UPHENO 159,212 17,091 1,552,159 468,679 446,500 21,697 1 341
RHMESH 305,349 0 1,654,092 432,805 432,805 0 0 1
RETO 147,738 138,523 1,927,495 941,797 152,173 789,624 0 12
I0BC 126,847 66,923 1,929,343 316,724 182,277 134,384 0 59
NIFSTD 157,666 130,781 1,962,343 483,775 320,798 161,717 6 833
REXO 158,239 149,084 2,043,111 997,563 162,839 834,724 0 12
GEXO 166,254 157,102 2,143,045 1,052,276 170,932 881,344 0 12
NCIT 169,111 0 2,850,463 234,117 234,104 0 0 97
CHEBI 171,059 50,642 3,314,948 397,690 310,133 87,554 0 10
DRON 578,206 510,104 3,498,249 1,642,634 | 1,158,027 484,583 1 20
PR 332,354 294,425 5,151,763 | 1,426,166 | 1,007,050 419,110 0 21
LOINC 268,558 268,552 | 7,079,178 | 5,632,197 257,534 | 5,374,637 70 105
GAZ 668,839 660,755 7,801,093 | 2,256,702 | 1,460,125 796,571 0 15
MESH 347,698 347,692 | 9,612,820 | 7,289,654 40,919 | 7,248,709 28 27
CCO 264,892 255,182 9,925,469 | 4,229,990 | 2,249,881 1,980,102 0 15
NCBITAXON 1,908,229 1,908,223 17,351,973 9,541,037 1,908,189 7,632,822 3 18

3.3. Experiment Configuration

To run the experiment, we implemented two small Java programs using OWLAPI to: (1) perform
a reasoning task T on an ontology O using a particular reasoner R, and (2) run the evaluation
with the sets of reasoners Rs, ontologies Os, and tasks Ts. By splitting the evaluation into
two different programs, each reasoning task for a reasoner on an ontology can be run in a
separate process. Particularly, for each evaluation iteration, the ontology is loaded again, and a
new instance of the reasoner for the corresponding ontology is created. Therefore, this setup
eliminates the effect of memory limitation and caching on the measured execution times. The
default settings were applied for all reasoners as we assume that the general users do not
have too much knowledge to optimize the configurations. There are four different tasks were
evaluated:

+ Loading reasoner: regards the time for initializing a new instance of the reasoner and
loading the ontology model into it.

« Consistency: verifies whether every class in the ontology admits at least one individual.

« Classification: computes a class hierarchy with all superclasses and subclasses of every
class defined in an ontology.

« Realization: for each individual, it finds all classes, especially the most specific ones,
where the individual is an instance of.



The timeout was set to 30 minutes for ORE 2015 dataset and 1 hour for BioPortal ontologies.
Our primary performance measure is the task execution time. Each reasoning task was evaluated
for 10 iterations, and the mean values were used for the analysis. We propose to use both
arithmetic mean M, and geometric mean M, (n" root of the product over n numbers) of the
execution time. To compute the means, the failed tasks (e.g., timeout, errors) are penalized with
double the timeout value (1 hour for ORE 2015 and 2 hours for BioPortal ontologies). Arithmetic
mean is dominated by large numbers, so it can be used as an indicator of a high ratio of success
and failure tasks (i.e., smaller value indicates more success tasks). Geometric mean can handle
varying proportions and mitigate the effect of large number penalty. Therefore, geometric
mean is used to evaluate the overall performance over success tasks (i.e., smaller value indicates
smaller execution time for the success tasks).

4. Results and Discussions

4.1. ORE 2015 Dataset

Table 3 presents the results of the evaluated reasoners on ORE 2015 dataset. Additionally, the
task reasoning times are plotted in Figure 2, where timeouts and errors were excluded.

Table 3
Results of the reasoning tasks (in seconds) on ORE 2015 ontologies. (TO: Timeout, OOM: OutOfMemory
Error, OE: Other Errors, IE: Inconsistent Error, #10: Number of Inconsistent Ontologies).

Rank | Reasoners | Success | TO | OOM | OE M, M,
- 1 JFact 1920 0 0 0 0.35 0.06
£ 2 Openllet 1918 2 0 0 6.05 0.12
'g 3 Konclude 1916 3 0 1 10.04 0.28
i 4 HermiT 1890 0 1 29 | 57.29 0.21
5 FaCT++ 1878 0 0 42 | 79.11 0.06
6 Pellet 1641 2 0 277 525.5 0.51
Rank | Reasoners | Success | TO | OOM | OE #10 M, M,
& 1 Konclude 1911 0 5 43 16.88 0.00
§ 2 HermiT 1881 3 29 43 79.68 0.01
2 3 Openllet 1818 93 5 4 58 195.32 0.09
g 4 FaCT++ 1800 31 0 89 24 234.74 0.05
O 5 JFact 1781 | 110 0 29 69 283.32 0.59
6 Pellet 1513 84 3 320 33 766.28 0.52
c Rank | Reasoners | Success | TO | OOM IE OE M, M,
) 1 Konclude 1862 7 0 43 8 | 109.65 0.05
'5 2 HermiT 1751 84 12 43 30 346.70 2.21
& 3 FaCT++ 1598 | 204 0 24 94 628.41 0.51
% 4 Openllet 1595 216 12 59 38 630.27 1.89
o 5 JFact 1486 | 327 1 70 36 862.23 6.79
6 Pellet 1315 | 198 10 33 364 | 1158.64 5.67
Rank | Reasoners | Success | TO | OOM IE OE M, M,
s 1 Konclude 591 3 0 25 5 190.87 0.15
S 2 HermiT 512 68 2 25 17 708.55 | 15.44
& 3 Openllet 488 84 8 36 8 806.45 5.24
Tz 4 FaCT++ 471 79 0 14 60 907.23 1.62
x 5 JFact 439 140 1 36 8 1124.64 18.65
6 Pellet 339 81 5 22 177 | 1661.65 | 31.03

Regarding loading task, JFact ranked first with no error or timeout, while Openllet and
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Konclude are in the top three with up to 3 timeouts. Although Openllet was developed based
on Pellet, the reasoner had much better results with no errors, while Pellet had the most errors.
Konclude had one error related to OWLLINK library (i.e., not supported DatatypeDefinition).
HermiT, FaCT++, and Pellet did not succeed in loading all ontologies due to a lot of errors. Most
of the errors are related to OWL constructs (e.g., SWRL rule uses a built-in atom, unsupported
datatype). Regarding the execution time, JFact and FaCT++ seem to load ontologies faster
than the others as they have the smallest geometric mean, while Konclude amounted to the
largest value of geometric mean. As OWLLink library also validates consistency after loading
ontologies, Konclude took a longer time to complete this initialization and loading task while
having much better results in the consistency validation task. This insight can also be noticed
in Figure 2(a), where Konclude usually lies above others while FaACT++ and JFact are the lowest.

Regarding the consistency validation task, Konclude and HermiT were in the top two, with
the least timeouts and errors. Although JFact was loaded fastest, it had the most timeouts
in this task. JFact also had the largest geometric mean, indicating that the reasoners had the
poorest performance on this task. Furthermore, Pellet ranks last due to many errors related to
unsupported datatype (17% of the ontologies), while its descendant, Openllet, is in the fourth
position with only 4 errors. Regarding the overall performance of the reasoners on success
ontologies, Konclude has the best performance with the smallest geometric mean. As seen from
Figure 2(b), Konclude has approximately constant performance on this task because consistency
checking was already done when loading the reasoner, as discussed earlier. On the other hand,
HermiT can perform even better than Konclude on many small ontologies. Furthermore, it is
worth mentioning that although Openllet and Pellet vary a lot in the number of errors, these
two reasoners have very similar performance on all reasoning tasks on success ontologies. This
can be seen in Figure 2(b), where Openllet lies just slightly above Pellet in all four plots. This
finding shows that the Openllet reasoner was developed to resolve the limitation of Pellet on
OWL features support without significant improvement in reasoning performance.

Konclude and HermiT were also in the top two reasoners for classification and realization tasks,
while JFact and Pellet always ranked last when comparing the number of success ontologies.
Furthermore, although FaCT++ had more failures than Konclude and HermiT, it performs better
on small ontologies. This can be seen from the geometric mean as well as in 2(c) and (d), where
FaCT++ had the best performance on small ontologies. Openllet and Pellet are still in the middle
range, while HermiT performed slower than these two reasoners, although HermiT had much
fewer timeouts. JFact still had the poorest performance.

In summary, Konclude and HermiT were always in the top two reasoners with the most
successful reasoning tasks on the ORE 2015 ontologies, although they did not always have
the best reasoning times. Specifically, Konclude is more scalable as the reasoner had the best
performance on large and very large ontologies. HermiT had very good performance on
consistency validation. However, for classification and realization tasks, this reasoner was
outperformed by the other reasoners. Therefore, it is most suitable for applications that require
only consistency validation. Furthermore, FaCT++ was the next reasoner in the list with more
timeouts and errors than HermiT but had much better performance on small ontologies. This
reasoner can be considered for applications with small knowledge graphs or ontologies with
simple OWL constructs. Pellet and its descendant Openllet were always in the middle range
with slight slower performance than FaCT++. Furthermore, Openllet was developed based on



Pellet with substantial improvements related to OWL syntax support. However, regarding task
execution performance, Openllet and Pellet had very similar results. Finally, JFact consistently
ranked last in the evaluation.

4.2. NCBO BioPortal Dataset

Table 4
Reasoning time (in seconds) for NCBO Bio-ontologies. Ontologies were ordered by number of axioms.
Ontology Loading Consistency
JFact | Openllet | Pellet | FaCT++ | HermiT Kc JFact Openllet | Pellet | FaCT++ | HermiT Kc
GALEN 0.25 1.16 0.93 0.28 2.73 1.88 OE 0.54 0.48 37.27 0.00 0.00
HOOM 1.88 5.68 4.88 12.15 22.35 23.43 TO TO TO TO 0.02 0.00
OCHV 1.23 2.66 1.98 1.16 3.26 5.25 209.05 0.44 0.45 0.61 0.00 0.00
FMA 1.46 1721.50 | 1726.70 1.81 11.72 11.72 OE 3.92 3.90 OE 0.00 0.00
SNMI 3.08 7.87 6.83 3.39 5.07 15.51 TO 1.40 1.32 3.18 713 0.00
UPHENO 3.18 11.44 13.81 3.59 OOM | 119.07 TO TO TO TO OooM 0.00
RHMESH 3.64 7.58 6.45 3.35 8.21 10.93 168.32 1.27 1.22 1.70 0.00 0.00
RETO 4.35 10.95 9.28 5.20 7.25 27.58 738.17 1.39 1.44 3.90 2.37 0.00
10BC 297 4.83 4.77 2.36 4.29 9.35 318.15 1.22 1.14 1.88 1.66 0.00
NIFSTD 4.41 11.75 OE OE OE 25.99 TO TO OE OE OE 0.05
REXO 5.16 11.66 10.15 5.31 7.81 29.09 839.53 1.40 1.41 4.20 2.39 0.00
GEXO 5.33 12.32 10.64 5.87 8.25 31.04 905.30 1.34 1.38 4.59 2.57 0.00
NCIT 2.96 5.94 5.99 OE 16.48 OE 255.83 0.77 0.77 OE 0.00 OE
CHEBI 3.44 8.00 8.04 2.70 6.14 12.80 675.13 1.15 1.16 2.36 0.18 0.01
DRON 17.26 37.31 27.12 14.82 32.36 63.35 TO 14.47 13.45 11.14 13.43 0.00
PR 11.36 22.38 19.69 9.99 28.46 55.89 TO TO | 1208.59 OE 1.46 0.00
LOINC 16.46 446.04 OE OE 3414 | OOM TO 5.55 OE OE 40.25 | OOM
GAZ 22.51 48.49 37.45 16.95 33.14 71.27 TO 8.71 8.91 12.42 3.51 0.00
MESH 19.57 653.98 OE OE 47.73 | OOM TO 9.47 OE OE 73.48 | OOM
cco 14.53 107.53 103.42 21.91 39.94 | OOM TO 12.49 13.05 23.09 8.14 | OOM
NCBITAXON | 76.58 211.58 186.09 89.40 121.53 | OOM TO 30.57 27.67 71.11 OOM | OOM
Ontology Classification ) Realization
JFact | Openllet | Pellet | FaCT++ | HermiT Kc JFact Openllet | Pellet | FaCT++ | HermiT Kc
GALEN OE TO TO TO oomM 8.90 OE TO TO TO 0.00 9.37
HOOM TO TO TO TO TO | 184.37 TO TO TO TO TO | 164.23
OCHV TO 744.70 869.32 1699.32 28.02 0.78 TO 963.34 832.12 | 1822.65 0.00 1.52
FMA OE OE OE OE TO 7.37 OE OE OE OE TO 7.68
SNMI TO 10.86 9.35 | 2105.98 225.40 0.51 TO 10.98 9.54 | 1873.32 1465.84 1.11
UPHENO OE TO TO TO oomMm OE TO TO TO TO oomM OE
RHMESH TO 8.59 8.16 7.76 23.86 2.88 TO 8.71 8.27 7.3 0.00 4.72
RETO TO 3.24 3.27 2296.49 11.55 0.70 TO 3.28 3.24 2318.47 18.54 1.52
10BC IE 165.83 170.01 TO 256.41 1.85 IE 173.81 17297 TO 1216.44 2.53
NIFSTD TO TO OE OE OE IE TO TO OE OE OE IE
REXO TO 3.43 3.34 2768.20 1214 0.75 TO 3.48 3.35 2537.54 20.19 1.62
GEXO TO 3.50 3.46 | 3283.48 12.75 0.78 TO 3.55 3.59 2890.13 19.83 1.69
NCIT TO 202.69 733.82 OE 157.33 OE TO 215.85 OE OE 0.00 OE
CHEBI TO 1042.31 | 1038.34 2439.78 135.77 2.10 TO 837.44 | 1152.21 2286.37 152.40 2.96
DRON TO TO TO TO TO 35.88 TO TO TO TO TO 39.13
PR TO TO TO OE TO 32.66 TO TO TO OE TO 24.11
LOINC TO TO OE OE 1908.58 | OOM TO TO OE OE TO | OOM
GAZ TO TO TO TO 1260.37 9.95 TO TO TO TO TO | 13.81
MESH TO TO OE OE TO | OOM TO TO OE OE TO | OOM
Ccco TO TO TO TO OOM | OOM TO TO TO TO OOM | OOM
NCBITAXON TO 357.16 | 271.79 TO OOM | OOM TO 343.02 | 282.06 TO OOM | OOM

The results of the reasoners’ evaluation on NCBO BioPortal are presented in Table 4. To
evaluate the performance of the reasoners on large-scale knowledge graphs, we selected the
21 largest ontologies. The results for the reasoner loading task are consistent with those of
ORE 2015, where JFact was the fastest reasoner and Konclude (Kc) ranked last due to additional
time required for consistency validation. Konclude also had the highest number of failures,



which were attributed to memory overflow. Upon closer examination of these OOM errors, we
found that they were related to the OWLLINK library, which is not designed to handle very
large ontologies. However, when we used KoncludeCLI - the standalone version of Konclude
- to perform the reasoning tasks on the same ontologies, we did not encounter any errors.
Additionally, the table shows that Openllet performed slightly better than its previous version -
Pellet - and was also capable of handling several syntax errors that occurred with Pellet.

Konclude performed exceptionally well in the consistency task, owing to its ability to validate
consistency during the reasoner loading process. However, when we compared the loading
time of Konclude with the consistency validation time of the other reasoners, HermiT emerged
as the top-performing reasoner in this test. This outcome aligns with the results of the ORE
2015 evaluation, which also found HermiT to be superior in checking ontology consistency,
particularly with very large ontologies.

In terms of classification and realization, Konclude outperformed the other reasoners overall.
JFact had the poorest performance, failing on all ontologies in this evaluation. Additionally,
HermiT had fewer errors than FaCT++, Openllet, and Pellet. However, when considering
only the successful cases, HermiT appeared to run slower than Openllet and Pellet, a finding
consistent with the results of ORE 2015. Finally, FaCT++ exhibited inferior performance on
these two reasoning tasks, suggesting it may not be efficient for very large ontologies.

Overall, the results of the NCBO bio-ontologies evaluation were consistent with the findings
of the ORE 2015 evaluation. Konclude emerged as the top-performing reasoner, while JFact
failed on nearly all ontologies. Notably, Konclude was the only reasoner to successfully complete
all tasks on the GALEN ontology, which is considered one of the most difficult ontologies due
to its many cyclic axioms. However, Konclude may encounter memory overflow errors when
performing reasoning tasks on some very large ontologies, due to limitations with OWLLINK
library. This issue does not arise when using KoncludeCLI. HermiT was the second-best
performing reasoner with fewer errors and decent execution results, followed by Openllet,
Pellet, and FaCT++, all of which had failures on almost half of the ontologies.

5. Conclusion and Future Work

This paper presents a comprehensive evaluation of the state-of-the-art OWL 2 DL reasoners
using two real-world ontology datasets from ORE 2015 and NCBO BioPortal. The evaluation
results from both datasets were consistent, with Konclude and HermiT frequently ranking at the
top for successful reasoning tasks, while JFact had the most failures. In terms of reasoning time,
Konclude demonstrated superior performance, while the others showed varying performance
across different reasoning tasks and ontology sizes. Our evaluation identifies the strengths
and weaknesses of each reasoner, providing valuable insights for ontology developers and
application designers when selecting the most suitable reasoning system for their specific needs.

During the evaluation of the reasoners, it came to our attention that many of them are no
longer being actively maintained. This is apparent from Table 1, which shows that several
reasoners have not been updated in the past five years. Additionally, the majority of reasoners
were unable to successfully perform over half of the reasoning tasks in the NCBO BioPortal
dataset, which consists of large to very large ontologies. These findings serve as a cautionary



message to the OWL 2 reasoning community, emphasizing the need to focus research efforts
towards keeping up with the ever-evolving complexity of the ontology language and the growing
requirements of semantic applications.

As for future work, we aim to expand this evaluation by incorporating large and prominent
OWL 2 knowledge graphs such as DBpedia, Wikidata or YAGO. These knowledge graphs have
gained significant attention across various domains and have been adopted in many applications.
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