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Abstract
The field of time series anomaly detection is constantly advancing, with several 
methods available, making it a challenge to determine the most appropriate method 
for a specific domain. The evaluation of these methods is facilitated by the use of 
metrics, which vary widely in their properties. Despite the existence of new evalua-
tion metrics, there is limited agreement on which metrics are best suited for specific 
scenarios and domains, and the most commonly used metrics have faced criticism 
in the literature. This paper provides a comprehensive overview of the metrics used 
for the evaluation of time series anomaly detection methods, and also defines a tax-
onomy of these based on how they are calculated. By defining a set of properties for 
evaluation metrics and a set of specific case studies and experiments, twenty metrics 
are analyzed and discussed in detail, highlighting the unique suitability of each for 
specific tasks. Through extensive experimentation and analysis, this paper argues 
that the choice of evaluation metric must be made with care, taking into account the 
specific requirements of the task at hand.
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1  Introduction

With the growing trend of Industry 4.0, the amount of generated time series data 
increases, resulting in a huge demand for better time series analysis tools. The study 
of Time Series Anomaly Detection (TSAD) has become increasingly popular in 
recent years due to its widespread application in various fields such as cyber-physi-
cal systems (Feng et al. 2021), rail transit (Wang et al. 2022), online service systems 
(Ma et  al. 2021), smart grids (Zhang et  al. 2021), spacecraft telemetry (Baireddy 
et al. 2021), Internet of Things (Chen et al. 2021) and healthcare (Keogh et al. 2006). 
The rapid advancement of machine learning technology has also opened up new 
opportunities for developing and improving TSAD methods. With the vast number 
of different machine learning architectures and techniques available, researchers are 
constantly exploring new ways to create more accurate anomaly detectors. Whether 
it be through trying out new algorithms, combining different approaches, or incor-
porating new data sources, the possibilities for improving TSAD are endless.

This highlights the importance of careful evaluation of TSAD algorithms, and 
the need for proper selection of evaluation metrics. The choice of evaluation metric 
should be guided by the nature of the time series data and the specific requirements 
of the task at hand. Using the wrong metrics can lead to incorrect conclusions about 
the performance of an algorithm, potentially leading to incorrect decisions about its 
use in real-world applications. For example, Fig. 1 shows a prediction evaluated by 
two of the most used metrics in the literature. They vastly disagree on the quality of 
the prediction. Despite this, most papers give very little attention to the choice of 
metric. It is important to understand the limitations and trade-offs of different evalu-
ation metrics, and to make an informed choice when evaluating TSAD algorithms. 
Additionally, the development of new and improved evaluation metrics should con-
tinue to be a priority in the field of TSAD, to ensure that the best algorithms are 
selected and used in real-world applications.

TSAD has recently been the subject of criticism regarding its conventional evalu-
ation metrics. A number of studies have pointed out shortcomings in the commonly 
used metrics, and proposed alternative metrics that address these issues (Tatbul et al. 
2018; Hwang et al. 2019; Abdulaal et al. 2021; Hwang et al. 2022; Kim et al. 2022b; 
Doshi et al. 2022; Garg et al. 2022; Paparrizos et al. 2022a; Huet et al. 2022).

Fig. 1   A hypothetical scenario where there is one long anomalous event in the labels, but the detector 
predicts two short events, only one of which is within the labelled event. Two of the most used evalua-
tion metrics, the point-wise f1 score ( PWf1 ) and point-adjusted f1 score ( PAf1 ), score the same prediction 
very differently. Both metrics output values between 0 and 1, where 1 is optimal.  Anomalous point,  
Normal point
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For example, Kim et al. (2022b) criticize the point-adjust metric, and show that 
a detection algorithm outputting random noise is expected to produce very good 
scores, and capable of outperforming state of the art methods on most of the com-
mon benchmark datasets. The same conclusion is reached experimentally by Doshi 
et al. (2022). Kim et al. (2022a) include a review of several TSAD evaluation met-
rics from the perspective of industrial control systems, and discuss several properties 
required for the metrics. Wu et al. (2022) analyse the most commonly used TSAD 
datasets and find that the majority suffer from flaws such as trivial anomalies, unre-
alistic anomaly density, mislabelled ground truth, and a high ratio of anomalies at 
the end of the time series. To address these issues, they introduce a new benchmark 
dataset, the UCR time series anomaly archive, and also discuss potential issues with 
the evaluation metrics. Finally, Paparrizos et al. (2022b) point out the lack of con-
sensus regarding the appropriate datasets for benchmarking TSAD algorithms and 
present a benchmark suite derived from a combination of previous TSAD datasets 
and transformed classification datasets, which have been subjected to various trans-
formations to increase the complexity and difficulty of the benchmark. They include 
several evaluation metrics in their work to provide a comprehensive evaluation of 
the TSAD algorithms.

In this paper, we aim to fill the gap in the literature by providing a comprehensive 
review of the evaluation metrics used and proposed in the field of time series anom-
aly detection. To the best of our knowledge, no prior works have offered a thorough 
overview of all the metrics used in the field. The main contributions of this paper 
are:

•	 A comprehensive description of the existing evaluation metrics, highlighting 
their key properties, both desirable and undesirable.

•	 A novel and structured taxonomy of the metrics, based on their calculation 
methods, to facilitate understanding and comparison. To the best of our knowl-
edge, this is the first time a systematic taxonomy for TSAD evaluation metrics is 
defined.

•	 An in-depth analysis of the impact of the choice of evaluation metric through a 
set of hypothetical case studies.

•	 A clear summary of each metric in terms of a set of defined properties.

In Sect. 2 we define and introduce terms and concepts central to the topic of evaluat-
ing TSAD algorithms. We state the scope and limitations of this work in Sect. 3. In 
Sect. 4 we define 10 different properties distinguishing the metrics, all of which are 
presented and described briefly in Sect. 5. In Sect. 5 we also present the taxonomy 
of these metrics. Section 6 presents a series of case studies for testing the properties 
of the metrics, resulting in a categorization of the metrics in Sect. 7, based on the 
properties from Sect. 4. Finally, we summarize our findings and draw some conclu-
sions in Sect. 8.
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2 � Background

In this section, we provide an overview of the fundamental concepts necessary to 
understand the subsequent discussion in this work.

Time series. A time series is a sequence of numbers or vectors, indexed by the 
time. We will refer to each time step as a point. Although not apparent in the defini-
tion, the underlying assumption when working with time series, is that the value of 
the points is dependent on the time variable.

Time series anomaly. An anomaly in a time series is defined in various ways 
(Schmidl et al. 2022), but is in general a point or a subsequence of contiguous points 
with unexpected or abnormal values. We refer to the subsequence as an anomalous 
event, and each point in it as an anomalous point - not to be confused with a point 
anomaly, a term often used for events of length 1. Contrasting anomaly detection in 
independent data, the abnormality may stem from unsatisfied expectations of the 
time dependency. That is, a point can have a normal value for the time series in 
general, but anomalous in the context of its preceding values.1 Furthermore, what 
is considered as anomalies depends on the domain and origin of the time series. 
Finally, it is often unclear just how anomalous an event should be to be considered 
an anomaly. This lack of an exact definition of time series anomalies is some of the 
reason it is difficult to come up with reliable evaluation metrics.

Time series anomaly detection (TSAD). The goal of TSAD is to identify anoma-
lies in a time series. While a variety of techniques exist for detecting anomalies in 
time series data, a detailed review of which can be found in Schmidl et al. (2022), 
ranging from simple to complex and encompassing both machine learning and other 
approaches, it is not in the scope of this paper to discuss these techniques. Rather, 
our aim is to provide a comprehensive overview of the metrics used to evaluate 
these methods and offer a taxonomy of metrics based on their properties. In TSAD, 
the input data is typically a time series of data points, and the output is a prediction 
indicating which instances are anomalous. In our work we will refer to the output of 
the detection algorithm as prediction.

Performance evaluation and analysis. Using metrics, i.e. quantifying the per-
formance of a particular anomaly prediction on a time series, is useful for two con-
nected but distinct purposes, which we in this paper refer to as performance evalu-
ation and performance analysis. We define performance evaluation as the task of 
assigning a score to each prediction, such that a higher (or lower) score means that 
the prediction is better, with the purpose of ranking several algorithms and choosing 
the best one. To be able to easily and objectively sort anomaly detectors in terms of 
performance, the final score must be a single scalar. On the other hand, we define 
performance analysis as the more general task of using one or several metrics in 
order to gain insights about the performance. This main focus in this work is perfor-
mance evaluation, and we will only occasionally mention aspects only relevant for 
analysis purposes.

1  Several works operate with different classes of time series anomalies (Kovács et  al. 2019; Goswami 
et al. 2022; Lai et al. 2021; Choi et al. 2021), some of which consider if an anomaly is outside the normal 
values for all points, or just its temporal context.
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Labels. Evaluation is done by comparing the prediction to a time series of binary 
labels, that represents the ground truth of which points are anomalous or not. Note 
that the use of binary labels is a source for several kinds of errors and inaccuracies 
- when an anomaly starts, ends, and what even should be considered anomalous is 
a question that rarely has a definite answer, except for synthetical data. Therefore, 
there are several different labelling strategies, that will lead to quite different labels 
on the same dataset - e.g. the Numenta labelling strategy discussed in Sect. 5.1.5. 
Furthermore, when labels are made manually by humans, they will often have 
inconsistencies.

Changes in labels will necessarily affect the evaluation scores, especially if an 
event is included or excluded, as there are usually very few anomalies. The impact 
of slight changes in length and position of events, however, highly depend on the 
metric, and will be discussed and tested later in this article.

Due to high variability in both what is considered as anomalies, and how they are 
labelled, the relevance of results on data from across domains is not obvious. When 
selecting a detector for use on a specific TSAD task, one should evaluate detectors 
on a dataset with both similar time series, anomalies, and a labelling strategy in line 
with the desired output of the detection algorithm.2

2.1 � Thresholding

An anomaly detector outputs an anomaly score, a time series with scalar values indi-
cating how anomalous each time point is. In order to get a binary prediction, only 
time steps with anomaly score higher than some threshold are considered anoma-
lous. This is visualized in Fig. 2.

Fig. 2   Given an anomaly score, two distinct thresholds yield two different binary predictions. For each 
threshold, every time step with anomaly score higher than the threshold is considered anomalous. Lower-
ing the threshold increases the number of anomalous points predicted.  Anomalous point,  Normal 
point 

2  An alternative approach is unsupervised model selection, as described in (Goswami et al. 2022). They 
present three ways to select the best model based on datasets without labels - by considering prediction/
reconstruction error, model centrality and performance on synthetically injected anomalies. The two for-
mer methods skip the need for the kind of evaluation metrics presented in this paper altogether.
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There are several ways of choosing a threshold, some fully automatic, like the 
non-parametric dynamic thresholding introduced in Hundman et al. (2018), others 
as simple as just choosing

for some n (Geiger et al. 2020; Liu et al. 2022).3
Anomaly detections can be evaluated either before or after the thresholding, 

as shown in Fig. 3. We define binary evaluation metrics as metrics evaluating the 
binary prediction, and non-binary evaluation metrics as those evaluating the anom-
aly score. While the latter class uses the anomaly score as input, thresholding is still 
done, but as part of the metric. This usually involves calculating a score at several or 
all thresholds,4 and either choosing the optimal score or combining the scores.

The difference between the classes may seem subtle but involves a foundational 
difference in what is evaluated. Binary metrics evaluate the combination of the 
detector and the thresholding strategy, while non-binary metrics aim at only evaluat-
ing the detector. The argument for the latter class is that thresholding is a separate 
issue, and since any detector can be used with any thresholding strategy, detectors 
should be compared independently of this choice. Using non-binary metrics ensure 
that thresholding is done equally for all detectors, which might be fairer. However, 
as thresholding is indeed a part of the non-binary metrics as well, this class of met-
rics is not independent of thresholds, but rather a compromise between them - and 
the metric might focus overly on irrelevant thresholds. Finally, as thresholding is 
done in practice, it might make more sense to evaluate the whole pipeline in uni-
son, using a binary metric. This also allows for using the thresholding strategies that 
work well with specific detectors.

mean + n ⋅ std

Fig. 3   Time series anomaly detection pipeline. The binary predictions are found by applying a threshold 
to the anomaly score outputted by the detector. The evaluation is done at one of two points, either using 
the anomaly score, or the binary predictions. In both cases, binary labels are used for comparison

3  As different methods have anomaly scores with different statistics, this may not be fair when compar-
ing different methods. As an example, a method based on reconstruction error will have different out-
comes depending on whether it uses MSE or RMSE error.
4  By all thresholds we mean all thresholds that yield unique sets of anomaly points - at most one more 
than the number of time points in the time series.
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2.2 � Traditional evaluation metrics

Before embarking on the time series specific metrics, it is beneficial to understand 
some of the evaluation metrics used for anomaly detection and classification in 
general. Common for most of the evaluation metrics is the use of the confusion 
matrix. The confusion matrix considers the possible combinations of binary pre-
diction and labels, and includes the number of

•	 True positives (TP): points that are labelled and predicted as anomalies,
•	 False positives (FP): points that are labelled normal but predicted as anomalous,
•	 False negatives (FN): points that are labelled anomalies but predicted normal,
•	 True negatives (TN): points that are labelled and predicted as normal,

as seen in Fig. 4. We refer to these four numbers as counting metrics. They are not 
used for evaluation directly, but are needed for calculating the following metrics:

Accuracy is the fraction of correctly predicted points, i.e. TP+TN

TP+TN+FN+FP
 . 

Although simple, and to the uncritical eye informative, this metric should not be 
used for classifications with imbalanced classes, which anomaly detection is by 
definition. Since most points are normal, a prediction of only normal points will 
get a high accuracy despite not being useful at all.

Recall, also known as sensitivity and true positive rate, is the fraction of true 
anomalies that are correctly classified, i.e. TP

TP+FN
 . False positives are not penal-

ized, thus predicting all points as anomalous will get a perfect recall of 1. For this 
reason, recall is usually not used on its own.

Precision is the fraction of anomalous predictions that are actual anomalies, 
i.e. TP

TP+FP
 . Like recall, this is not used on its own, since false negatives are not 

penalized, and only marking the most obvious anomaly will be the best strategy.
f
1
-score is the harmonic mean of precision and recall, 2PR

P+R
 . The prioritization of 

precision and recall is a trade-off - strict threshold yield few predicted anomalies, 
thus high precision but low recall, and vice versa. Depending on the situation, a false 
positive might be highly preferred to a false negative, or vice versa. Thus, a more 
general definition is f�-score, defined by (1+�

2)PR

R+�2P
 . The value of � is the chosen so that 

the score reflects the relative importance of precision and recall. We will use � = 1 
in the examples of this paper, as is also common in the literature when comparing 
methods, but we highlight that an informed choice should be made for this parame-
ter when using this metric for real world problems.

Fig. 4   The confusion matrix for anomaly detection. Each point can have one of two label values, and one 
of two prediction values, resulting in four different classes of points.  Anomalous point,  Normal point
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False positive rate is the fraction of normally predicted points that are actually 
anomalies, FP

FP+TN
 . Contrary to recall, optimal score is obtained by predicting all the 

points as normal. This is used for calculating the AUCROC  score described in 
Sect. 5.2.3. Note that this metric has an optimal score of 0, and the worst possible 
score is 1, opposite of the other metrics in this section.

Precision@k is the precision of the k points with highest anomaly score. 
Although this is just the precision with a specific thresholding strategy, it deserves 
some extra attention. This is because, since the denominator TP + FP = k is prede-
termined, false positives are indeed penalized. Thus, this becomes a valid metric in 
itself, not needing to be combined with recall. In fact, recall@k is the same value as 
precision@k, except for a predetermined factor k

TP+FN
.5 Compared to the above met-

rics, this strategy requires the number of anomalies k instead of a threshold. This 
may be a simpler and more intuitive choice - a common practice is to use the num-
ber/fraction of anomalies in the dataset. It may also be fairer when comparing meth-
ods with differently distributed anomaly score, than many other threshold selection 
strategies.

The metrics above are often used for time series without adaptation, by regarding 
every time stamp individually. A large number of the evaluation metrics designed 
specifically for time series are versions of precision and recall that are redefined 
to handle events in a different way, either by a redefined confusion matrix, or by 
redefining precision and recall to not use the counting metrics at all. These are then 
usually used either to calculate f-score, or an AUC score, which we will discuss in 
Sect. 5.2.3.

3 � Method

Several choices were made for the purpose of limiting the scope of this paper and 
keeping it concise. We did not include metrics from similar domains like time series 
classification, anomaly detection for non-time series, or change point detection. The 
latter, although similar to TSAD, only contains point anomalies.

Furthermore, we only consider single scalar metrics aimed at performance evalu-
ation for detector selection, and not supplementary statistics for performance analy-
sis. This means we will not consider the numerous variants of precision and recall as 
their own metrics, only as part of the f

1
-score or the AUCPR score described in sec-

tion 5.2.3. Precision and recall are occasionally used for detector selection in situa-
tions where false positives and negatives have very different costs. However, due to 
the simple optimal strategies described in Sect. 2.2, f� with a large/small � is a much 
better alternative. Other interesting statistics excluded by this choice are early detec-
tion (Buda et  al. 2017), before/after true positives (Nalepa et  al. 2022) and alert 
delay (Xu et al. 2018). Combinations of these statistics with other statistics could 
result in evaluation metrics with valuable properties. ROC- and PR-curves (see 

5  Note that this is not true for all the redefined versions of precision and recall presented later in this 
paper.
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section 5.2.3) are often used for visualising properties of the anomaly score. We will 
only consider these for the purpose of calculating the much used single scalar AUC 
metrics.

There are several ways to vary each metric, by using techniques from one metric 
on one of the others. Indeed, some of the metrics are modified versions of other 
metrics, in such a way that all the other metrics could be modified in that same way. 
Studying all these combinations is not feasible without expanding the work substan-
tially, so we will only study such modifications in their originally proposed, or most 
used, form. This should give an idea of the effect of the modification. Readers that 
are interested in a specific metric, either one included here, or that could be made 
by combining ideas from the ones included, are encouraged to conduct their own 
experiments.

Finally, for obvious reasons, we only consider metrics that either are rigorously 
defined in their original paper, or have open source implementations available.

4 � Properties

In order to systematically evaluate the various metrics used in TSAD, we have 
defined several properties that differentiate the metrics. It is important to note that 
these properties are not inherently positive or negative, but rather the desirability of 
each property depends on the specific context and scenario. We have organized the 
properties into two categories:

Valuation properties: Properties regarding what qualities in the predictions are 
valued by the metric, and

Intrinsic properties: Other interesting properties apparent directly from the defi-
nition of the metric.

4.1 � Valuation Properties

As time series anomaly detection methods rarely produce perfect prediction, a good 
metric needs to be able to prefer the best imperfect prediction available, for the situ-
ation for which the detector will be used. We listed five properties regarding what 
kind of prediction are preferred by the metrics.

Value early detection. In many situations, both in the literature and in practical 
scenarios, detection of a possible anomaly should occur as soon as possible (Lavin 
et al. 2015a), such as when anomaly detection is used in real-time systems where 
an anomaly indicates there is an issue requiring immediate attention. In these cases, 
detecting the anomaly at a late stage is of no value since it is too late to rectify the 
problem. To choose algorithms that detect anomalies in an early stage, such detec-
tions should be valued more by the metric than later detections. In other situations, 
data is analysed offline, or on a much larger time scale, where detection and reaction 
time is far greater than anomaly length, e.g. for diagnosis based on ECG monitor-
ing (Chuah and Fu 2007; Sivaraks and Ratanamahatana 2015). In these cases, the 
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differences between early and late detection are of no practical relevance, and a met-
ric without this property is to be preferred.

Prioritize long anomalies. Longer anomalies could indicate more serious prob-
lems which are also more important to detect, justifying why long anomalies con-
tribute more to the final score than shorter ones, in many metrics. However, long 
anomalies might just indicate more subtle anomalies which are harder to locate 
(Kim et al. 2022a). The shortest anomalies might also be the most important ones, 
e.g. if they indicate serious problems that were fixed quickly, while the less serious 
ones were ignored and therefore lasted much longer. In most metrics, the contribu-
tion of an anomaly to the final score is either proportional to its length, or independ-
ent of its length. As many commonly used TSAD datasets have both long anomalies 
and single point anomalies, this difference has a great impact.

Favour short predicted events. Some detectors produce anomaly scores with a 
short peaks, while other methods, e.g. window-based ones,6 produce wider areas 
of high anomaly score. The latter will generally result in longer predicted events. 
This might not have a big impact on the value of the prediction, but some metrics 
have a strong preference for short predicted events, independent of the length of the 
labelled anomaly.

Prioritize partial detection. While many metrics focus on predicting each time 
point correctly, and thereby getting the location and length of the anomalies correct 
(referred to as "covering"), it is often sufficient, or at least more critical, to detect 
any subset of it (referred to as "partial detection"). According to Xu et al. (2018), an 
operator receiving an alert of an anomaly will investigate the data manually, and the 
manual inspection will be the determining factor going forward, rendering the exact 
location and duration of the detection less relevant. However, Hwang et al. (2019) 
note that the operator may not necessarily find the anomaly if it is subtle and of a 
much longer duration than the detection, which would make the location and dura-
tion of the detection significant.

Temporal tolerance. The start and end of an anomaly is often unclear (Kim et al. 
2022a), and when manually labelled, the labels might not be very reliable (Wu et al. 
2022). Furthermore, a predicted event being off by a few time steps might still be 
very useful. Indeed, window-based detection methods might report the anomaly 
at either end of the window (Wu et  al. 2022). In offline anomaly detection, this 
should not overly affect the score. For these reasons, detecting an anomaly close to a 
labelled anomaly should be valued by the metric.

4.2 � Intrinsic properties

Different metrics use different types of input, utilize different information from the 
input, and require different degrees of parameter specifications, affecting not only 
how to use them, but also what kind of situations they are suitable for.

6  Window-based detection methods evaluate the abnormality of windows (contiguous subsequences of a 
predefined length) of the time series instead of each point separately, and then aggregate the results from 
all the windows into an anomaly score.
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Binary. As discussed in Sect.  2.1, metrics may be binary or non-binary, both 
types having different advantages and uses.

Chronology aware. Metrics not made for time series or sequential data do not use 
the chronology when calculating the score. Awareness of the labels and predictions 
of surrounding points is necessary for capturing the underlying time dependency 
specific for time series.

Insensitivity to true negatives. Given that anomalies by definition are rare events, 
a low score should be given when no anomalies are detected, even though the pre-
diction is correct most of the time. Furthermore, it is useful not to be affected by 
how large the portion of true negative time points is, as this is a rather uninformative 
part of the data.

Number of parameters. Correctly specifying numerous of parameters to reflect 
specific needs can be resource demanding (Paparrizos et  al. 2022a). Furthermore, 
it is easier to compare results across research papers when they do not use different 
parameters. Nevertheless, TSAD tasks vary greatly, and parameters offer flexibility 
needed for a metric to be useful for most specific cases.

4.3 � Properties not included

We highlight that there are several desirable properties not included here due to our 
scope limitations. Such properties can be valuable insights about the performance of 
the method, e.g. where it performs well or not (Huet et al. 2022), or how early the 
detections are (Nalepa et  al. 2022), or, for multivariate time series, which signals 
are the most involved in the anomaly. The latter property is often measured using 
distinct explainability measures (Su et al. 2019; Chen et al. 2021b; Garg et al. 2022; 
Li et  al. 2021c). Furthermore, we have only included properties where more than 
one of the considered metrics stand out from the others. In cases where only one 
metric has an interesting property, this will instead be highlighted when presenting 
the metric in Sect. 5. Finally, we note that other interesting properties could surely 
be defined within our scope that separate more than one metric. Indeed, we have 
only considered ones that we have found in the literature, or found to be useful or 
interesting when analysing the metrics.

5 � TSAD evaluation metrics: a taxonomy

In this section, a comprehensive examination of the evaluation metrics found 
through our research is presented. The metrics are divided into two categories, 
binary metrics in Sect. 5.1 and non-binary metrics in Sect. 5.2, as shown in Fig. 5. 

Fig. 5   We consider two main 
categories of metrics, defined by 
their use of binary or non-binary 
predictions as input
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For each category, a taxonomy based on their definitions is introduced, followed by 
a description of each metric including their capabilities and potential limitations in 
utilization.

A rigorous definition of each metric is not included in this study, as some of them 
are quite complex, with details not necessary for this work. Readers are referred to 
the cited literature for further information. Instead, an effort has been made to pro-
vide a concise and intuitive understanding of the metrics. In addition, the most note-
worthy, distinctive, or potentially problematic characteristics of the metrics are also 
discussed. This should suffice for understanding the taxonomy, as well as the prop-
erties studied in Sect. 6.

5.1 � Binary evaluation metrics

We define binary evaluation metrics as metrics evaluating binary predictions, where 
each data point is classified as either normal or anomalous, aligning with the binary 
labelling. Figure 6 shows the proposed taxonomy of binary evaluation metrics, based 
on how their definitions use counting metrics (TP, TN, FP, FN), precision, recall or 
f-score. This information is relevant when combining techniques from different met-
rics, as such techniques may only work on one type of metrics.

Fig. 6   A taxonomy of binary evaluation metrics. A large number of these are f-scores based on various 
definitions of precision and recall. Precision and recall can be defined in many ways. Compared to the 
original point-wise definition, the difference can be present in the point-wise predictions, the counting 
metrics (TP, FP, TN, FN) or the formulas for precision and recall. The metrics can also be divided into 
point-based and event-based metrics, that count respectively individual points or contiguous events when 
aggregating to the total score. Cf� and NAB use both of these methods for parts of the total score
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Most of the metrics are based on the f-score, with some modification of the 
definitions. The metric based on point-wise counting metrics (Sect.  5.1.1) is the 
f-score based on counting metrics calculated in each time point. Metrics based on 
adjusted point-wise counting (Sect. 5.1.2) also use counting metrics in each point, 
but an adjustment is done to the prediction before the counting, in order to be more 
suited for anomalous events. For the metrics based on redefined counting metric 
(Sect.  5.1.3) the counting itself is done in some other way. Redefined precision/
recall (Sect.  5.1.4) are not based on counting metrics at all, but calculated from 
some different formulas. They still use the terms precision and recall because the 
base concepts are the same. Finally, the other metrics (Sect. 5.1.5) are not based on 
f-score at all.

The metrics are also categorized based on their calculation approach, as either 
point-based or event-based. All the metrics are computed by aggregating the con-
tributing parts of the time series, but in different ways. The point-based metrics eval-
uate each time point individually, whereas the event-based metrics evaluate entire 
events as a single subscore, regardless of the number of time points it comprises. 
This distinction has significant implications for what is considered a good predic-
tion, as will be demonstrated in Sect.  6. Some metrics calculate part of the score 
in a point-based way and part event-based, giving parts of the properties from both 
classes.

5.1.1 � Point‑wise

Point-wise f-score ( PWf� ). One of the most straightforward evaluation metrics 
involves treating each time point as a single observation and calculating the f-score 
as outlined in Sect. 2.2. This approach is exemplified in Fig. 7. Although not made 
for time series, point-wise f-score is widely used in TSAD (Ahmed et al. 2022; Han 
and Woo 2022; Huang et al. 2022; Feng et al. 2022; Wang et al. 2022; Campos et al. 

Fig. 7   Counting metrics are found in various ways by the different metrics. The figure shows the count-
ing metrics, precision (P) and recall (R) and finally the f1-score, for three of the various definitions of the 
f1-score, for the same binary predictions. PWf� considers each time point individually. As does PAf� , but 
only after making an adjustment by expanding partially predicted anomalies. Sf� , on the other hand, con-
siders events.   Anomalous point,  Normal point 
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2021; Deng et al. 2021; Bashar and Nayak 2020; Niu et al. 2020; Chen et al. 2020; 
Mamandipoor et al. 2020; Hsieh et al. 2019; Li et al. 2019; Zhang et al. 2018). It 
is a simple metric, making it easy to implement and the results simple to under-
stand. Also, methods are rewarded for predicting all the points that are labelled as 
anomalies, and none of the other - exactly what an anomaly detector should do - as 
opposed to some of the metrics we will describe below. Nevertheless, as we will see 
in the experiments of Sect. 6, the uneven event weighting and lack of tolerance can 
be highly problematic.

5.1.2 � Adjusted point‑wise

Point Adjusted f-score ( PAf� ). The point adjusted metric was first introduced by Xu 
et al. (2018). They propose that if a single point within a true anomalous segment 
is accurately detected, a human operator can examine the segment and identify the 
entire anomaly. As a result, the entire contiguous segment is marked as anomalous 
in the prediction prior to calculating point-wise precision, recall, and f-score, as 
shown in Fig. 7. This metric has been widely used in TSAD (Xu et al. 2022; Gos-
wami et al. 2022; Challu et al. 2022; Huang et al. 2022; Tuli et al. 2022; Chen et al. 
2022; Li et al. 2021c; Feng et al. 2021; Dai et al. 2021; Chen et al. 2021b; Du et al. 
2021; Choi et al. 2021; Zhao et al. 2020; Audibert et al. 2020; Shen et al. 2020; Su 
et al. 2019).

Previous works (Audibert et al. 2020; Garg et al. 2022; Doshi et al. 2022; Kim 
et al. 2022b) have shown that this metric can provide overly optimistic scores even 
if multiple anomalies are missed. In fact, Doshi et  al. (2022); Kim et  al. (2022b) 
demonstrate that random guessing outperforms state-of-the-art methods using this 
metric. The cause of this is a seemingly unintended flaw of the metric, which is 
illustrated in Fig. 7. Despite the argument that the whole anomaly is detected if an 
operator receives an alert within the anomaly, which legitimizes a recall of 1, only 
half of the alerts are correct, so the precision of the prediction should be 0.5. Instead, 
after adjustment, it is close to perfect. The greater the discrepancy between the dura-
tion of labelled and predicted anomalies, the more severe the problem becomes.7 
Calculating precision prior to adjustment would avoid this issue and produce a pre-
cision-recall pair that aligns with the reason for the adjustment as well as the mean-
ing of precision and recall. Nevertheless, we instead suggest using the composite 
f-score (Sect. 5.1.3), a more appropriate metric in cases when a warning during an 
anomaly is sufficient.

Delay thresholded Point Adjusted f-score ( dtPAf k�  ). Ren et al. (2019) and (Chen 
et al. 2021) use an adaptation of the point-adjusted metrics, where a labelled anom-
aly is only considered detected if an anomaly is predicted within the first k time 
steps of the anomaly. If not, all the points in the anomaly are marked as false nega-
tives, even the ones predicted as anomalous. With this metric, precision can still be 
unreasonably high, but it is much more difficult to achieve this, and the random 

7  Interestingly, the paper of Xu et al. (2018) first using this metric have very short anomalies, compared 
to some of the datasets used in the papers that adopted this metric.
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guessing strategy that prevail for PAf�  will have a much harder time getting high 
scores with this metric.

Point adjusted metrics at K% ( K%
PA

f� ). Kim et al. (2022b) suggest altering the point 
adjusted metric by requiring a portion K% of the anomaly to be detected in order to 
make the adjustment. As with dtPAf k�  , this effectively reduce the effectiveness of ran-
dom guessing, and short detections in general. Furthermore, as argued by Hwang 
et al. (2019) and Hwang et al. (2022), an expert receiving a short alert within a much 
longer anomaly might not be able to see the anomaly, but by requiring a substantial 
part of the anomaly to be detected, the chance that an expert would actually notice it 
is much larger.

Latency and sparsity-aware f-score ( lsf n�  ). Abdulaal et  al. (2021) note that the 
point adjustment metrics do not value early detections, and changes the algorithm to 
only adjust the values of an anomalous event after the first TP point. They also note 
that false positive points require more resources if they are spread out, than in some 
close proximity (so that it only requires attention once). The prediction is therefore 
down-sampled by a user-specified factor n.

This way of awarding earliness reflects situations where the negative effects of 
an anomaly, which is proportional to its length, is avoided after the point that it is 
detected.

5.1.3 � Redefined

Segment-wise f-score ( Sf� ). Hundman et al. (2018) introduce a segment-wise pre-
cision, recall and f-score, where each contiguous segment of anomalous points is 
considered one event. Here one true positive is recorded for each true anomalous 
segment with at least one predicted anomalous point, one false negative for each 
of the rest of the true anomalous segments, and one false positive for any predicted 
anomalous segment without any true anomalous points. Figure 7 shows an example 
of this. This metric is used by Geiger et al. (2020); Nalepa et al. (2022); Meng et al. 
(2020); Flaborea et al. (2022).

A serious problem with this metric is that extending the length of a predicted 
anomaly will never give worse score, and often better. Thus, it favours detectors 
with long contiguous events, all the way to the extreme case: Predicting every point 
in the time series as anomalous will give perfect precision and recall for any time 
series with at least one anomaly.

Composite f-score ( Cf� ). Garg et al. (2022) suggest using a combination of point-
wise and segment-wise metrics, and propose the composite f-score, defined as the 
harmonic mean of point-wise precision and segment-wise recall. The point-wise 
precision ensures that false positive points are discouraged, whereas extra true pos-
itive points in an already partially detected anomaly is only awarded through the 
increased precision.

Time tolerant f-score ( tf ��  ). Scharwächter and Müller (2020) defines (point-wise) 
precision and recall with time tolerance � , essentially by counting it as a true posi-
tive when a predicted anomaly point is closer than � to a labelled anomaly point. 
They then show that while the recall and precision of their example prediction 
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increase drastically with the tolerance, the score of a random prediction increases 
more, and the statistical significance decreases substantially. Hence reporting results 
with time tolerance may be less significant than without, despite the scores looking 
more impressive. It should be noted, however, that their data contain many short 
anomalies. A tolerance of a few time steps will have a much larger impact on the 
random prediction score in with such a dataset, than with fewer or larger anomalies. 
Although these evaluation metrics are not widely used, similar tolerance techniques 
are - either in the metric (as here), in the labelling of the data (as in NAB , explained 
in Sect. 5.1.5 ) or in detectors padding their predicted events before outputting them. 
Such significance tests can be useful when determining how much time tolerance to 
use.

5.1.4 � Redefined Precision and Recall

Range-based f-score ( bias
R
f �
�

 ). Tatbul et al. (2018) argue that point-wise precision and 
recall fail to address many aspects present in time series for anomaly detection, and 
introduce range-based precision and recall, forming a range-based f-score. The 
recall is calculated for each labelled event, using a formula scoring how well the 
labelled event is detected. The score is then averaged across all the labelled events. 
Similarly, the local precision is calculated for each predicted event, by scoring how 
well a predicted event corresponds to the labels, then averaged across all predicted 
events. The formulas for each event use up to 4 contributing concepts: Detecting the 
anomaly range with at least one anomaly point, while also covering as large a por-
tion of the anomaly range as possible. High cardinality, i.e. number of predicted 
events within one labelled anomaly, can be punished, and a function rewarding the 
position of a detected anomaly within a labelled one can be specified. This results in 
a rather complex and highly customizable metric, with a tunable weight and up to 6 
tunable functions to enable aligning the score with the goal of the detection task. 
Thorough guidelines, defaults and examples are provided in (Tatbul et al. 2018). The 
metric have been used in Jacob et al. (2021) and Meng et al. (2020).

Although evaluation metrics that consider the relative positions of detection and 
label are mostly useful for rewarding early detection, this metric can also be set to 
reward e.g. detections at the middle or at the end of the labelled anomalies, which 
the authors argue can be useful in certain cases, e.g. as a way of preventing false 
positive alarms. We have not found the cardinality concept in any other TSAD eval-
uation metric, and thus we have not considered it a desirable property. This may be 
more relevant for change point detection (Gensler and Sick 2014).

Time series aware f-score ( Taf ��  ). Hwang et al. (2019) propose time-series aware 
precision and recall. These are similar to range-based precision and recall, but also 
require that a certain portion θ of the labelled anomaly must be correctly predicted 
for it to be counted as a correct detection. The concepts of cardinality and position 
are not considered. The authors note that determining the end of a labelled anomaly 
can be challenging, and therefore include a region of length δ following the labelled 
event, with a positive but decreasing score, to account for this. This reduces the reli-
ance on correct labelling and prediction at the end of and shortly after the event. A 
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slightly altered version of this metric can be found in Kim et al. (2022a), where the 
method for determining the length of ambiguous sections is changed.

Enhanced time series aware f-score ( eTaf� ). Hwang et al. (2022) highlight that 
previous evaluation metrics may reward detections that overlap with actual anoma-
lies, even if they are either too long or too short to be useful. To address this issue, 
they propose an event-based metric similar to bias

R
f �
�

 that considers both a detection 
score and an overlap score. The metric requires that a certain portion of the actual 
anomaly to be detected and a certain portion of the detected anomaly to be true. Two 
parameters can be adjusted to control these portions. The precision calculation 
includes a weighting function that weights each event by the square root, as a com-
promise between typical point-based and event-based weighting.

Affiliation-based f-score ( Af� ). Huet et al. (2022) tackle problems commonly seen 
in existing metrics and introduces a distance-based metric as a solution. They calcu-
late the average of the local precision and recall for each anomaly event. Local preci-
sion is calculated by averaging the distance between each predicted anomaly point 
and its closest labelled anomaly point, and expressing it as the probability of outper-
forming a random prediction. Local recall is calculated similarly, using the average 
distance from each labelled anomaly point to its closest predicted anomaly. By using 
distance, this metric evaluates the proximity of predicted and labelled anomalies, 
even if they don’t overlap. It also values detection over coverage in a natural way. 
Finally, by scoring locally, the results are more interpretable, since each anomaly 
and its impact on the score can be evaluated separately.

5.1.5 � Other

NAB score ( NAB ). The Numenta Anomaly Benchmark (NAB), presented by Lavin 
et al. (2015a), includes a dataset for time series anomaly detection and a novel eval-
uation metric. The metric penalizes false positive points with a negative value, and 
rewards true anomalous events with a positive value based on how early the first 
anomalous point was predicted. The score is normalized by comparing it to a sce-
nario where no anomalies are detected.

Since only one point of the true positive points in an anomalous segment con-
tribute to the score, while every false positive point contributes negatively, the score 
favours detectors predicting short events - it is almost never beneficial to predict two 
contiguous points as anomalous.

NAB also introduced a different approach to labelling anomalies. This approach 
allows for rewarding detectors predicting anomalies before they occur,8 and makes 
the score less dependent on the individuals who label the anomalies. A simplified 
explanation of the approach is provided here, see Lavin and Ahmad (2015b) for the 
full details. The process involves a group of labellers deciding the first anomalous 
point for each anomalous event. Then, the points on both sides are marked anoma-
lous, such that the original starting point is in the centre of the event, each event has 
the same duration, and 10% of the dataset is labelled as anomalous.

8  That is, before they are visible to the human labeller.
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This strategy is similar to the time tolerance technique in tf ��  . However, in this 
case it is part of the labelling strategy, instead of the metric. Thus is it not a part of 
the implementation used in this paper, and we will not see the effects of this in the 
experiments in Sect. 6.

The NAB  score is not widely used,9 but their datasets are commonly used for 
benchmarking, using other metrics (Schmidl et  al. 2022; Paparrizos et  al. 2022b). 
The labelling strategy of this dataset highlight the importance of not blindly com-
bining arbitrary metrics and datasets. Due to the labelling strategy, at least 50% of 
the points labelled anomalous were considered normal by the labellers, invalidating 
metrics counting each point individually, like PWf�.

Temporal distance ( TD ). Temporal distance, presented by Kovács et al. (2019), is 
a very simple metric - summing the distances from each labelled anomaly point to 
the closest predicted anomaly point, and from each predicted anomaly point to the 
closest labelled anomaly point. The lower score the better. This metric prioritizes 
roughly finding all the correct anomalies over getting the detection exact, since any 
false positive/negative raises the score by the distance to the closest anomaly. As 
long FPs and FN are punished roughly proportionally to their length, the metric pri-
oritizes long labelled anomalies, and a method predicting short events has an advan-
tage when predicting FPs. Kovács et al. (2019) present two version of this metric10, 
by summing either absolute or squared distances. Generalizing this, one could use 
any positive power of the absolute distance. We will consider this exponent a param-
eter, and use 1 in all the experiments. High values of this parameter punish great 
distances more than low values.

Temporal distance might seem very similar to the affiliation f-score. However, 
there are some important differences. Since Af� is calculated locally for every event, 
it is an event-based score, while TD is point-based, the effects of which will be clear 
from the experiments in Sect. 6. It may also lead to some odd situations when two or 
more anomalies are relatively close, as seen in Fig. 8. While TD considers the abso-
lute distances, and therefore considers the first event in prediction 1 to be further 
from the labels than the second event in prediction 2, Af� considers relative distances 

Fig. 8   We test the affiliation and temporal distance metrics on two predictions of the same label time 
series. The best score for each metric is shown in bold. The labels include two events, and each predic-
tion is a bit early on one of them. The affiliation metric splits the time series into periods with one event 
each, and calculates the relative distance of the closest predicted event. In this example, the first anomaly 
in prediction 1 is seen as closer to a true anomaly than the second anomaly in prediction 2. TD , on the 
other hand, uses absolute distance, and prefers prediction 2

9  Despite very many metrics papers referring and comparing to this metric, we only found one paper 
using it for evaluation, by the same authors (Ahmad et al. 2017).
10  They also present several other metrics, although they do not pass the limitations presented in Sect. 3
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within the local surroundings of each event, and therefore considers the distance in 
the last anomaly in prediction 2 as bigger than the first anomaly in prediction 1.

5.2 � Non‑binary evaluation metrics

The non-binary evaluation metrics are those evaluation the anomaly score, as 
opposed to a binary prediction obtained by using a threshold on the anomaly score. 
For these metrics, the thresholding step is part of the evaluation.

A taxonomy of non-binary evaluation metrics is proposed in Fig.  9. The pri-
mary difference between these metrics lies in the way they handle the threshold. 
Some metrics, such as P@K  and binary metrics with optimal threshold, choose a 
single threshold, resulting in a single binary prediction. These metrics are still con-
sidered non-binary as the threshold selection is part of the metric. The other non-
binary metrics evaluate the performance for the full range of possible thresholds,11 
and combine it into a single number score. This is done either by calculating the 
area under a curve (AUC metrics) or the volume under a surface (VUS metrics). The 
choice of non-binary metric will depend on the specific requirements and goals of 
the evaluation, and the suitability of each metric for the task at hand.

5.2.1 � Precision at K ( P@K)

As described in Sect.  2.2, P@K  is the fraction of the K points with the highest 
anomaly scores that are labelled anomalous. The point-wise P@K  is occasionally 
used for TSAD evaluation (Paparrizos et  al. 2022a, b). Other definitions of preci-
sion than point-wise could in principle be used, e.g. Deng et al. (2022); Zhang et al. 

Fig. 9   A taxonomy of non-binary evaluation metrics. Although the input is different from the binary 
metrics, they are quite similar, and indeed any binary metric can be made non-binary by using the opti-
mal threshold strategy (See section 5.2.2)

11  This is done by evaluating for each threshold that yield unique binary predictions, or a representative 
selection of them.
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(2019) use an event-based variant of recall at K for spatiotemporal anomaly detec-
tion, although for precision it would require defining how the number K of anoma-
lies included in the prediction is counted.

A variant of P@1  is the UCR score used by Rewicki et  al. (2022), defined by 
Wu et al. (2021). The duration of the labelled anomaly is increased in both ends to 
include some time tolerance, before P@1 is calculated.

5.2.2 � Binary metrics with optimal threshold

Binary metrics are typically used with the threshold that yields the best score (Liu 
et al. 2022; Huang et al. 2022; Campos et al. 2021; Deng et al. 2021; He and Zhao 
2019; Lavin et al. 2015a). This can be achieved with any binary evaluation metric. 
The use of a metric combined with this thresholding strategy requires the input of an 
anomaly score, resulting in non-binary evaluation. The optimal threshold is deter-
mined by using labels, and can only be determined during the evaluation phase, thus 
providing an upper limit to the score that can be achieved using the binary metric. 
The relevance of this upper limit depends on the situation and the chosen binary 
metric.12 For the sake of brevity, we will only consider the point-wise f-score with 
the optimal threshold strategy ( best

PW
f� ) in the remainder of this work.

5.2.3 � Area under the curve ( AUCROC
 , AUCPR

)

The receiver operator characteristic (ROC) is an evaluation metric commonly 
used for TSAD, as well as in binary classification in general. For each choice 
of threshold, the prediction has a specific value of recall and false positive rate. 
Plotting these against each other result in the ROC-curve. This is often inspected 
directly, as it visualizes the trade-off between recall and false positives, e.g. how 
large false positive rate must be allowed for certain levels of recall. In order to 
get a single scalar evaluation metric from this curve, it is common to integrate 
the area under the curve (AUC), to get the AUCROC . This value summarizes the 
detection performance across all thresholds, and is widely used in TSAD (Feng 
et  al. 2022; Dai et  al. 2022; Schmidl et  al. 2022; Campos et  al. 2021; Bhatia 
et  al. 2021; Li et  al. 2021b; Huang et  al. 2020; Goodge et  al. 2020; Braei and 
Wagner 2020; Zhang et al. 2020; Ergen and Kozat 2020; Wang et al. 2019; Kieu 
et al. 2019; Zhou et al. 2019; Pang et al. 2019; Park et al. 2017). An alternative 
method to comparing recall and false positive rate is to apply an area under curve 
approach to precision and recall, resulting in the calculation of the area under the 
precision-recall curve ( AUCPR ), also known as average precision. This approach 
too is commonly utilized in TSAD (Li et al. 2022; Campos et al. 2021; Li et al. 
2021; He et al. 2020; Huang et al. 2020; Chen et al. 2020; Kieu et al. 2019; Zhou 
et al. 2019; Pang et al. 2019). In our experiments, we only consider the point-wise 
precision and recall for the PR curve, as is by far most used, although any other 
pairs can be used. For instance, AUCPR with point-adjusted precision and recall is 
used by Dai et al. (2021), and AUCPR with the range based precision and recall is 

12  E.g. optimal threshold Sf� score is always 1, independent of the anomaly score.
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used by Schmidl et al. (2022). Variations of the ROC curves can be used as well, 
but the false positive rate is not defined for the event-based metrics.

The use of AUCROC  has been criticized for its integration over all thresholds, 
which can result in a large portion of the score coming from thresholds that may not 
be relevant for a specific use case (Baker and Pinsky 2001; Lobo et al. 2008; Berrar 
and Flach 2012). A possible solution can be to only consider parts of the curve, as 
suggested by Baker and Pinsky (2001), although it can be hard to determine how 
much of it to use. Another possibility is to use AUCPR  instead. While AUCPR also 

Fig. 10   Probability density functions for the anomaly scores of the positive (red) and negative (black) 
samples, for detectors A and B. The stippled lines are the thresholds. Anomalous samples generally 
give higher anomaly scores, although many normal and anomalous points have similar scores, making 
it hard to set a threshold. (a, b) show the counting metrics (as the shaded areas) for thresholds opti-
mal for PWf� for � = 1 and � = 8 respectively. Keep in mind that only 2% of samples are anomalies, i.e. 
TN + FP = 49(FN + TP) , which is not shown in the figures. FP and FN are of comparable sizes in 10a 
(Color figure online)
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integrates over all thresholds, it has been argued that it is more informative than 
the ROC for imbalanced datasets (Davis et al. 2006; Saito and Rehmsmeier 2015), 
which by definition is the case for anomaly detection.13 The reason is that preci-
sion and false positive rate respond differently to changes in false positives (FPs). 
In anomaly detection, the number of true negatives will typically be very large com-
pared to FPs, making the false positive rate low for all relevant choices of threshold. 
As a result, only a small part of the ROC curve is relevant in such cases.

We visualize this with an example. Assume a very large dataset has 2% anoma-
lies, and that two detectors, named A and B, produce anomaly scores from the nor-
mal distributions visualized in Fig. 10. That is, the detectors produce anomaly scores 
from the black distributions in Fig. 10 for normal points, and from the red one for 
anomalous points. Note that since AUCROC and AUCPR are independent of the time 
dimension, time is not included in this example. This results in the ROC-curves in 
Fig. 11a and PR-curves in Fig. 11b.

From the roc curves in Fig.  11a we see that detector B (green) outperforms 
detector A (blue) for most values of the false positive rate. This would result in 
AUCROC preferring detector B. By inspecting the graph, we see that for smaller false 
positive rate, detector A is better. Inspecting the PR curves in Fig. 11b, we see that 
detector A by far would have the best AUCPR , but for low precision detector B is 
better. While the figures really contain the same information (Davis et al. 2006), it is 

Fig. 11   The ROC and PR curves for detectors A (blue) and B (green). The marked dots are the points 
corresponding to the optimal thresholds for PWf�  with � ∈ 16, 8, 4, 2, 1, 1∕2, 1∕4, 1∕8 . We observe that 
detector A is best for higher thresholds, which are optimal for lower values of β, and vice versa. Detector 
B has the higher AUCROC , while detector A has the higher AUCPR (Color figure online)

13  As pointed out by Wu et al. (2022), not all commonly used datasets for TSAD are particularly imbal-
anced. Finding the labels in these datasets cannot really be considered anomaly detection, but should 
rather be regarded as classification or segmentation.
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clear that the difference in x-axis is crucial, not only for AUC-values but for inspec-
tion of the curves as well.

Figure 10a and b also show the thresholds yielding the optimal f-score at differ-
ent values of � . The points on the curves of these values, and more, are shown in 
Fig. 11. We see that for � ≈ 1 , the recall value has very little impact on the AUCROC , 
compared to the AUCPR . Indeed, the relevant values of β should be quite high for 
AUCROC  to be more informative than AUCPR . But from Fig. 10, the high � might 
seem more relevant, due to the large increase in TP, and high values of � make up 
a relatively small part of the pr curves in Fig. 11b. As always, what is most suitable 
comes down to the situation. Since the ROC curve uses the fraction of FP to all nor-
mal samples, instead of anomalous predictions, the difference between ROC and PR 
scales with the imbalance of the data - when the anomalies make up an even smaller 
fraction of the data, AUCROC corresponds to even higher values of �.

5.2.4 � Volume under the surface ( VUSl
ROC

 , VUSl
PR

)

The concept of volume under the surface (VUS) was introduced by Paparrizos et al. 
(2022a), extending AUCROC and AUCPR . The authors recognize the need for some 
tolerance for predicted anomalies close to actual anomalies. They address this issue 
by adjusting the labels, and instead of using binary labels of 0 or 1, they use labels 
with real values in the range [0, 1]. The original labelled anomalies are still given a 
value of 1, and normal points that are a certain distance l away from anomalies are 
given a value of 0. Labels closer to the original labelled anomalies gradually 
decrease as the distance from the anomaly increases.14 The authors refine the point-
wise recall by multiplying it with the existence factor used in bias

R
f �
�

 . Using the new 
definitions of recall, precision, and false positive rate, they define range versions of 
AUCROC and AUCPR . However, since this approach depends heavily on the tolerance 
threshold, l, they also introduce the volume under surface metric. Inspired by the 
way that the AUC metrics integrate away the dependency on the threshold by con-
sidering the area under a curve generated from all values of the threshold, the VUS 
metrics integrate over l to get the volume under the surface generated by the ROC or 
PR curve along an axis of values of l. This way, the final value takes into account 
multiple tolerance levels. Nevertheless, the metrics still depend on the maximum 
value for l.

6 � Case studies

In this section, we evaluate the presented evaluation metrics on 14 different case 
studies, to illustrate the different properties of the metrics. It is important to note 
that the desirability of these properties is highly dependent on the specific domain 
and use case. Thus, there is no universal "correct" answer for which metrics are 
best, but for a specific use case there is often one that is most appropriate. By 

14  A similar smoothing strategy is done by Dai et al. (2022) to account for noisy labels, before applying 
AUCROC.
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presenting examples and highlighting the properties of the metrics, we aim to 
provide a clearer understanding of how they can be used effectively in different 
situations.

To simplify reading the results, the name for each evaluation metric presented, 
is repeated in Table 1. The range of values is also shown. Note that the temporal 
distance metric is the only one where the score should be as low as possible, as 
opposed to as high as possible.

Here we outline the decisions made regarding the implementation of the evalua-
tion metrics, and parameter selection. Most of the metrics have parameters that need 
to be specified. To maintain consistency in our experiments, we have chosen the 
same evaluation metric parameters for most of the case studies. However, in some 
cases, we adjust these parameters to highlight a specific effect.

The β in the f� is 1 for all f-score based metrics. For dtPAf k�  we use a delay thresh-
old of k = 2 time points. For K%

PA
f� we require 20% of the anomaly detected for adjust-

ment. The downsampling factor of lsf n�   is set to 2, and the time tolerance of tf ��   to 
� = 2 for most experiments, expect for the on in Fig. 18, where we use � = 10 to 
better visualize its effect.

For the range based f-score bias
R
f �
�

 , we use cardinality = 1 , and specify α and the 
positioning bias  in the metric name in the table for each experiment. See Tatbul 
et al. (2018) for the definition of these parameters and functions. We use the same 
configuration for precision and recall.

For Taf ��  we set � = � = 0.5 for all tests. We use � = 0 in most cases since this is 
more in line with the tests. We use � = 10 for the graph in Fig. 18 to show the effect 
of this delta. For eTaf� , we use �p = 0.5 , �r = 0.1 , to show the effect of using different 
values of these parameter. This will effectively ignore any predicted event with less 
than 0.5 precision, i.e. if less than half of the predicted event overlaps with anoma-
lies. On the other hand, less than 10% of an anomalous event must be detected for 
not to be counted as detected. Using �r = �p = 0.5 would yield results similar to that 
of Taf 101  in most cases.

NAB  is implemented using the standard application profile (Lavin and Ahmad 
2015b). As NAB  is implemented for use with longer anomalies, it does not run in 
the cases where there are events of length 1 in the labels. We do not include NAB in 
these cases.

P@K is the precision of the K highest anomaly scores. For P@K we set K to the 
number of anomaly points in the labels. Due to many equal anomaly scores in the 
test cases, a threshold including K points will often include L > K points. In these 
cases, we report P@L instead.

For VUSl
ROC

 and VUSl
PR

 we use a maximum tolerance of l = 4.
While we have implemented the simple metrics ourselves, the more complicated 

ones were taken from open source implementations by the authors of the metrics. 
AUCROC and AUCPR are from sklearn (Pedregosa et al. 2011). Our implementation 
of the metrics, along with the code for generating the tables and figures in this paper, 
is available on Github 15.

15  https://​github.​com/​sonds​orb/​TSAD_​eval

https://github.com/sondsorb/TSAD_eval
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6.1 � Binary cases

To test the valuation properties of the different metrics, we have made a series of 
simple experiments with one time series of labels, and two imperfect prediction time 
series that resemble the labels in different ways. We then test which of the two pre-
dictions each of the metrics prefer. For each test we refer to a figure showing the 
time series and scores, with the optimal one for each metric shown in bold.

As the different metrics have different ranges, and different values of scores that 
could be considered good in each case, comparing numerical values of different 
metrics is difficult. To keep the discussion short and simple, we will only focus on 
which prediction is preferred, and not the actual values of the scores. Nevertheless, 
the scores are shown in the figures for the interested readers. It is worth noting that 
the discrimination between the predictions varies a lot from case to case and metric 
to metric. Whether this is good or not, again, entirely depends on the situation.

6.1.1 � Partial detection vs covering

In anomaly detection, it may be sufficient to detect only a portion of the anomalous 
event. However, the correct duration of the event is still useful. Figure 12 illustrates 
the different ways in which these aspects are addressed by various metrics. The 
point-wise f-score considers each point equally, regardless of whether the event has 
already been partially detected. In contrast, some metrics give the highest score to 
methods that detect only one point, providing no incentive to detect the entire event.

6.1.2 � Effect of anomaly length

Most point-based metrics value each time point equally, while most event-based 
metrics value each event equally. Other options are eTaf� , which weights events by 
the square root of their length, Cf� which counts points and events for precision and 
recall respectively, and NAB , counting TP event-wise and FP point-wise. These dif-
ferences may lead to some unwanted prioritizations. Figure  13 shows a situation 
with two short anomalies and one longer. For point-based metrics, it is better to pre-
dict the long one than both short ones. For datasets with high variance in anomaly 
length, or a combination of point anomalies and event anomalies, an event-based 
metric is often more appropriate. On the other hand, event-based evaluation metrics 
can be sensitive to sets of short anomalies close to each other, as seen in Fig. 14, 
where the event-based metrics prioritize the cluster of three events over the single 
long one.

6.1.3 � Preference for short predicted anomalies

For PAf�  and NAB , there is no gain in having more than one TP point within an 
anomaly, while every FP is punished point-wise. This leads to a considerable pref-
erence for short predicted anomalies, as they can give high reward with a com-
paratively low risk. As seen in Fig.  15, if two detection methods find the same 
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anomalous events, but one of them produce longer predicted anomalies, the score 
may be very different. This may seem like the precision/recall tradeoff in disguise 
- these two predictions could come from the same anomaly scores, but using differ-
ent thresholds. However, some methods indeed predict shorter anomaly events than 
other methods, independent of the threshold.

6.1.4 � Score as a function of position of the predicted event

To visualize how the different metrics value predicted events at different positions 
relative to a labelled event, we made a scenario with a time series of length 100, 
with one anomalous event from step 40 to 60, and a prediction with one anomalous 
event of length 5, at variable positions. We calculate the score for each position of 
the predicted anomaly, and plot this in a graph, as visualized in Fig. 17. Figure 18 
visualizes the score for each metric as a function of the position of the predicted 
event. We include bias

R
f �
�

 with two positioning bias functions two show the different 
effects they have on the score. As we see, the sensitivity to the position of the pre-
diction varies considerably. Sf1  only has two values in the score, and PAf1  and 
eTaf1 have almost the same shape, with only slightly reduced score at the edges. Many 
of the other metrics have more gradually changing scores. As abnormality in reality 
seldom is a binary concept, gradually changing scores should be fairer in most cases. 

Value early detection. We see that dtPA f 21  , ls f 21  , NAB  and front
R
f 0
1
  all value earli-

ness, but in different ways, and to varying degree. NAB  only has a slight prefer-
ence for early detection, while ls f 21  and front

R
f 0
1
 have about linearly decreasing scores. 

dt PA f
2

1
 changes very abruptly, and only values very early detections.

Temporal tolerance. In cases where ground truth labels are not precise, methods 
should be rewarded more/punished less for a false positive close to a true anomaly 
than farther from them. Note that the value of earliness might interfere with this, so 
balancing these concepts can be difficult. We have not found any one metric consid-
ering both of these concepts. Af1 and TD stand out as the only ones with tolerance 
across the whole time series. Along with tf 101  , these are the only ones valuing detect-
ing anomalies before the labelled anomaly, while also Taf 101  and (barely) NAB value 
detection after the labelled anomaly.

An effect of temporal tolerance is that the score is less dependent on the label-
ling strategy. We show this with an example. The labels of a dataset are usually not 
perfect, and often it is not clear what is an anomaly, and where an anomaly starts or 
ends. While the score of an anomaly detector always will depend heavily on what 
is considered a ground truth anomaly and not, the sensitivity to the exact length 
and location to an anomaly varies. Figure 19 shows a situation where it is not clear 
where to put the anomaly labels. One possibility is to mark all the high valued points 
as anomalous. Another strategy is to label only the points around the discontinui-
ties, e.g. as done by Lai et al. (2021). Indeed, there may be nothing anomalous about 
the points in between these jumps. Yet, if the distance between the jumps is small 
enough, it makes more sense to view it as a single contiguous anomaly - as noted 
by Wu et  al. (2022), a single normal point between two anomalies is an anomaly 
in its own right. Thus, at some time scale in between these situations, it should be 
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unclear how to label this event. Two possible labels corresponding to this time series 
are shown in Fig. 16, along with scores for predicting the labels from the opposite 
strategy. The metrics with temporal tolerance are also more tolerant to the labelling 
strategy, and give good scores in both cases, as opposed to the other metrics.

6.2 � Non‑binary cases

As non-binary metrics use the raw anomaly score as input, the space of possible inputs 
is much larger, making it more difficult to do extensive examinations of how these met-
rics react to a representative variation of realistic inputs. Nevertheless, we attempt to 
visualize some properties of these metrics as well. Before presenting these tests, we 
emphasize that the results of these metrics are dependent only on the relative anom-
aly score at each point, and not their actual value. This is shown in Fig. 20, where the 
anomaly scores are both symmetric, and decreasing in the distance from the middle. 
This gives the same scores for all the metrics, independent of the labels. For most 
experiments in this section, we have only a very few possible values of the anomaly 
scores, and the points that are not visually different, have the same score. The excep-
tions of this are specified in the captions.

6.2.1 � Effect of anomaly length

Figure 21 shows that the non-binary metrics mostly favour detecting the long anoma-
lies, as these have more points. However, the VUS metrics can favour detecting the 
short ones if there are more of them, as the anomaly events are effectively widened by 
the metric.

6.2.2 � Preference for short predicted anomalies

Figure 22 shows predictions with short and wide anomalies, similar to the binary 
case shown in Fig. 15. We see that none of these metrics have the short predicted 
anomaly preference like PAf� and NAB.

6.2.3 � Partial detection versus covering

Similar to for the binary metrics, we test the value of detection compared to cov-
ering in Fig.  23. Since all the non-binary metrics considered are point-based, 
none of them value the detection of the second anomaly over covering the first 
one. P@K , however, value them equally in this case, since K is larger than the 
number of points with positive anomaly score.

6.2.4 � Temporal tolerance

By smoothing out the labels, the VUS metrics value predicted anomalies close to 
the labelled anomalies, as seen in Fig. 24. The other non-binary metrics do not 
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value high anomaly scores close to an anomaly. However, the anomaly scores in 
Fig. 24 only have two values, which is not realistic. Since anomaly scores often 
are somewhat smooth, high anomaly scores close to the anomaly can indicate that 
the anomaly score is also relatively high at the anomaly. This is shown in Fig. 25, 
where the anomaly scores are bell curves at different locations. When the centres 
of the bell curves are closer to the anomaly, the anomaly scores of these points 
are also higher, giving a better score at these points. This kind of temporal toler-
ance does however fully rely on the form of the anomaly score, which may not 
necessarily be fair.

6.2.5 � Effect of class imbalance

Unlike all the other metrics we have considered, AUCROC and VUSl
ROC

  include the 
number TNs in their formulas. This means including extra points that would not 
affect other metrics, will affect these. This is shown in Fig.  26. We see that the 
scores of AUCROC and VUSl

ROC
 increase from less than 0.1 to more than 0.9 as the 

anomaly ratio decreases from 4/8 to 4/64. This means that for low anomaly ratios, 
precise detections are less important. An example of this changing the required pre-
cision is shown in Fig. 27. While AUCROC  and VUSl

ROC
 prefer the short predicted 

event in the short time series, they prefer the less precise one in the long time series. 
When working with multiple time series, this makes it challenging to have an idea of 
what should be considered a good score for each time series.

7 � Categorization

In this section we present how each metric relates to the properties presented in 
Sect. 4. Table 2 shows the properties of each metric. We will in the following para-
graphs explain how these results were determined. If the result of any test depends 
on a parameter16, we mark it by an asterisk. We also use an asterisk for partially 
obtained properties. What we mean by this is explained for the relevant properties 
below.

For Value early detection, we consider the results at the vertical marks on the axes 
shown in Fig. 18 for the binary metrics. If the score at the second mark is higher 
than the third mark, we consider the metric to value early detection. Since none of 
the non-binary metrics use the direction of the time series in their calculation, they 
can not have this property due to symmetry in the time dimension.

The Prioritize long anomalies property is based on the result in Figs. 13 and 21 
for binary and non-binary metrics respectively - metrics not preferring the predic-
tion in the bottom row are considered to have this property. Similarly, the Favour 
short predicted events property is based on Figs. 15 and 22. Metrics giving better 
score to the prediction in the top row have this property. Metrics that Prioritize par-
tial detection are those not preferring the top prediction in Figs. 12 and 23.

16  For bias
R
f �
�

 , where the function parameters could in principle be anything, we have only used the ones 
suggested in the original paper



1058	 S. Sørbø, M. Ruocco

1 3

The Temporal tolerance property for binary metrics is based on Fig. 18. Metrics 
that have non-zero score at the first and last vertical marks are considered to fully 
have this property, while metrics with non-zero score only the last mark partially 
have the property and are marked with an asterisk. For non-binary metrics, metrics 
distinguishing the anomaly scores Fig. 24 are considered to have the property, while 
metrics only distinguishing the smoother anomaly scores of Fig. 25 are marked with 
an asterisk. We do not consider this property to depend on parameters for tf ��  , 
VUSl

ROC
 and VUSl

PR
 , since � = 0 or l = 0 , the only values where the property is not 

obtained, would make the metrics identical to PWf� , AUCROC and AUCPR.
The Binary property simply indicates the binary vs non-binary metrics. Chronol-

ogy aware indicates the metrics that consider time dimension adjacency in any way 
and Insensitivity to true negatives are the metrics ignoring the amount of true nega-
tives. # parameters indicates the number of parameters for each metric, including � 
for f-scores, all specifiable functions for bias

R
f �
�

 , the distance exponent in TD , and all 
the TP, FP and FN weights in NAB.

8 � Conclusion

Through an extensive literature review on time series anomaly detection (TSAD), 
we found several different ways to evaluate algorithms. While a comparison of sev-
eral of the available metrics can be found in a few papers, some of which strongly 
disagree with each other on what are important properties of an evaluation metrics, 
most papers choose metrics that have been repeatedly faulted in the literature, such 
as the point-adjusted f-score. We have tested 20 TSAD evaluation metrics in several 
case studies, and categorized them based on 10 different properties. As TSAD is a 
diverse field, no evaluation metric is appropriate in all cases, and it should be chosen 
with care in each case. For the same reason, it is difficult to provide detailed guide-
lines for how to do this. However, we summarize some of the main takeaways from 
our study:

•	 The choice of evaluation metric has a large impact on the rankings of TSAD 
methods, underscoring the need for careful alignment of evaluation metrics with 
specific problem requirements.

•	 Some metrics give high scores to certain prediction strategies that do not yield 
useful predictions. For example, predicting only very long or very short anoma-
lies can result in unreasonably high scores, leading to the selection of inappropri-
ate methods and an overestimation of expected performance.

•	 Some metrics result in very bad scores for certain types of predictions, even 
though the predictions are valuable, such as predicting long anomalous events, 
or predicting anomalies too early or late. This can lead to selecting ineffective 
methods and underestimating the expected performance.

•	 Due to the way the labels are compared to the prediction, many metrics are not 
appropriate for certain kinds of labelling strategies.
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Fig. 17   Score as a function of position of the predicted event: Each point on the graph is the output of 
the considered evaluation metric ( PWf1 in this case) for one full prediction, where the position of the pre-
dicted anomaly changes. The 4 vertical marks on the axis indicate the start and end of areas where some, 
but not all, predicted anomaly points are correct. In other words, before the first and after the last mark, 
the predictions have no TP points, while between the second and third mark, the predictions have no FP 
points

Fig. 18   Score as a function of position of the predicted event: For each metric, the graph shows the 
scores of the detection scenario shown in Fig.  17, as a function of the position in the prediction. All 
graphs are scaled to the same interval for easy comparison

Fig. 19   Is there one anomaly 
at t ≈ 3 and another at t ≈ 4 , or 
just one anomalous event from 
3 to 4? Without any information 
about domain and time scale, 
we may only guess what is an 
anomaly here, or if there even 
exist any
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Therefore, it is crucial to carefully select the appropriate evaluation metric for a 
given problem, taking into consideration its preferences for specific types of predic-
tions. Simple case studies such as the ones presented in this work can be helpful for 
gaining such understanding.

There are several directions of future research based on this study. First of all, 
there is room for defining novel evaluation metrics. For example, valuing early 

Fig. 20   Ordering the time stamps by value of the anomaly scores yields the same order. Only the order 
matter for the non-binary metrics, not their value, hence these predictions have the same scores. This 
would be true for any labels

Fig. 21   Effect of anomaly length: Importance of anomaly length for non-binary metrics

Fig. 22   Preference for short predicted anomalies: None of the non-binary metrics prefer the short pre-
dicted anomalies

Fig. 23   Partial detection versus covering: As these metrics are point-based, they do not value detection 
of new anomalies over fully covering existing ones

Fig. 24   Temporal tolerance: Only VUS metrics value proximity of predicted and labelled anomalies. The 
other metrics still give positive score, since a low enough threshold marks every point as anomalous



1061

1 3

Navigating the metric maze: a taxonomy of evaluation…

detection and temporal tolerance are two very useful traits, but none of the met-
rics we could find include both. Furthermore, much more investigation can be 
done of existing metrics that did not meet the limitations of this work, e.g. sup-
plementary performance analysis metrics, or combinations of techniques of the 
included metrics. Finally, when publishing results in TSAD research in general, 
we suggest including results from multiple metrics, as well as making both the 
code and the anomaly scores available, to enable easy comparison with any eval-
uation metric.

Fig. 25   Temporal tolerance: Non-binary metrics value FPs close to true anomalies indirectly, due to 
the anomaly score often being somewhat smooth. The scores are gaussian function with different shifts, 
meaning the anomaly scores at the anomalous points increase as the centre moves towards the anomaly

Fig. 26   Effect of class imbalance: AUCROC  and VUSl
ROC

  scores are heavily affected by the amount of 
TNs. In the shorter predictions, only the predicted part of the time series is evaluated. The anomaly score 
is strictly decreasing, ensuring that none of the added points are more anomalous than the previous ones. 
As only AUCROC and VUSl

ROC
 are affected by this, the other metrics are not included

Fig. 27   Effect of class imbalance: The bottom two anomaly scores are extensions of the top two. The 
extra TNs change which anomaly score AUCROC and VUSl

ROC
 prefer



1062	 S. Sørbø, M. Ruocco

1 3

Ta
bl

e 
2  

T
he

 p
ro

pe
rti

es
 o

f a
ll 

th
e 

m
et

ric
s. 
✓

 =
 h

as
 p

ro
pe

rty
, ×

 =
 d

oe
s n

ot
 h

av
e 

pr
op

er
ty

, *
 =

 p
ar

tia
lly

 / 
pa

ra
m

et
er

 d
ep

en
de

nt

M
et

ric
Va

lu
at

io
n 

pr
op

er
tie

s
In

tri
ns

ic
 p

ro
pe

rti
es

Va
lu

e 
ea

rly
 

de
te

ct
io

n
Pr

io
rit

iz
e 

lo
ng

 
an

om
al

ie
s

Fa
vo

ur
 sh

or
t p

re
-

di
ct

ed
 e

ve
nt

s
Pr

io
rit

iz
e 

pa
rti

al
 

de
te

ct
io

n
Te

m
po

ra
l 

to
le

ra
nc

e
B

in
ar

y
C

hr
on

ol
og

y 
aw

ar
e

In
se

ns
iti

vi
ty

 to
 

tru
e 

ne
ga

tiv
es

# 
pa

ra
m

et
er

s

P
W
f �

×
✓

×
×

×
✓

×
✓

1

P
A
f �

×
✓

✓
✓

×
✓

✓
✓

1

d
tP
A
f �

*
✓

*
✓

×
✓

✓
✓

2
K
%

P
A
f �

×
✓

*
*

×
✓

✓
✓

2

ls
fn �

*
*

*
✓

*
✓

✓
✓

2

S
f �

×
×

×
✓

×
✓

✓
✓

1

C
f �

×
×

×
✓

×
✓

✓
✓

1

tf
� �

×
*

×
*

✓
✓

✓
✓

2
b
ia
s
R
f� �

*
×

×
*

×
✓

✓
✓

8

T
a
f� �

×
×

×
*

*
✓

✓
✓

4

eT
a
f �

×
×

×
*

×
✓

✓
✓

3

A
f �

×
×

×
✓

✓
✓

✓
✓

1
N
A
B

✓
×

✓
✓

*
✓

✓
✓

3
T
D

×
*

✓
*

✓
✓

✓
✓

1
P
@
K

×
✓

×
×

*
×

×
✓

1
b
es
t

P
W
f �

×
✓

×
×

*
×

×
✓

1
A
U
C
R
O
C

×
✓

×
×

*
×

×
×

0
A
U
C
P
R
 

×
✓

×
×

*
×

×
✓

0
V
U
S
l R
O
C

×
*

×
×

✓
×

✓
×

1

V
U
S
l P
R

×
✓

×
×

✓
×

✓
✓

1



1063

1 3

Navigating the metric maze: a taxonomy of evaluation…

Acknowledgements  This research was carried out with the support of the ML4ITS project (312062), 
funded by the Norwegian Research Council (NFR).

Funding  Open access funding provided by SINTEF.

Declarations 

Competing interests  The authors have no relevant financial or non-financial interests to disclose.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Abdulaal A, Liu Z, Lancewicki T (2021) Practical approach to asynchronous multivariate time series 
anomaly detection and localization. In: Proceedings of the 27th ACM SIGKDD conference on 
knowledge discovery and data mining. Association for computing machinery, New York, NY, USA, 
KDD ’21, p 2485-2494, https://​doi.​org/​10.​1145/​34475​48.​34671​74,

Ahmad S, Lavin A, Purdy S et al (2017) Unsupervised real-time anomaly detection for streaming data. 
Neurocomputing 262:134–147 https://​doi.​org/​10.​1016/j.​neucom.​2017.​04.​070,www.​scien​cedir​
ect.​com/​scien​ce/​artic​le/​pii/​S0925​23121​73098​64, online Real-Time Learning Strategies for Data 
Streams

Ahmed AH, Riegler MA, Hicks SA, et al. (2022) Rcad: Real-time collaborative anomaly detection sys-
tem for mobile broadband networks. In: Proceedings of the 28th ACM SIGKDD conference on 
knowledge discovery and data mining. Association for computing machinery, New York. KDD ’22, 
p 2682-2691, https://​doi.​org/​10.​1145/​35346​78.​35390​97,

Audibert J, Michiardi P, Guyard F, et al. (2020) Usad: Unsupervised anomaly detection on multivariate 
time series. In: Proceedings of the 26th ACM SIGKDD International conference on knowledge dis-
covery and data mining. Association for computing machinery, New York. KDD ’20, p 3395-3404, 
https://​doi.​org/​10.​1145/​33944​86.​34033​92,

Baireddy S, Desai SR, Mathieson JL, et al. (2021) Spacecraft time-series anomaly detection using trans-
fer learning. In: 2021 IEEE/CVF Conference on computer vision and pattern recognition workshops 
(CVPRW), pp 1951–1960, https://​doi.​org/​10.​1109/​CVPRW​53098.​2021.​00223

Baker SG, Pinsky PF (2001) A proposed design and analysis for comparing digital and analog mammog-
raphy. J Am Stat Assoc 96(454):421–428. https://​doi.​org/​10.​1198/​01621​45017​53168​136

Bashar MA, Nayak R (2020) Tanogan: Time series anomaly detection with generative adversarial net-
works. In: 2020 IEEE symposium series on computational intelligence, SSCI 2020, Canberra, 
December 1-4, 2020. IEEE, pp 1778–1785, https://​doi.​org/​10.​1109/​SSCI4​7803.​2020.​93085​12

Berrar DP, Flach PA (2012) Caveats and pitfalls of ROC analysis in clinical microarray research (and 
how to avoid them). Brief Bioinform 13(1):83–97. https://​doi.​org/​10.​1093/​bib/​bbr008

Bhatia S, Jain A, Li P, et al. (2021) Mstream: Fast anomaly detection in multi-aspect streams. In: Pro-
ceedings of the web conference 2021. Association for computing machinery, New York. WWW ’21, 
p 3371-3382, https://​doi.​org/​10.​1145/​34423​81.​34500​23,

Braei M, Wagner S (2020) Anomaly detection in univariate time-series: a survey on the state-of-the-art. 
CoRR abs/2004.00433. https://​doi.​org/​10.​48550/​arXiv.​2004.​00433, arXiv:​2004.​00433

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3447548.3467174
https://doi.org/10.1016/j.neucom.2017.04.070,
http://www.sciencedirect.com/science/article/pii/S0925231217309864
http://www.sciencedirect.com/science/article/pii/S0925231217309864
https://doi.org/10.1145/3534678.3539097
https://doi.org/10.1145/3394486.3403392
https://doi.org/10.1109/CVPRW53098.2021.00223
https://doi.org/10.1198/016214501753168136
https://doi.org/10.1109/SSCI47803.2020.9308512
https://doi.org/10.1093/bib/bbr008
https://doi.org/10.1145/3442381.3450023
https://doi.org/10.48550/arXiv.2004.00433
http://arxiv.org/abs/2004.00433


1064	 S. Sørbø, M. Ruocco

1 3

Buda TS, Assem H, Xu L (2017) ADE: an ensemble approach for early anomaly detection. In: 2017 
IFIP/IEEE symposium on integrated network and service management (IM), Lisbon. May 8-12, 
2017. IEEE, pp 442–448, https://​doi.​org/​10.​23919/​INM.​2017.​79873​10,

Campos D, Kieu T, Guo C, et  al. (2021) Unsupervised time series outlier detection with diversity-
driven convolutional ensembles. Proc VLDB Endow 15(3):611–623. https://​doi.​org/​10.​14778/​
34941​24.​34941​42, http://​www.​vldb.​org/​pvldb/​vol15/​p611-​chaves.​pdf

Challu C, Jiang P, Wu YN, et  al. (2022) Deep generative model with hierarchical latent factors for 
time series anomaly detection. In: International conference on artificial intelligence and statistics 
https://​doi.​org/​10.​48550/​arXiv.​2202.​07586

Chen R, Shi G, Zhao W et  al (2021) A joint model for IT operation series prediction and anomaly 
detection. Neurocomputing 448:130–139. https://​doi.​org/​10.​1016/j.​neucom.​2021.​03.​062

Chen Z, Chen D, Yuan Z et  al (2021) Learning graph structures with transformer for multivariate 
time-series anomaly detection in IOT. IEEE Internet Things J 9:9179–9189. https://​doi.​org/​10.​
1109/​JIOT.​2021.​31005​09

Chen Z, Chen D, Zhang X et al (2022) Learning graph structures with transformer for multivariate 
time-series anomaly detection in iot. IEEE Internet Things J 9(12):9179–9189. https://​doi.​org/​
10.​1109/​JIOT.​2021.​31005​09

Chen X, Deng L, Huang F, et al. (2021b) DAEMON: unsupervised anomaly detection and interpreta-
tion for multivariate time series. In: 37th IEEE international conference on data engineering, 
ICDE 2021, Chania. April 19-22, 2021. IEEE, pp 2225–2230, https://​doi.​org/​10.​1109/​ICDE5​
1399.​2021.​00228,

Chen T, Liu X, Xia B, et al. (2020) Unsupervised anomaly detection of industrial robots using sliding-
window convolutional variational autoencoder. IEEE Access 8:47,072–47,081. https://​doi.​org/​
10.​1109/​ACCESS.​2020.​29778​92,

Choi K, Yi J, Park C, et al. (2021) Deep learning for anomaly detection in time-series data: Review, 
analysis, and guidelines. IEEE Access 9:120,043–120,065. https://​doi.​org/​10.​1109/​ACCESS.​
2021.​31079​75

Chuah MC, Fu F (2007) ECG anomaly detection via time series analysis. In: Thulasiraman P, He X, 
Xu TL, et al. (eds) Frontiers of high performance computing and networking ISPA 2007 work-
shops, ISPA 2007 international workshops SSDSN, UPWN, WISH, SGC, ParDMCom, HiP-
CoMB, and IST-AWSN Niagara Falls. August 28 - September 1, 2007, Proceedings, Lecture 
Notes in Computer Science, vol 4743. Springer, pp 123–135, https://​doi.​org/​10.​1007/​978-3-​540-​
74767-3_​14,

Dai E, Chen J (2022) Graph-augmented normalizing flows for anomaly detection of multiple time 
series. ArXiv abs/2202.07857. https://​doi.​org/​10.​48550/​arXiv.​2202.​07857

Dai L, Lin T, Liu C, et al. (2021) Sdfvae: Static and dynamic factorized vae for anomaly detection of 
multivariate cdn kpis. In: Proceedings of the web conference 2021. Association for computing 
machinery, New York. WWW ’21, p 3076-3086, https://​doi.​org/​10.​1145/​34423​81.​34500​13,

Davis J, Goadrich M (2006) The relationship between precision-recall and ROC curves. In: Cohen 
WW, Moore AW (eds) Machine learning. Proceedings of the twenty-third international confer-
ence (ICML 2006). Pittsburgh, Pennsylvania, USA, June 25-29, 2006, ACM international confer-
ence proceeding series, vol 148. ACM, pp 233–240, https://​doi.​org/​10.​1145/​11438​44.​11438​74,

Deng L, Lian D, Huang Z et  al (2022) Graph convolutional adversarial networks for spatiotempo-
ral anomaly detection. IEEE Trans Neural Netw Learn Syst 33(6):2416–2428. https://​doi.​org/​10.​
1109/​TNNLS.​2021.​31361​71

Deng A, Hooi B (2021) Graph neural network-based anomaly detection in multivariate time series. In: 
Thirty-Fifth AAAI conference on artificial intelligence, AAAI 2021, Thirty-third conference on 
innovative applications of artificial intelligence, IAAI 2021, The eleventh symposium on educa-
tional advances in artificial intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. AAAI 
Press, pp 4027–4035, https://​ojs.​aaai.​org/​index.​php/​AAAI/​artic​le/​view/​16523

Doshi K, Abudalou S, Yilmaz Y (2022) Reward once, penalize once: Rectifying time series anomaly 
detection. In: International joint conference on neural networks, IJCNN 2022, Padua, July 18-23, 
2022. IEEE, pp 1–8, https://​doi.​org/​10.​1109/​IJCNN​55064.​2022.​98919​13,

Du B, Sun X, Ye J et al (2021) Gan-based anomaly detection for multivariate time series using pol-
luted training set. IEEE Trans Knowl Data Eng 5:1–1. https://​doi.​org/​10.​1109/​TKDE.​2021.​
31286​67

Ergen T, Kozat SS (2020) Unsupervised anomaly detection with LSTM neural networks. IEEE Trans 
Neural Netw Learn Syst 31(8):3127–3141. https://​doi.​org/​10.​1109/​TNNLS.​2019.​29359​75

https://doi.org/10.23919/INM.2017.7987310
https://doi.org/10.14778/3494124.3494142
https://doi.org/10.14778/3494124.3494142
http://www.vldb.org/pvldb/vol15/p611-chaves.pdf
https://doi.org/10.48550/arXiv.2202.07586
https://doi.org/10.1016/j.neucom.2021.03.062
https://doi.org/10.1109/JIOT.2021.3100509
https://doi.org/10.1109/JIOT.2021.3100509
https://doi.org/10.1109/JIOT.2021.3100509
https://doi.org/10.1109/JIOT.2021.3100509
https://doi.org/10.1109/ICDE51399.2021.00228
https://doi.org/10.1109/ICDE51399.2021.00228
https://doi.org/10.1109/ACCESS.2020.2977892
https://doi.org/10.1109/ACCESS.2020.2977892
https://doi.org/10.1109/ACCESS.2021.3107975
https://doi.org/10.1109/ACCESS.2021.3107975
https://doi.org/10.1007/978-3-540-74767-3_14
https://doi.org/10.1007/978-3-540-74767-3_14
https://doi.org/10.48550/arXiv.2202.07857
https://doi.org/10.1145/3442381.3450013
https://doi.org/10.1145/1143844.1143874
https://doi.org/10.1109/TNNLS.2021.3136171
https://doi.org/10.1109/TNNLS.2021.3136171
https://ojs.aaai.org/index.php/AAAI/article/view/16523
https://doi.org/10.1109/IJCNN55064.2022.9891913
https://doi.org/10.1109/TKDE.2021.3128667
https://doi.org/10.1109/TKDE.2021.3128667
https://doi.org/10.1109/TNNLS.2019.2935975


1065

1 3

Navigating the metric maze: a taxonomy of evaluation…

Feng Y, Liu Z, Chen J et al (2022) Unsupervised multimodal anomaly detection with missing sources for 
liquid rocket engine. IEEE Trans Neural Netw Learn Syst 9:1–15. https://​doi.​org/​10.​1109/​TNNLS.​
2022.​31629​49

Feng C, Tian P (2021) Time series anomaly detection for cyber-physical systems via neural system iden-
tification and bayesian filtering. In: Proceedings of the 27th ACM SIGKDD conference on knowl-
edge discovery and data mining. Association for computing machinery, New York. KDD ’21, p 
2858-2867, https://​doi.​org/​10.​1145/​34475​48.​34671​37,

Flaborea A, Prenkaj B, Munjal B, et al. (2022) Are we certain it’s anomalous? ArXiv abs/2211.09224. 
https://​doi.​org/​10.​48550/​arXiv.​2211.​09224

Garg A, Zhang W, Samaran J et al (2022) An evaluation of anomaly detection and diagnosis in multi-
variate time series. IEEE Trans Neural Netw Learn Syst 33(6):2508–2517. https://​doi.​org/​10.​1109/​
TNNLS.​2021.​31058​27

Geiger A, Liu D, Alnegheimish S, et al. (2020) Tadgan: Time series anomaly detection using generative 
adversarial networks. In: Wu X, Jermaine C, Xiong L, et al. (eds) 2020 IEEE international confer-
ence on big data (IEEE BigData 2020), Atlanta, GA, USA, December 10-13, 2020. IEEE, pp 33–43, 
https://​doi.​org/​10.​1109/​BigDa​ta500​22.​2020.​93781​39,

Gensler A, Sick B (2014) Novel criteria to measure performance of time series segmentation techniques. 
In: Seidl T, Hassani M, Beecks C (eds) Proceedings of the 16th LWA Workshops: KDML, IR and 
FGWM, Aachen, Germany, September 8-10, 2014, CEUR workshop proceedings, vol 1226. CEUR-
WS.org, pp 193–204, http://​ceur-​ws.​org/​Vol-​1226/​paper​31.​pdf

Goodge A, Hooi B, Ng S, et al. (2020) Robustness of autoencoders for anomaly detection under adver-
sarial impact. In: Bessiere C (ed) Proceedings of the twenty-ninth international joint conference on 
artificial intelligence, IJCAI 2020. ijcai.org, pp 1244–1250, https://​doi.​org/​10.​24963/​ijcai.​2020/​173,

Goswami M, Challu C, Callot L, et  al. (2022) Unsupervised model selection for time-series anomaly 
detection. ArXiv abs/2210.01078. https://​doi.​org/​10.​48550/​arXiv.​2210.​01078

Han S, Woo SS (2022) Learning sparse latent graph representations for anomaly detection in multivari-
ate time series. In: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and 
data mining. Association for computing machinery, New York. KDD ’22, p 2977-2986, https://​doi.​
org/​10.​1145/​35346​78.​35391​17,

He Y, Zhao J (2019) Temporal convolutional networks for anomaly detection in time series. J Phys Conf 
Ser 4:1213. https://​doi.​org/​10.​1088/​1742-​6596/​1213/4/​042050

He Z, Chen P, Li X et  al (2020) A spatiotemporal deep learning approach for unsupervised anomaly 
detection in cloud systems. IEEE Trans Neural Netw Learn Syst 12:3027736. https://​doi.​org/​10.​
1109/​TNNLS.​2020.​30277​36

Hsieh RJ, Chou J, Ho CH (2019) Unsupervised online anomaly detection on multivariate sensing time 
series data for smart manufacturing. 2019 IEEE 12th conference on service-oriented computing and 
applications (SOCA) pp 90–97. https://​doi.​org/​10.​1109/​SOCA.​2019.​00021

Huang T, Chen P, Li R (2022) A semi-supervised vae based active anomaly detection framework in mul-
tivariate time series for online systems. In: Proceedings of the ACM web conference 2022. Associa-
tion for computing machinery. New York. WWW ’22, p 1797-1806, https://​doi.​org/​10.​1145/​34854​
47.​35119​84,

Huang X, Lee J, Kwon YW, et al. (2020) Crowdquake: A networked system of low-cost sensors for earth-
quake detection via deep learning. Proceedings of the 26th ACM SIGKDD international conference 
on knowledge discovery and data mining https://​doi.​org/​10.​1145/​33944​86.​34033​78

Huet A, Navarro JM, Rossi D (2022) Local evaluation of time series anomaly detection algorithms. In: 
Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining. Asso-
ciation for computing machinery. New York. KDD ’22, p 635-645, https://​doi.​org/​10.​1145/​35346​78.​
35393​39

Hundman K, Constantinou V, Laporte C, et al. (2018) Detecting spacecraft anomalies using lstms and 
nonparametric dynamic thresholding. In: Guo Y, Farooq F (eds) Proceedings of the 24th ACM 
SIGKDD international conference on knowledge discovery and data mining, KDD 2018. London. 
August 19-23, 2018. ACM, pp 387–395, https://​doi.​org/​10.​1145/​32198​19.​32198​45

Hwang WS, Yun JH, Kim J, et al. (2022) "do you know existing accuracy metrics overrate time-series 
anomaly detections?". In: Proceedings of the 37th ACM/SIGAPP symposium on applied comput-
ing. Association for computing machinery. New York, SAC ’22, p 403-412, https://​doi.​org/​10.​1145/​
34773​14.​35070​24,

Hwang W, Yun J, Kim J, et al. (2019) Time-series aware precision and recall for anomaly detection: Con-
sidering variety of detection result and addressing ambiguous labeling. In: Zhu W, Tao D, Cheng X, 

https://doi.org/10.1109/TNNLS.2022.3162949
https://doi.org/10.1109/TNNLS.2022.3162949
https://doi.org/10.1145/3447548.3467137
https://doi.org/10.48550/arXiv.2211.09224
https://doi.org/10.1109/TNNLS.2021.3105827
https://doi.org/10.1109/TNNLS.2021.3105827
https://doi.org/10.1109/BigData50022.2020.9378139
http://ceur-ws.org/Vol-1226/paper31.pdf
https://doi.org/10.24963/ijcai.2020/173
https://doi.org/10.48550/arXiv.2210.01078
https://doi.org/10.1145/3534678.3539117
https://doi.org/10.1145/3534678.3539117
https://doi.org/10.1088/1742-6596/1213/4/042050
https://doi.org/10.1109/TNNLS.2020.3027736
https://doi.org/10.1109/TNNLS.2020.3027736
https://doi.org/10.1109/SOCA.2019.00021
https://doi.org/10.1145/3485447.3511984
https://doi.org/10.1145/3485447.3511984
https://doi.org/10.1145/3394486.3403378
https://doi.org/10.1145/3534678.3539339
https://doi.org/10.1145/3534678.3539339
https://doi.org/10.1145/3219819.3219845
https://doi.org/10.1145/3477314.3507024
https://doi.org/10.1145/3477314.3507024


1066	 S. Sørbø, M. Ruocco

1 3

et al. (eds) Proceedings of the 28th ACM international conference on information and knowledge 
management, CIKM 2019. Beijing, China, November 3-7, 2019. ACM, pp 2241–2244, https://​doi.​
org/​10.​1145/​33573​84.​33581​18,

Jacob V, Song F, Stiegler A, et al. (2021) Exathlon: A benchmark for explainable anomaly detection over 
time series. Proc VLDB Endow 14(11), 2613–2626. https://​doi.​org/​10.​14778/​34762​49.​34763​07

Keogh EJ, Lin J, Fu AWC et  al (2006) Finding unusual medical time-series subsequences: algorithms 
and applications. IEEE Trans Inf Technol Biomed 10:429–439. https://​doi.​org/​10.​1109/​TITB.​2005.​
863870

Kieu T, Yang B, Guo C, et al. (2019) Outlier detection for time series with recurrent autoencoder ensem-
bles. In: International joint conference on artificial intelligence, https://​doi.​org/​10.​24963/​ijcai.​2019/​
378

Kim GY, Lim SM, Euom IC (2022) A study on performance metrics for anomaly detection based on 
industrial control system operation data. Electronics 11(8):1108213. https://​doi.​org/​10.​3390/​elect​
ronic​s1108​1213

Kim S, Choi K, Choi H, et al. (2022b) Towards a rigorous evaluation of time-series anomaly detection. 
In: Thirty-sixth AAAI conference on artificial intelligence, AAAI 2022, Thirty-fourth conference 
on innovative applications of artificial intelligence, IAAI 2022, The twelveth symposium on edu-
cational advances in artificial intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022. 
AAAI Press, pp 7194–7201, https://​ojs.​aaai.​org/​index.​php/​AAAI/​artic​le/​view/​20680

Kovács G, Sebestyen G, Hangan A (2019) Evaluation metrics for anomaly detection algorithms in time-
series. Acta Univ Sapientiae Inf 11:113–130. https://​doi.​org/​10.​2478/​ausi-​2019-​0008

Lai K, Zha D, Xu J, et al. (2021) Revisiting time series outlier detection: Definitions and benchmarks. 
In: Vanschoren J, Yeung S (eds) Proceedings of the neural information processing systems track 
on datasets and benchmarks 1, NeurIPS datasets and benchmarks 2021, December 2021, virtual, 
https://​datas​ets-​bench​marks-​proce​edings.​neuri​ps.​cc/​paper/​2021/​hash/​ec5de​cca5e​d3d6b​8079e​2e7e7​
bacc9​f2-​Abstr​act-​round1.​html

Lavin A, Ahmad S (2015a) Evaluating real-time anomaly detection algorithms - the numenta anomaly 
benchmark. In: Li T, Kurgan LA, Palade V, et  al. (eds) 14th IEEE international conference on 
machine learning and applications, ICMLA 2015, Miami. December 9-11, 2015. IEEE, pp 38–44, 
https://​doi.​org/​10.​1109/​ICMLA.​2015.​141,

Lavin A, Ahmad S (2015b) The numenta anomaly benchmark [White paper]. Redwood City, CA: 
Numenta, Available: https://​github.​com/​numen​ta/​NAB/​wiki

Li L, Yan J, Wang H et al (2021) Anomaly detection of time series with smoothness-inducing sequential 
variational auto-encoder. IEEE Trans Neural Netw Learn Syst 32(3):1177–1191. https://​doi.​org/​10.​
1109/​TNNLS.​2020.​29807​49

Li Y, Peng X, Zhang J et al (2021) Dct-gan: dilated convolutional transformer-based gan for time series 
anomaly detection. IEEE Trans Knowl Data Eng 23:1–1. https://​doi.​org/​10.​1109/​TKDE.​2021.​31302​
34

Li L, Yan J, Wen Q et al (2022) Learning robust deep state space for unsupervised anomaly detection 
in contaminated time-series. IEEE Trans Knowl Data Eng 23:1–1. https://​doi.​org/​10.​1109/​TKDE.​
2022.​31715​62

Li D, Chen D, Shi L, et al. (2019) Mad-gan: Multivariate anomaly detection for time series data with 
generative adversarial networks. In: International conference on artificial neural networks https://​
doi.​org/​10.​1007/​978-3-​030-​30490-4_​56

Liu S, Zhou B, Ding QX et al (2022) Time series anomaly detection with adversarial reconstruction net-
works. IEEE Trans Knowl Data Eng. https://​doi.​org/​10.​1109/​tkde.​2021.​31400​58

Li Z, Zhao Y, Han J, et al. (2021c) Multivariate time series anomaly detection and interpretation using 
hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD con-
ference on knowledge discovery and data mining. association for computing machinery, New York. 
KDD ’21, p 3220-3230, https://​doi.​org/​10.​1145/​34475​48.​34670​75,

Lobo JM, Jiménez-Valverde A, Real R (2008) Auc: a misleading measure of the performance of pre-
dictive distribution models. Glob Ecol Biogeogr 17:145–151. https://​doi.​org/​10.​1111/J.​1466-​8238.​
2007.​00358.X

Mamandipoor B, Majd M, Sheikhalishahi S et al (2020) Monitoring and detecting faults in wastewater 
treatment plants using deep learning. Environ Monitor Assess 192:1–12. https://​doi.​org/​10.​1007/​
s10661-​020-​8064-1

https://doi.org/10.1145/3357384.3358118
https://doi.org/10.1145/3357384.3358118
https://doi.org/10.14778/3476249.3476307
https://doi.org/10.1109/TITB.2005.863870
https://doi.org/10.1109/TITB.2005.863870
https://doi.org/10.24963/ijcai.2019/378
https://doi.org/10.24963/ijcai.2019/378
https://doi.org/10.3390/electronics11081213
https://doi.org/10.3390/electronics11081213
https://ojs.aaai.org/index.php/AAAI/article/view/20680
https://doi.org/10.2478/ausi-2019-0008
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ec5decca5ed3d6b8079e2e7e7bacc9f2-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/ec5decca5ed3d6b8079e2e7e7bacc9f2-Abstract-round1.html
https://doi.org/10.1109/ICMLA.2015.141
https://github.com/numenta/NAB/wiki
https://doi.org/10.1109/TNNLS.2020.2980749
https://doi.org/10.1109/TNNLS.2020.2980749
https://doi.org/10.1109/TKDE.2021.3130234
https://doi.org/10.1109/TKDE.2021.3130234
https://doi.org/10.1109/TKDE.2022.3171562
https://doi.org/10.1109/TKDE.2022.3171562
https://doi.org/10.1007/978-3-030-30490-4_56
https://doi.org/10.1007/978-3-030-30490-4_56
https://doi.org/10.1109/tkde.2021.3140058
https://doi.org/10.1145/3447548.3467075
https://doi.org/10.1111/J.1466-8238.2007.00358.X
https://doi.org/10.1111/J.1466-8238.2007.00358.X
https://doi.org/10.1007/s10661-020-8064-1
https://doi.org/10.1007/s10661-020-8064-1


1067

1 3

Navigating the metric maze: a taxonomy of evaluation…

Ma M, Zhang S, Chen J, et  al. (2021) Jump-starting multivariate time series anomaly detection for 
online service systems. In: USENIX annual technical conference, https://​www.​usenix.​org/​confe​
rence/​atc21/​prese​ntati​on/​ma

Meng H, Zhang Y, Li Y, et  al. (2020) Spacecraft anomaly detection via transformer reconstruction 
error. In: Jing Z (ed) Proceedings of the international conference on aerospace system science 
and engineering 2019. Springer, Singapore, pp 351–362, https://​doi.​org/​10.​1007/​978-​981-​15-​
1773-0_​28

Nalepa J, Myller M, Andrzejewski J et al (2022) Evaluating algorithms for anomaly detection in satel-
lite telemetry data. Acta Astronautica 198:689–701 https://​doi.​org/​10.​1016/j.​actaa​stro.​2022.​06.​
026,www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0094​57652​20031​62

Niu Z, Yu K, Wu X (2020) Lstm-based vae-gan for time-series anomaly detection. Sens Basel Switz 
20:3738. https://​doi.​org/​10.​3390/​s2013​3738

Pang G, Shen C, van den Hengel A (2019) Deep anomaly detection with deviation networks. Proceed-
ings of the 25th ACM SIGKDD international conference on knowledge discovery and data min-
ing https://​doi.​org/​10.​1145/​32925​00.​33308​71

Paparrizos J, Boniol P, Palpanas T, et al. (2022a) Volume under the surface: A new accuracy evalua-
tion measure for time-series anomaly detection. Proc VLDB Endow 15:2774–2787. https://​doi.​
org/​10.​14778/​35517​93.​35518​30

Paparrizos J, Kang Y, Boniol P, et al. (2022b) Tsb-uad: An end-to-end benchmark suite for univariate 
time-series anomaly detection. Proc VLDB Endow 15(8):1697-1711. https://​doi.​org/​10.​14778/​
35293​37.​35293​54

Park D, Hoshi Y, Kemp CC (2017) A multimodal anomaly detector for robot-assisted feeding using 
an lstm-based variational autoencoder. IEEE Robot Autom Lett 3:1544–1551. https://​doi.​org/​10.​
1109/​LRA.​2018.​28014​75

Pedregosa F, Varoquaux G, Gramfort A, et  al. (2011) Scikit-learn: machine learning in python. J 
Mach Learn Res 12:2825–2830. https://​doi.​org/​10.​48550/​arXiv.​1201.​0490

Ren H, Xu B, Wang Y, et al. (2019) Time-series anomaly detection service at microsoft. In: Proceed-
ings of the 25th ACM SIGKDD international conference on knowledge discovery and data min-
ing. Association for computing machinery. New York. KDD ’19, p 3009-3017, https://​doi.​org/​10.​
1145/​32925​00.​33306​80,

Rewicki F, Denzler J, Niebling J (2022) Is it worth it? an experimental comparison of six deep- and 
classical machine learning methods for unsupervised anomaly detection in time series. ArXiv 
abs/2212.11080. https://​doi.​org/​10.​48550/​arXiv.​2212.​11080

Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the roc plot when 
evaluating binary classifiers on imbalanced datasets. PLoS ONE 10:118432. https://​doi.​org/​10.​
1371/​journ​al.​pone.​01184​32

Scharwächter E, Müller E (2020) Statistical Evaluation of Anomaly Detectors for Sequences. In: 
6th ACM SIGKDD workshop on mining and learning from time series (KDD MiLeTS 2020), 
https://​doi.​org/​10.​48550/​arXiv.​2008.​05788

Schmidl S, Wenig P, Papenbrock T (2022) Anomaly detection in time series: a comprehensive evalua-
tion. Proc VLDB Endow 15(9):1779-1797. https://​doi.​org/​10.​14778/​35385​98.​35386​02,

Shen L, Li Z, Kwok J (2020) Timeseries anomaly detection using temporal hierarchical one-class 
network. In: Larochelle H, Ranzato M, Hadsell R, et  al. (eds) Advances in neural information 
processing systems, vol 33. curran associates, Inc., pp 13,016–13,026, https://​proce​edings.​neuri​
ps.​cc/​paper/​2020/​file/​97e40​1a020​82021​fd249​57f85​2e0e4​75-​Paper.​pdf

Sivaraks H, Ratanamahatana C (2015) Robust and accurate anomaly detection in ecg artifacts using 
time series motif discovery. Comput Math Methods Med 2015:45314. https://​doi.​org/​10.​1155/​
2015/​453214

Su Y, Zhao Y, Niu C, et  al. (2019) Robust anomaly detection for multivariate time series through 
stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD international 
conference on knowledge discovery and data mining. Association for computing machinery. New 
York. KDD ’19, p 2828-2837, https://​doi.​org/​10.​1145/​32925​00.​33306​72,

Tatbul N, Lee TJ, Zdonik S, et al. (2018) Precision and recall for time series. In: Bengio S, Wallach 
HM, Larochelle H, et  al. (eds) Advances in neural information processing systems 31: annual 
conference on neural information processing systems 2018. NeurIPS 2018, December 3-8, 2018, 
Montréal, Canada, pp 1924–1934, https://​proce​edings.​neuri​ps.​cc/​paper/​2018/​hash/​8f468​c873a​
32bb0​619ea​eb205​0ba45​d1-​Abstr​act.​html

https://www.usenix.org/conference/atc21/presentation/ma
https://www.usenix.org/conference/atc21/presentation/ma
https://doi.org/10.1007/978-981-15-1773-0_28
https://doi.org/10.1007/978-981-15-1773-0_28
https://doi.org/10.1016/j.actaastro.2022.06.026,
https://doi.org/10.1016/j.actaastro.2022.06.026,
http://www.sciencedirect.com/science/article/pii/S0094576522003162
https://doi.org/10.3390/s20133738
https://doi.org/10.1145/3292500.3330871
https://doi.org/10.14778/3551793.3551830
https://doi.org/10.14778/3551793.3551830
https://doi.org/10.14778/3529337.3529354
https://doi.org/10.14778/3529337.3529354
https://doi.org/10.1109/LRA.2018.2801475
https://doi.org/10.1109/LRA.2018.2801475
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1145/3292500.3330680
https://doi.org/10.1145/3292500.3330680
https://doi.org/10.48550/arXiv.2212.11080
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.48550/arXiv.2008.05788
https://doi.org/10.14778/3538598.3538602
https://proceedings.neurips.cc/paper/2020/file/97e401a02082021fd24957f852e0e475-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/97e401a02082021fd24957f852e0e475-Paper.pdf
https://doi.org/10.1155/2015/453214
https://doi.org/10.1155/2015/453214
https://doi.org/10.1145/3292500.3330672
https://proceedings.neurips.cc/paper/2018/hash/8f468c873a32bb0619eaeb2050ba45d1-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/8f468c873a32bb0619eaeb2050ba45d1-Abstract.html


1068	 S. Sørbø, M. Ruocco

1 3

Tuli S, Casale G, Jennings NR (2022) Tranad: deep transformer networks for anomaly detection in mul-
tivariate time series data. Proc VLDB Endow 15:1201–1214. https://​doi.​org/​10.​48550/​arXiv.​2201.​
07284

Wang Y, Han L, Liu W et al (2019) Study on wavelet neural network based anomaly detection in ocean 
observing data series. Ocean Eng. https://​doi.​org/​10.​1016/j.​ocean​eng.​2019.​106129

Wang X, Pi D, Zhang X et al (2022) Variational transformer-based anomaly detection approach for multi-
variate time series. Measurement. https://​doi.​org/​10.​1016/j.​measu​rement.​2022.​110791

Wang Y, Du X, Lu Z et al (2022) Improved lstm-based time-series anomaly detection in rail transit opera-
tion environments. IEEE Trans Indust Inform 18:9027–9036. https://​doi.​org/​10.​1109/​TII.​2022.​
31640​87

Wu R, Keogh EJ (2021) Ucr_anomalydatasets.pptx, supplemental material to the ucr anomaly archive. 
https://​www.​cs.​ucr.​edu/%​7Eeam​onn/​time_​series_​data_​2018/​UCR_​TimeS​eries​Anoma​lyDat​asets​
2021.​zip, accessed: 2022-11-15

Wu R, Keogh EJ (2022) Current time series anomaly detection benchmarks are flawed and are creating 
the illusion of progress (extended abstract). In: 2022 IEEE 38th international conference on data 
engineering (ICDE), pp 1479–1480, https://​doi.​org/​10.​1109/​ICDE5​3745.​2022.​00116

Xu H, Chen W, Zhao N, et al. (2018) Unsupervised anomaly detection via variational auto-encoder for 
seasonal kpis in web applications. In: Proceedings of the 2018 world wide web conference. Inter-
national world wide web conferences steering committee, republic and canton of Geneva. CHE, 
WWW ’18, p 187-196, https://​doi.​org/​10.​1145/​31788​76.​31859​96,

Xu H, Wang Y, Jian S, et al. (2022) Calibrated one-class classification for unsupervised time series anom-
aly detection. CoRR abs/2207.12201. https://​doi.​org/​10.​48550/​arXiv.​2207.​12201,

Zhang CK, Li SZ, Zhang H, et  al. (2020) Velc: A new variational autoencoder based model for time 
series anomaly detection. arXiv:​1907.​01702

Zhang M, Li T, Shi H, et al. (2019) A decomposition approach for urban anomaly detection across spati-
otemporal data. In: Kraus S (ed) Proceedings of the twenty-eighth international joint conference on 
artificial intelligence, IJCAI 2019, Macao. August 10-16, 2019. ijcai.org, pp 6043–6049, https://​doi.​
org/​10.​24963/​ijcai.​2019/​837,

Zhang C, Song D, Chen Y, et al. (2018) A deep neural network for unsupervised anomaly detection and 
diagnosis in multivariate time series data. ArXiv abs/1811.08055. https://​doi.​org/​10.​1609/​aaai.​
v33i01.​33011​409

Zhang J, Wu D, Boulet B (2021) Time series anomaly detection for smart grids: A survey. 2021 IEEE 
electrical power and energy conference (EPEC) pp 125–130. https://​doi.​org/​10.​1109/​EPEC5​2095.​
2021.​96217​52

Zhao H, Wang Y, Duan J, et al. (2020) Multivariate time-series anomaly detection via graph attention 
network. In: 2020 IEEE international conference on data mining (ICDM), pp 841–850, https://​doi.​
org/​10.​1109/​ICDM5​0108.​2020.​00093

Zhou B, Liu S, Hooi B, et al. (2019) Beatgan: Anomalous rhythm detection using adversarially generated 
time series. In: International joint conference on artificial intelligence, https://​doi.​org/​10.​24963/​ijcai.​
2019/​616

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.48550/arXiv.2201.07284
https://doi.org/10.48550/arXiv.2201.07284
https://doi.org/10.1016/j.oceaneng.2019.106129
https://doi.org/10.1016/j.measurement.2022.110791
https://doi.org/10.1109/TII.2022.3164087
https://doi.org/10.1109/TII.2022.3164087
https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018/UCR_TimeSeriesAnomalyDatasets2021.zip
https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018/UCR_TimeSeriesAnomalyDatasets2021.zip
https://doi.org/10.1109/ICDE53745.2022.00116
https://doi.org/10.1145/3178876.3185996
https://doi.org/10.48550/arXiv.2207.12201
http://arxiv.org/abs/1907.01702
https://doi.org/10.24963/ijcai.2019/837
https://doi.org/10.24963/ijcai.2019/837
https://doi.org/10.1609/aaai.v33i01.33011409
https://doi.org/10.1609/aaai.v33i01.33011409
https://doi.org/10.1109/EPEC52095.2021.9621752
https://doi.org/10.1109/EPEC52095.2021.9621752
https://doi.org/10.1109/ICDM50108.2020.00093
https://doi.org/10.1109/ICDM50108.2020.00093
https://doi.org/10.24963/ijcai.2019/616
https://doi.org/10.24963/ijcai.2019/616

	Navigating the metric maze: a taxonomy of evaluation metrics for anomaly detection in time series
	Abstract
	1 Introduction
	2 Background
	2.1 Thresholding
	2.2 Traditional evaluation metrics

	3 Method
	4 Properties
	4.1 Valuation Properties
	4.2 Intrinsic properties
	4.3 Properties not included

	5 TSAD evaluation metrics: a taxonomy
	5.1 Binary evaluation metrics
	5.1.1 Point-wise
	5.1.2 Adjusted point-wise
	5.1.3 Redefined
	5.1.4 Redefined Precision and Recall
	5.1.5 Other

	5.2 Non-binary evaluation metrics
	5.2.1 Precision at K ( )
	5.2.2 Binary metrics with optimal threshold
	5.2.3 Area under the curve (  , )
	5.2.4 Volume under the surface (  , )


	6 Case studies
	6.1 Binary cases
	6.1.1 Partial detection vs covering
	6.1.2 Effect of anomaly length
	6.1.3 Preference for short predicted anomalies
	6.1.4 Score as a function of position of the predicted event

	6.2 Non-binary cases
	6.2.1 Effect of anomaly length
	6.2.2 Preference for short predicted anomalies
	6.2.3 Partial detection versus covering
	6.2.4 Temporal tolerance
	6.2.5 Effect of class imbalance


	7 Categorization
	8 Conclusion
	Acknowledgements 
	References




