
The Journal of Systems & Software 200 (2023) 111649

D
M
a

b

c

d

t
p
O
d
c
w
o
m
2
p
d
o

(
(
a

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

In practice

Decentralized decision-making and scaled autonomy at Spotify✩

arja Šmite a,∗, Nils Brede Moe b, Marcin Floryan c, Javier Gonzalez-Huerta a,
ichael Dorner a, Aivars Sablis d

Blekinge Institute of Technology Karlskrona, Sweden
SINTEF Trondheim, Norway
Spotify Stockholm, Sweden
SAF Tehnika JSC Riga, Latvia

a r t i c l e i n f o

Article history:
Received 5 April 2022
Received in revised form 13 December 2022
Accepted 13 February 2023
Available online 15 February 2023

Keywords:
Scaling agile
Scaled autonomy
Enabling constraints
Coordination
Large-scale software development
The Spotify model

a b s t r a c t

While modern software companies strive to increase team autonomy to enable them to successfully
operate the piece of software they develop and deploy, efficient ways to orchestrate the work of
multiple autonomous teams working in parallel are still poorly understood. In this paper, we report
how team autonomy is maintained at Spotify at scale, based on team retrospectives, interviews
with team managers and archival analysis of corporate databases and work procedures. In particular,
we describe how managerial authority is decentralized through various workgroups with collective
authority, what compromises are made to team autonomy to ensure alignment and which team-related
factors can further hinder autonomy. Our findings show that scaled autonomy at Spotify does not
mean anarchy, or unlimited permissiveness. Instead, squads are expected to take responsibility for
their work and coordinate, communicate and align their actions with others, and comply with a few
enabling constraints. Further, squads take many decisions independently without management control
or due to collective efforts that bypass formal boundary structures. Mechanisms and strategies that
enable self-organization at Spotify are related to effective sharing of the codebase, achieving alignment,
networking and knowledge sharing, and are described to guide other companies in their efforts to scale
autonomy.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As the size, complexity, and diversity of today’s software con-
inues to grow, and the pace of change increases, software com-
anies seek new ways to orchestrate their activities efficiently.
ne of the trends that helps to deal with these challenges is
e-bureaucratization, which marks the journey towards creating
omplex jobs within simple organizations instead of simple jobs
ithin complex organizations (de Sitter et al., 1997). As a result,
rganizational decentralization has in the recent decade gained
ainstream consideration (Hackman, 1986; Lee and Edmondson,
017; Olsson and Bosch, 2016). The steps taken by the com-
anies to organize less hierarchically range from a situational
elegation of authority to the radical company-wide formally rec-
gnized elimination of authority-over relationship between the

✩ Editor: Marcos Kalinowski.
∗ Corresponding author.

E-mail addresses: Darja.Smite@bth.se (D. Šmite), Nils.B.Moe@sintef.no
N.B. Moe), MFloryan@spotify.com (M. Floryan), Javier.Gonzalez.Huerta@bth.se
J. Gonzalez-Huerta), Michael.Dorner@bth.se (M. Dorner),
ivars.sablis@saftehnika.com (A. Sablis).
https://doi.org/10.1016/j.jss.2023.111649
0164-1212/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
management and subordinates (Lee and Edmondson, 2017). How-
ever, a common understanding of how complex interdependent
work can be accomplished effectively at scale in the absence of
managerial authority remains scarce (Lee and Edmondson, 2017).

Attempts to decentralize decision-making result in the need
to practically support autonomy on the operational level, which
in software companies means that more autonomy is given to
teams. How much autonomy shall be given under which cir-
cumstances is still an open debate (Moe et al., 2021). Traditional
agilists claim that team autonomy means that teams should be
allowed to decide how to best accomplish their work (Sutherland
and Schwaber, 2013). To achieve this, teams need to take up
responsibility and be accountable, monitor their performance,
manage and improve ways of working, and actively search for
missing knowledge, or in other words, self-manage (Hackman,
1986). Many argue that teams shall have a broader authority
than just the control over their own process. In practice, teams
need a mandate over planning their work, assuring work qual-
ity, recruiting and dismissing members, or even suggesting new
product ideas (Hackman, 1986) and making decisions with eco-
nomic consequences (Guzzo and Dickson, 1996). Research into
team autonomy suggests that members of autonomous teams
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2023.111649
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111649&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:Darja.Smite@bth.se
mailto:Nils.B.Moe@sintef.no
mailto:MFloryan@spotify.com
mailto:Javier.Gonzalez.Huerta@bth.se
mailto:Michael.Dorner@bth.se
mailto:aivars.sablis@saftehnika.com
https://doi.org/10.1016/j.jss.2023.111649
http://creativecommons.org/licenses/by/4.0/


D. Šmite, N.B. Moe, M. Floryan et al. The Journal of Systems & Software 200 (2023) 111649

a
m
t
B
i
d
c
o
c
a
2
a
b
2
s
a
f
s
s
r
Y
i
m

S
w
e
t

2

v
f
g
s
t
S
b
a
t
w
e
a
s
g
w
s
a
c

m
d
t
g
c
a
h
Š
d
a
c
s
t
A
c

re happier, more innovative, more engaged, more motivated,
ore productive, more accurate and able to solve more complex

asks than manager-led teams (Janz et al., 1997a; Cohen and
ailey, 1997; Langfred, 2007; Bernstein et al., 2016). Autonomy
mproves the quality of work life (Kalliamvakou, 2017); purpose-
riven, responsible individuals do not want to be managed or
ontrolled (Rey et al., 2019). Yet, enabling the autonomous work
f multiple teams working in parallel (autonomy at scale) is a
hallenge due to coordination complexity (Bernstein et al., 2016)
nd having too many dependencies between teams (Moe et al.,
021), and is sometimes referred to as a matter of managerial
rt and science (Mankins and Garton, 2017). The notion of ‘‘the
oundaries of needed coordination and alignment’’ (Rey et al.,
019) are said to be those absolutely necessary. However, con-
trained autonomy is not well researched. Besides, self-centered
utonomy can suffer from the association with ambiguity, inef-
iciencies, organizational chaos (Mankins and Garton, 2017) or
imply opportunistic behavior. Therefore, some researchers as-
ociate autonomy with the freedom to make decisions and the
esponsibility over the completion of work (Janz et al., 1997b).
et, the practical advice for how to distribute decision-making
n a large organization and enable autonomy at scale are still
issing.
In this article, we describe organizational decentralization at

potify, the new generation agile company with iconic ways of
orking that promote team autonomy and employee empow-
rment and attempt to understand the mechanisms that enable
eam autonomy at scale.

. Background: Spotify squads

Spotify, the world-leading provider of music streaming ser-
ices, evolved its own ways of working, which became iconic
or many new-generation agile organizations. The culture of en-
agement and teamwork is emphasized in the organizational
tructures of Spotify and the unique terminology used to describe
hem (squads, tribes, missions). Squads are engineering teams at
potify, which were initially set up to feel like mini start-ups,
e highly cross-functional and self-organized (Smite et al., 2019)
nd be able to prototype, test, code, deploy, operate, and A/B
est features and services independently of each other. A squad
ould typically employ a mixture of backend engineers, web
ngineers, and data scientists to ensure the ability to develop
nd deliver end-to-end functionality. However, there are also
pecialized squads with only backend engineers or only web en-
ineers. Spotify is a purpose-driven organization (Rey et al., 2019)
ith missions (business areas) as organizational units that unite
everal tribes (departments) working in a particular functional
rea. Missions are formed to be independent and, if possible,
o-located, to ease the coordination and decision-making.
In the spring of 2020, Spotify employed ∼500 squads in six

issions (business areas) divided into ∼50 tribes (departments)
eveloping and maintaining thousands of services, mobile fea-
ures and data pipelines. As the company and its product portfolio
rew in size and complexity, maintaining autonomy became in-
reasingly difficult. Some organizational structures have been
bandoned (such as chapters Mankins and Garton, 2017), some
ave decreased in popularity (such as guilds Smite et al., 2019;
mite et al., 2020), and some new structures have been intro-
uced (such as missions). Yet, no organizational restructuring
lone can alleviate the need for cross-squad collaboration and
oordination. In the following two examples, we illustrate the
cale of cross-squad coordination. Fig. 1 shows the number of
echnical dependencies in a network of backend microservices.
squad working with the backend may own one or more mi-

roservices. Few are isolated (see the periphery of the graph).
2

Fig. 1. Network of backend microservice dependencies. Every node is a service,
every edge is a direct call obtained from the service catalog and service discovery
data.

Fig. 2. Task dependencies between squads. Every node is a squad, every edge
represents one or multiple GitHub pull requests connecting the squad authoring
a pull request with a squad that owns the repository.

The majority are interrelated, often with services owned by other
squads (see the center of the graph). Cross-squad work coor-
dination may be resolved by requesting the owner squad to
make the changes in their microservices (or other type of code),
or by suggesting the changes in a pull request. Fig. 2 shows
the network of such cross-squad pull requests accounting 435
author-reviewer combinations. In one year (2019), each squad,
on average (mean) interacted with 26 other squads, which shows
that squads perform highly interdependent work and contribute
to many repositories owned by others.

To know how Spotify enables squad autonomy on a large
and continuously increasing scale and what challenges they face,
we looked at how work execution is organized. We asked six
squads responsible for deploying features or services about their
perception of autonomy, executed authority and its constraints,
mechanisms enabling the work execution and barriers to their
autonomy.

3. Details of the research study

To understand team autonomy at scale, we conducted an
exploratory single-case study (Runeson et al., 2012) at Spotify,



D. Šmite, N.B. Moe, M. Floryan et al. The Journal of Systems & Software 200 (2023) 111649

s
a

t
b
t
w
s
m
s
c
a
w

W
a
(
c
o
t
p
m
s
c
i
i

Table 1
Profile of the studied squads.
Squads Location Short

description
Members Key reflections on own autonomy

(based on direct squad member quotes from the retrospectives)

Total New hires Consultants

Alpha Sweden Well-performing 7 2 2 ‘‘. . .We are a part of designing our future – what and how we build. It’s not
someone else, WE are defining it’’.

Beta Sweden Challenged,
recently
redesigned

7 2 3 ‘‘There is a lack of skills, confidence or competence, also resources, to do
something’’; ‘‘We have a this-has-always-worked syndrome’’; ‘‘There is no one
single person who owns the process and drives it, but it has become better in
the last two months’’; ‘‘I agree. Don’t you think it has to do with [Squad
Manager] who joined us?’’

Gamma Sweden Well-performing,
somewhat
unstable

6 3 – ‘‘Vision and mission for the squad is defined by ourselves. We sit together and
decided what we want to do. People want us to own more stuff, but it’ up to
us to keep the scope’’.

Delta Sweden Challenged,
recently
redesigned

8 2 – ‘‘Difficult for a team to be autonomous, a lot of politics go around – manager
often helps with that’’; "We can’t do everything ourselves. Architecture does
not support that. Autonomy ends at the boundary of our turf’’.

Epsilon USA Well-performing,
recently
established

8 3 – ‘‘We can only be as good as are the parts we depend on. [We need to] keep
track of the health of dependencies’’.

Zeta USA Newly
established

5 1 – ‘‘To truly be autonomous we need to remove all dependencies, which is an
idealistic idea. If we were a small company, we would be able to have control
of the tech stack, do more work, own more work, make decisions about our
work ourselves. Dependencies hinder the ability to control our own destiny’’.
based on qualitative and quantitative data from various sources,
including:

• Squad retrospectives conducted with squad members,
• Interviews with squad managers,
• Social network analysis survey,
• Archival analysis,
• Process and organizational descriptions from the internal

blog.

The objective of our research was to understand the degree of
quad autonomy in a large-scale environment, barriers to squad
utonomy, and mechanisms that help enable autonomy at scale.
Analysis of the perception of squad autonomy, executed au-

hority and its constraints, and barriers to squad autonomy is
ased on the data gathered through interviews and retrospec-
ives. In May, October and December 2019, we ran retrospectives
ith six squads (here called Alpha, Beta, Gamma, Delta, Ep-
ilon and Zeta, see Table 1) and interviewed their engineering
anagers (managers of five out of six squads). Squads were
elected by convenience sampling with a prerequisite to have
hallenged or recently formed squads (Alpha, Gamma and Zeta)
nd well-performing squads (Beta, Delta and Epsilon). Squads
ere recruited through the call for volunteers.
Retrospectives followed a structured 2,5-hours long agenda.
e asked participants to individually report and later discuss en-

blers and hindrances to the squads’ autonomy in a DAKI format
Drop-Add-Keep-Improve) (Caroli and Caetano, 2020) and dis-
ussed the squads’ dependencies (coordination with experts and
ther squads, meeting fora for work coordination). Researchers
ook detailed close-to-transcript notes (later verified with the
articipants) and recorded the drawings. Interviews with squad
anagers focused on gathering general information about the
quads and the work they are assigned to do, as well as dis-
ussing squad performance and factors affecting the squads’ abil-
ty to execute their work. Detailed notes were taken during these
nterviews for further analysis.

The qualitative analysis started by identifying the level of
squad authority and the distribution of managerial authority.
Two first authors performed thematic coding of the detailed

notes from team retrospectives and interviews with the four core

3

themes based on the levels of authority suggested by Hackman
(1986) and the decision-making authority being squads and man-
agers (Hackman, 1986; Lee and Edmondson, 2017). For example,
the following squads’ member statements were assigned three
codes [Squad-made decision], [Squad’s task execution] and [How
to implement features/ services] – ‘‘I like that we can control
and decide how we plan our sprints. We have a lot of control’’
and ‘‘What and how we build – it’s not someone else, we are
defining it ourselves’’ . During the analysis, however, we decided
to extend the primary themes that were based on the binary
view of authority decentralization suggested by Hackman (1986)
and followed by Lee and Edmondson (2017). Instead of squad-
made vs management-made decisions, we also coded decisions
made by the management in consultation with the squads, by the
management based on squads’ recommendations or input, by the
squads in consultation with the management, and, finally, what is
more important, we identify the area of collective responsibility,
which is one key extension of the current literature. For example,
the following quotations were coded as [Collective responsibility],
[Squad’s task execution], [Constrained choice of technology], and
[Hindering factor]: ‘‘A single authority that says what we should
use – it’s anti autonomy. We should be able to make such decisions
inside the squad’’ , and ‘‘We need to standardize across squads. Stan-
dardization makes us more autonomous, because the policy applies
to everyone – it is therefore both adds and hinders autonomy’’ .

Next, codes from different squads were compared to deter-
mine whether levels of authority were perceived by all squads
similarly or depended on some squad characteristics or the con-
text. For example, a squad working on less prioritized tasks
affected its ability to recruit members, in other words, to design
its organizational context, as evidenced in the following quotation
‘‘Hard to advertise this squad, hard to prioritize, so candidates came
top down’’ in contrast to another squad’s experience: ‘‘We are
not in control of the headcounts. I am fine with that. But we are
in control of the competences we need’’ . The result of these steps
of qualitative analysis was used to draft our understanding of
authority distribution at Spotify, which was then combined with
the process and organizational descriptions from the internal
blog and verified with the representatives from the company
management to derive the designed distribution of authority

(Fig. 3).



D. Šmite, N.B. Moe, M. Floryan et al. The Journal of Systems & Software 200 (2023) 111649

a
i
t
o
S
c
u
w

p
a
m
p
w
i
w
f
m
a
t
f
p
s
e
p
t
2
2
c
c
r
n
r
r
A
u
m
t

a

Fig. 3. Level of decentralization of authority by decision area.
Finally, we performed thematic coding of factors that hinder
nd enable squad autonomy based on squad retrospectives and
dentified barriers related to the squad characteristics and contex-
ual factors that emerged in the comparative analysis of the levels
f authority across squads. Barriers to autonomy are discussed in
ection 5 and summarized in Fig. 5, while the enabling factors
ombined with the process and organizational descriptions were
sed to derive Spotify’s practices to foster autonomy at scale,
hich are discussed in Section 6.
To capture squad interactions (see Fig. 6), we asked partici-

ants of the retrospectives to report important work connections,
s many as they determined necessary, in a ‘‘free-recall’’ for-
at. This was operated as a web-based survey distributed to all
articipants after the retrospective. Respondents recorded each
ork connection as a separate entry in the personal Google sheet,

ncluding the contact’s name, the content of each connection
ith an ability to select knowledge received, knowledge trans-

erred, work-related information received, work-related infor-
ation transferred, administrative information received and/or
dministrative information transferred. Further, for each iden-
ified contact, the participants also provided an answer on the
requency of coordination with the selected contact using the 5-
oint Likert scale (from Rarely to Sometimes to Every day). Our
urvey partially replicated a questionnaire conducted by Manteli
t al. (2014). We followed a ‘‘realist’’ approach and relied on
erceived individual networks, which are believed to correspond
o the actual boundaries of social groups (Lee and Edmondson,
017), and used to identify social networks before (Šmite et al.,
017; Manteli et al., 2014). To construct the networks, we first
ompleted the list of recalled contacts from all respondents and
larified these with company representatives to verify the names,
oles in the company, and location. We visualize four squad
etworks, omitting two squads (Epsilon and Zeta) because of low
esponse rate. In the four squads, 21 of the 28 squad members
eturned the survey (75% response rate, ranging from 60% for
lpha to 88% for Gamma). Social networks were then visualized
sing the Fruchterman–Reingold layout algorithm (Lee and Ed-
ondson, 2017) based on the squad members, their contacts that

hey recalled and reported connections.
The quantitative analysis focused on illustrating our findings

nd demonstrating the internal validity or applicability of the
4

findings across the company and beyond the squads included in
the qualitative analysis. We start by illustrating the complexity of
the work environment and cross-squad dependencies at Spotify
in an image of backend services (Fig. 1) containing direct calls
extracted from the service catalog and service discovery data,
illustrating interdependencies and indirectly showing the level
of work coupling on a company level. Next, we drew a network
of task dependencies for squads based on the data extracted
from the GitHub Enterprise (see Fig. 2). We used all 87,606 pull
requests (PRs) from 2019, from which we excluded all squad-
internally reviewed pull requests (44,36%), as we are interested
in the cross-squad collaboration. In the network, we visualized
unique author-reviewer combinations as the edges (total of 5659)
and squads as the nodes (total of 435). This was done to show
that the studied squads’ coordination needs are not unique. The
abovementioned data sources were provided by the company
representatives. We have, therefore, not extracted them system-
atically or in connection to the studied squads. Next, using data
from the employee database, we visualized the proportion of
managers in the company to all employees in the engineering
departments from 2018-01 to 2021-09 (see Fig. 4) to support
the claim that managerial overhead in Spotify is relatively low
despite the organizational growth. Finally, we drew another net-
work illustrating mutual help and information exchange based
on the data extracted from the Q&A system built as a corporate
StackOverflow instance for the period between 2018-11-26 (the
start of its use) and 2019-12-11, in which we connected question
authors, respondents and commentators. In total, we have pro-
cessed 2428 questions, 3112 responses and 3684 comments from
929 users (see Fig. 7). Here we show the company-wide use of one
strategy we recommend as a mechanism supporting autonomy at
scale.

The quantitative materials are used to understand the internal
validity of our results and the representativeness of what we find
in the studied squads in the context of the entire company. In
other words, through the qualitative analysis we understand the
level of autonomy that squads have and squad experiences with
cross-squad alignment and collaboration, and through the quanti-
tative analysis we understand how representative these needs for
alignment and collaboration and mechanisms that support scaled
autonomy are.



D. Šmite, N.B. Moe, M. Floryan et al. The Journal of Systems & Software 200 (2023) 111649

l
c
s
t
c

S
t
t
p
t
a
a
e
s
s
f
t
m
s
n
d

Fig. 4. Proportion of employees with the managerial role in the engineers
departments.

4. Results – Decentralization of authority

We start by describing the level of autonomy and managerial
authority based on the squad testimonies, followed by an outline
of the planned distribution of managerial authority that combines
the squad insights with the managers’ testimonies and process
and organizational descriptions (Fig. 3).

4.1. What do Spotify managers decide?

Autonomy and self-management are paramount for Spotify
and are associated with empowerment, one of the core values
that is believed to be the foundation of fast-paced product de-
velopment and innovation and signs of humanistic, participatory
management (Lee and Edmondson, 2017; Rey et al., 2019). Squads
are given a great deal of authority to take squad-related decisions,
which are only in certain circumstances and areas constrained by
the management (see the level of decentralization of authority
at Spotify by design in Fig. 3). The high level of decentralization
can also be evidenced in the low proportion of the employees
with managerial roles in the engineering departments, which
remains rather stable despite the company growth (see data for
2018–2021 in Fig. 4).

Designing the organizational context high-level decisions re-
ated to organizational design and redesign at Spotify are largely
entralized. Senior management decides how the organization
hould be structured and plans organizational growth. In its turn,
ribe management plans and leads the recruitment efforts, espe-
ially when hiring (and dismissing) managers.

etting overall direction: Strategic decisions regarding the long-
erm vision, directions and key priorities at Spotify are set by
he senior leadership. Further, all Spotify missions and tribes
erform quarterly planning — these decisions are taken by the
ribe leadership in consultation with the individual squads. In
ddition, the senior leadership reviews new initiatives quarterly
nd sets priorities for strategic work, called company bets. For
xample, when Spotify entered the Japanese market, it required
ignificant changes to the core software functions such as the
earch functions and metadata fields, as well as demanding new
unctions such as having karaoke mode. Company strategic ini-
iatives usually involve squads from different tribes and even
issions, and thus require resource allocation outside of the
cope of the squads- or even tribe-focused planning. Such plan-
ing usually starts by approaching squads and including them in

esign discussions and working groups.

5

4.2. What can Spotify squads decide?

When asked to reflect on the squad autonomy, everyone
agreed that squads, in principle, are granted significant author-
ity, even though not all squads felt equally autonomous. The
well-performing squads perceived exploiting higher levels of
autonomy, while the challenged squads were said to be less
autonomous leading to increased management involvement. An
engineer from Gamma explained that to be independent squads
ought to prove their accountability: ‘‘As long as you can show
that you are creating value for the company, the company will
believe in you. People around you will know that what you are
doing [. . . ] is something useful. So, they will let you keep doing it’’.
Besides, squad autonomy also depended on the position of the
squad, and its work in the organization, i.e., how much the squad
is dependent on others and how much others depend on the
squad in terms of technical dependencies and competencies. In
the following, we describe what type of decisions Spotify squads
can take independently, and where their autonomy needs to be
constrained.

Executing squad’s tasks Decisions regarding work execution at
Spotify are fully decentralized and management does not directly
interfere with squad-internal decisions on how to implement
a feature or a service. To a large extent, squads independently
decide how to code a feature or service, with few exceptions such
as where squad autonomy is sacrificed because squads do not
work in isolation, and some decisions must be taken collectively.
The key reasons to constrain squad independence are twofold –
necessity to align on the choices of technology and programming
languages and the necessity to coordinate task dependencies.

Autonomous squads should, in theory, be able to choose the
technology best suited for solving their tasks. However, in prac-
tice, there is a need to align the use of programming languages,
technologies, frameworks, processes, and infrastructure to avoid
maintainability problems and increase the ability to collaborate
and help each other (read about TechRadar, Spotify’s collective
effort to align technical decisions in the next section).

Squads’ freedom is also constrained by the technical depen-
dencies with other squads, which we have found surprisingly
many, despite the company’s attempts to decouple the architec-
ture by design (microservice architecture principles) and by ac-
tion (code ownership principles and continuous re-engineering).
The number of cross-squad and even cross-tribe pull requests
especially in mobile client development (see Figs. 2 and 3) is
huge, and these technical dependencies have been acknowledged
as the major challenge by all studied squads. As an engineer
from Delta stated: ‘‘We can’t do everything ourselves; architecture
does not support that. Autonomy ends at the boundary of our
turf’’, while someone from Zeta noted: ‘‘Dependencies hinder the
ability to control our own destiny’’. Changes in others’ code are
unavoidable, especially on the client-side where there is no good
equivalent to the backend microservice architecture. We learned
that some squads are significantly affected by these uncontrolled
dependencies, as one engineer from Beta explained: ‘‘We write
directly to others’ databases, and others write to ours. Interfaces to
other teams are unspecified. We are stuck in a way, which prevents
us from being independent’’ (read about the ways to coordinate
technical dependencies in the next section).

Monitoring and managing process and progress: Decisions re-
lated to the process management at Spotify are largely decen-
tralized and decisions on how to perform the actual work in
a particular squad are driven by the squad. Planning decisions,
progress monitoring and quality assurance tasks are also all re-
sponsibilities of the individual squads. In our study, we found

that well-performing squads at Spotify actively followed their



D. Šmite, N.B. Moe, M. Floryan et al. The Journal of Systems & Software 200 (2023) 111649

p
d
c
i
d
I
n
s
s
w
t
d
p
c
m
t
f
o
o
o
e
s
t
t
f
b

D
s
A
s
i
m
i
i
s
a
p
a

S
c
t
f
t
s
m
a
w
t
d
t
g
s
s
i
s
a
Y

rogress by gathering and analyzing squad-related performance
ata, which helped to continuously improve their internal pro-
esses. As a member of Alpha explained, ‘‘The [performance] data
s our reference point. We know that work with a lot of depen-
encies takes 2,5 times longer, so what can we do about that?
t gives us a lot more freedom – Let’s try this thing; No, it did
ot really help, so let’s try something different’’. Although not all
quads have such advanced progress data monitoring habits, all
quads mentioned having retrospectives and experimenting with
ays of working, except for one challenged squad, Beta, that felt
hey did not succeed with improvements, as the squad members
escribed ‘‘being focused on something too much, and not seeing
roblems around’’, ‘‘not questioning things’’, and having the so-
alled ‘‘this-has-always-worked syndrome’’. Admittedly, failing to
anage own processes might considerably hinder teams ability

o self-manage (Hackman, 1986). As explained by the members
rom Delta — the squad started out with a clear scope but
ver time received more diverse tasks into their backlog; to
ptimize productivity, each engineer became responsible for their
wn tasks, which decreased teamwork. As a member of Delta
xplained: ‘‘Because we are doing so many different things at the
ame time, it is impossible to replace each other’’. Eventually, in
he absence of reflection and corrective action, the squad had
oo many diverse tasks with urgent priority. Because members
ocused on their own tasks and thus individual goals, joint goals
ecame blurry, and the squad performance suffered.

esigning the organizational context: Many squads have sub-
tantial authority over the recruitment of new squad members.
ny squad can signal the need for more people, which is con-
idered by tribe leadership. The following recruitment process
s typically led by the squad together with their engineering
anager, who also has the authority to remove squad members

f seen necessary. However, not all squads are equally successful
n getting new members. Members of Delta explained that some
quads, like theirs, demand very specific competences, which
re hard to advertise. There might also be differences in how
rioritized and visible the work done in some squads is, which
ffects member recruitment.

etting overall direction: Squad-related strategic decisions in-
lude choosing the squad’s scope of work, prioritizing work in
he backlog, and taking decisions regarding the future of the
eatures and services that a squad owns, which might require
aking decisions with economic consequences (Guzzo and Dick-
on, 1996). The key sources of work tasks for squads include
arket feedback and product development ideas regarding their
rea of responsibility. For example, there is a squad in Spotify,
hich owns ‘‘Spotify experience in the car’’ and together with
heir product manager plans the features and services to be
eveloped or improved. Squads do not independently determine
heir own direction but certainly have a big influence on their
oals and scope. Work planning for the squad is performed in
print planning meetings and is the sole responsibility of the
quad, except for the cases when squads are assigned to strategic
nitiatives, i.e., company bets. Among the squads we studied,
ome reported having a very clear scope with full control over it,
s one explained: ‘‘We sit together and decide what we want to do’’.
et, some squads admitted that their goals are ‘‘too fluffy’’, which

is the consequence of not managing their processes well. The
studied squads explained that internal consensus and clarity in
what the squad owns and commits doing is important to ensure
their accountability. Finally, although squads do not decide which
projects or product areas they work on, they have relatively
6

large freedom to contribute and innovate within the business area
they belong to. However, we learned that high performing squads
desire to contribute more broadly and be even more autonomous
when it comes to cross-company contributions. As someone from
squad Alpha explained, ‘‘We are defined by the mission of what we
do and that sometimes limits us to do more. We could innovate in
different places and do more, but we are limited’’.

4.3. Where are Spotify squads obliged to compromise, align or coor-
dinate?

Autonomy at Spotify is clearly not understood as anarchy.
The studied squads acknowledge that the scaled autonomy starts
with the end-to-end responsibility for their work, which requires
further support in the form of formal rules guiding collective
action. Collective efforts concern the formation of various work-
groups and squad-to-squad interactions that occur naturally, on a
need basis. In what follows, we describe several formalized work
groups and efforts, as well as principles and actions that Spotify
engineers follow to self-organize.

Executing squad’s tasks To support the alignment of the choice
of technologies used by the squads, Spotify established a central
committee of very senior engineers who own the list of ac-
cepted technologies called TechRadar, and a well-defined process
for proposing technologies and trying them out. Anyone can
and is encouraged to suggest new technologies that might be
of interest for the company. In our study, we found that not
everyone agrees with the restrictions that TechRadar implies.
Some members we talked to strongly object to the limitations
of professional freedom, calling this practice an ‘‘anti-autonomy’’.
Yet, many understand the importance of enabling constraints,
e.g., limiting the use of unpopular or unsupported technologies.
In a way, limitations to someone’s autonomy might enable others’
autonomy. They help to be more resilient and avoid being stuck
with the code written in a language that nobody knows, when the
original developers leave or move, and to improve evolvability of
the products, allowing squads to help each other and contribute
to the majority areas of the codebase.

Work coordination across squads and joint decision-making
is also the consequence of selected code ownership principles
followed at Spotify — being allowed to change code owned
by other squads (weak code ownership principles, i.e., taking
responsibility for your code, letting others change it, and keeping
an eye on those changes Fowler, 2006). When the squad’s work
impacts other squads, engineers are expected to consult the oth-
ers either informally or through formalized action. Large changes
are documented in the form of so-called Requests-For-Comment
(RFC) which are sent to a wider audience for feedback, to ensure
that there is an agreement about the emerging changes and de-
pendencies. Smaller changes are handled through the GitHub pull
requests (PRs). The pull requests are typically reviewed by the
owning squad, which is responsible for coordinating the changes
and keeping an eye on the technical health of their code reposito-
ries. In some cases, changes are reviewed by members of a third
squad, not authoring the change or owning the repositories, if
changes are critical or interdisciplinary.

Monitoring andmanaging process and progress: Spotify culture
and ways of working are embedded in the organizational de-



D. Šmite, N.B. Moe, M. Floryan et al. The Journal of Systems & Software 200 (2023) 111649

s
c
r
e
a
C
o
o
w
b
l
t
b
i
T
i
W
c
o
p
b
s
a
m
b
c
c

D
b
m
t
n
m
m
m
r
r

t
a
c
t
e
n

S
i
t
a
g
l
l
p
C
b
d

5

a
s
a
c
t
p

ign. Our previous research at Spotify illuminates the workgroups
alled guilds that collectively monitor domain- or technology-
elated practices and discuss the needed improvements (Smite
t al., 2019; Šmite et al., 2020). For example, processes of quality
ssurance are discussed in the quality guild, while web guild and
++ guild are concerned with the questions related to practices
f programming in a particular language or technology, many
f which also maintain active support channels to help those
ith questions. A template for squad retrospectives developed
y the agile guild is an example of a concrete outcome of col-
ective efforts. Beside the guilds, there are other collective efforts
hat emerge on a need basis, such as ‘‘Friday-feels’’ circles that
ring together managers, or book clubs where interested partic-
pants discuss insights and applicability of ideas from literature.
he outcomes of these groups often provide recommendations for
mproving various work processes. For example, the No-meeting-
ednesday initiative, which emerged in response to numerous

omplaints and discussions during the COVID-19 pandemic time
f working from home. New processes and practices are usually
iloted by the dedicated workgroups and recommended for a
roader use if found valuable. The results of pilot studies are
pread in the company through various means, internal blog posts
nd presentations at various group meetings being the most com-
on ones. Whether the suggested new practices will be followed
y the squads largely depends on the level of social integration,
uriosity, and awareness of the individual squad members of the
ollective initiatives.

esigning the organizational context: As a typical post-
ureaucratic organization (Burns and Stalker, 1961), Spotify pro-
otes network structures of control, authority, and communica-

ion, as evidenced in the presence of collective control mecha-
isms. Various workgroups and groups of interest, such as com-
unities of practice called guilds (Smite et al., 2019) or the
anagement support group called ‘‘Friday feels’’ emerge and self-
anage primarily by collective efforts. When groups are formally

ecognized, they often are mandated to make certain decisions or
ecommendations to the leadership.

When it comes to solving squad-centered experience or exper-
ise gaps, it is not uncommon to mutually agree on a solution with
nother squad, i.e., borrowing and lending members (the practice
alled ‘‘embedding’’, usually associated with member mobility for
hree months). These decisions are often initiated by individual
ngineers who want to increase their competence or squads who
eed resources approved by engineering managers.

etting overall direction: Although Spotify workgroups described
n our work are not mandated to make strategic decisions or set-
ing overall direction, they are encouraged to voice their opinion
nd bring to light the operational evidence as input to strate-
ic work. Examples of collective efforts that reached strategic
evel include the inclusion of Rust, an emerging programming
anguage, into the TechRadar as a result of curiosity-based ex-
eriments, and subsequent hands-on experiments (PoCs) in the
++ guild, and a bottoms-up initiative to set-up support for
uild systems for web components that led to the creation of a
edicated team that rolled this initiative out for all of Spotify.

. Discussion

In this paper, we presented the perceptions of squad authority
nd the levels of organizational decentralization by design. In this
ection, we discuss first discuss the factors that hinder squad
utonomy based on the analysis of the squad testimonies, their
haracteristics and contextual factors that affected the ability of
he squads to exploit the designed levels of authority. We then

resent the strategies for enabling autonomy at scale based on

7

the various forms of organizational authority decentralization
and support. We use the results of quantitative analysis of the
squad self-reported social networks and information sharing net-
works from internal systems to further illustrate and support our
recommendations.

5.1. Barriers to Squad autonomy

Here, we present the factors that were pointed out as bar-
riers to squad autonomy, which we mapped to the levels of
authority (Hackman, 1986) (see a summary in Fig. 5).

Our results demonstrate that despite the efforts to decen-
tralize the organization by design, squads’ autonomy might be
limited by factors beyond managerial control. For example, the
squad immaturity (lack of knowledge redundancy, lack of compe-
tence) negatively impacts autonomy. This is consonant with the
related work that associates autonomy not only with the free-
dom to make decisions, but also with the responsibility over the
completion of work (Janz et al., 1997b) and work that links team
independence with the self-sufficiency in skills (Kalliamvakou,
2017). Autonomy and responsibility are also found to be a source
of stress (Grant and Parker, 2009). In our study, we found auton-
omy to cause pressure related to the necessity to coordinate the
work and manage mutual dependencies.

Another large group of barriers to squad autonomy is rooted
in injured teamwork and failure to self-manage (too broad scope,
unclear goals, missing process improvements, lack of process for
getting things done, poor onboarding).

Some context factors (lack of control over recruitment, team
instability) can also negatively affect squad autonomy.

While previous factors were related to the squads internal
doing, another group of factors that hindered autonomy at scale
relates to technical, human and task dependencies. Barriers here
contain architectural and legacy constraints, technical debt, the
need to compromise with old systems and clients, and undoc-
umented tribal knowledge. Evidently, despite the architectural
decoupling (microservices) which has been previously found to
enable independence (Kalliamvakou, 2017; Jamshidi et al., 2018),
we found that the implementation of code ownership also mat-
ters. We learned that weak ownership principles lead to squads
depending on others and the success of cross-squad collaboration
depends on the social integration of individual squad members in
the organizational network, which has been also pointed out in
other studies related to large-scale software development (Šmite
et al., 2017). Finally, work on interactive parts of the system used
by others (referred to as increased visibility) means that squads
receive many questions and requests for code review, limiting
their autonomy. Interestingly, while mandatory code reviews in
related studies are found to be related to increased coordination,
they are also related to aligning the team internal practices with
those of other teams’ (Kalliamvakou, 2017).

Finally, we learned that the lack of squad autonomy does not
only affect the squad concerned; when working at scale it also
affects other squads as a chain reaction, which we refer to as
the chain of autonomy. This is especially evident when squads
are hindered by task dependencies with many incoming requests
for code reviews or code changes. When coupled with the lack
of experience or competence, squads are likely to be congested
(when arrival of tasks exceeds the ability to close them), and this
is found to also cause the congestion in the whole network (Can-
tor et al., 2016). The concepts of the chain of autonomy and
network congestion indirectly substantiate Bungay’s argument
that increased alignment increases the autonomy an organization
can grant (Bungay, 2011). Our research further shows that when
teams’ capabilities or goals are not aligned (as often the case in a
growing organization), it is hard to rely on the designed level of
autonomy.



D. Šmite, N.B. Moe, M. Floryan et al. The Journal of Systems & Software 200 (2023) 111649

w
o
i
s
t
c
o
s
t
r
n
t
b
t

S
m
d
m
o
b
c
a

Fig. 5. Barriers to Squad Autonomy.

5.2. Strategies for autonomy at scale

In this section, we outline the mechanisms that help Spotify
address many of the aforementioned challenges and to orches-
trate the interdependent work of hundreds of autonomous squads
while keeping organizational control to a minimum.

5.2.1. Strategies for sharing the codebase
Like in related studies that suggest that large-scale collabo-

ration requires practices that are more typical for open-source
software projects such as reduced communication, independent
work, and self-organization enabled through GitHub (Ingvaldsen
and Rolfsen, 2012), we also found code maintenance in GitHub
as an important coordination mechanism. In the following, we
present two practices that were found essential to enable effec-
tive collaboration on the codebase with increased autonomy.

Formalized code ownership To ensure that squads can have
end-to-end responsibility for the developed functionality and
minimize the handovers, Spotify engineers are allowed to change
code owned by other squads, following weak code ownership
principles (Fowler, 2006) (as opposed to collective code ownership
which is equivalent to no ownership or strong code ownership,
hich often challenges the end-to-end responsibility allocation
n a functional level). We found that formalizing code ownership
n general is a prerequisite for the well-functioning of the cross-
quad collaboration at scale. When a piece of code has an owner,
here is a clear point of contact for those with questions and a
lear quality guard when changes emerge. The absence of code
wners hinders squads, as a member of Gamma explained, ‘‘Some
ystems are not owned by anyone. If you need something from
hem it’s impossible to get any help’’. Code changes are typically
eviewed by the owning squad, which is responsible for coordi-
ating the changes and keeping an eye on the technical health of
heir code repositories. In some rare cases changes are reviewed
y members of a third squad, not authoring the change or owning
he repositories, if changes are critical or interdisciplinary.

elf-managing code ownership: Unfortunately, it is not uncom-
on that weak code ownership leads to slow pull request han-
ling and bottlenecks and slows the squads’ progress down. As a
ember of Alpha explained: ‘‘We are waiting for others to review
ur stuff. In the team we are quite quick to review [internal PRs]
ecause we can talk physically, but other teams can be quite slow be-
ause they have their focus. You have to poke them a lot sometimes’’;

nd another member admitted ‘‘If someone puts a PR in our stack,

8

it takes 4–5 days before they are done. [...] It’s too slow and we are
delaying it because... I don’t know why’’. Many agree that this could
be addressed by establishing better ‘‘contracts’’ between squads
specifying mutual expectations and responsibilities, or just better
processes for getting the pull requests done (e.g., dedicating time
every morning to unblocking others). To optimize the depen-
dencies, squads may also self-manage the code ownership. For
example, Beta and Gamma negotiated and changed the owner-
ship of the code repositories they depended on to increase squad
autonomy. As a member from Gamma explained, ‘‘We took over
[Beta’s] work because they were not able to help us to do that. We
now own a part of their problem. We are more autonomous, though
we also have more work’’.

5.2.2. Strategies for achieving alignment
Autonomy and self-management are found to predispose com-

panies to reduced coordination across teams (Ingvaldsen and
Rolfsen, 2012). This is why, large-scale development efforts re-
quire alignment towards the clear vision or goal for a team and
awareness of how the team’s work fits in it (Kalliamvakou, 2017).
Traditionally, this is achieved by enforcing more control and pro-
viding detailed instructions, which is proven to be a failing strat-
egy in rapidly changing contexts. Instead, autonomy is increased
by increasing the alignment through limiting the direction and
supporting mutual adjustment (Bungay, 2011). Management ef-
forts that support alignment, called ‘‘directed opportunism’’, such
as guidelines towards commonality, are also found to be the key
to success in scaling agility in Atlassian (Kalliamvakou, 2017).
Similarly, many other companies use Objectives and Key Results
(OKRs), a framework for large-scale agile environments that at-
tempts to involve employees in setting common goals across the
organization. OKRs have been found to aid knowledge shar-
ing and improved transparency between teams, however, the
practice takes years to implement and is not always well re-
ceived (Stray et al., 2002). In the following, we describe the
practices that support alignment at Spotify.

Collective review of important changes: One inherent problem
with scale is that it is nearly impossible to continuously follow
what is being changed where. Spotify’s answer to this is collective
review of important changes. When the squad’s work impacts
other squads, engineers are expected to consult the others either
informally or through so-called Requests-For-Comment (RFC) to
ensure that there is an agreement about the emerging changes
and dependencies. The RFC document is typically prepared and
shared with the rest of the company or the concerned tribe, open
for comments and improvement suggestions for a given period.
Similar effects in Atlassian are achieved by organizing regular
demos of teams’ work in progress, which admittedly increase the
needs for coordination to arrange events (Kalliamvakou, 2017).

Formation of parallel structures mandated to make decisions:
As a typical post-bureaucratic organization (Burns and Stalker,
1961), Spotify promotes network structures of control, author-
ity, and communication, as essential mechanisms for collective
action. These are, for example, numerous workgroups, such as the
Technology Architecture Group that owns TechRadar and guilds,
which emerge on the need basis by self-organization or as a
response to a managerial directive and involve members from dif-
ferent squads, tribes, and sometimes even locations. The formally
recognized groups are mandated to make decisions and might
have a budget. Similar groups for making collective product-
related decisions called communities of practice have also been
found in Ericsson (Paasivaara and Lassenius, 2014; Moe et al.,
2021).

Constrained choice of technologies: Implementing changes in

other’s repositories can be troublesome if they are written in



D. Šmite, N.B. Moe, M. Floryan et al. The Journal of Systems & Software 200 (2023) 111649

a
p
c
t
m
s
t
n
t
t

unique or rare programming language or using old unsup-
orted frameworks, as it might limit squads’ ability to implement
hanges independently. Clearly, with scale the number of used
echnologies increases, while the awareness of what is imple-
ented using which technology decreases. To eliminate such
ituations, squads discuss what technologies shall be accepted,
he list of which (called TechRadar) is maintained by the Tech-
ology Architecture Group. The different tools, apps, and infras-
ructures recommended for each engineering task are available in
he developers’ Marketplace called Backstage.1

Alignment of practices through tutorials and templates
(Golden Paths): The wide variety of technologies and tools com-
bined with the large number of developers and development
locations makes it not only difficult to get onboarded as a new
hire, but also for experienced engineers to produce consistent
outcomes, especially when contributing to tasks outside of one’s
comfort zone. To tackle these challenges, Spotify developed so-
called Golden Paths – tutorials to introduce engineers to tech-
nologies or best practices and templates that guide them on
how to create a concrete type of services. Golden Paths are
similar to coding guidelines and tutorials used in many other
organizations (Kalliamvakou, 2017). The development of Golden
Paths is organized in the different workgroups, such as guilds
dedicated to a particular technology (Web and Backend), while
the resulting documentation is maintained by a dedicated tribe.

5.2.3. Strategies for networking
While some argue that achieving agility in large-scale projects

requires blending in plan-driven approaches and increasing coor-
dination and management efforts (Dingsøyr et al., 2018; Petersen
and Wohlin, 2010), some studies show that planned coordination
through forums like Scrum-of-Scrums is inefficient (Paasivaara
et al., 2012). This has been one reason for an increased interest
in mutual adjustment as the core coordination mechanisms that
enables alignment of teams’ efforts and heavily relies on the
social networks of individuals and teams (Šmite et al., 2017;
Moe et al., 2021). In the following, we describe the networking
practices that support autonomy at Spotify at scale, which we also

1 Open-sourced tool released by Spotify https://backstage.io/.
9

illustrate with the social networks of the four studied squads (see
Fig. 6).

Horizontal communication patterns: Spotify squads are highly
collaborative and social, reaching out to other squads, experts,
workgroup members, etc. This is evidenced in the way task in-
terdependencies are handled (Fig. 2), and the way information
is shared (Fig. 6). In fact, an individual squad with experienced
members might have tens of contacts outside the squad main-
tained on a regular basis (see examples of external networks of
Beta and Delta in Fig. 6).

The spontaneous interactions of the engineers vary. They in-
clude acquiring the knowledge missing internally in the squad,
providing support to others, and dealing with task interdepen-
dencies. The communication typically bypasses the managerial
hierarchy, also known as ‘‘going role to role’’ in Zappos and other
participative organizations (Bernstein et al., 2016). However, the
ability to communicate horizontally highly depends on the indi-
vidual squad member’s social integration and contact network, in
the absence of which the members might turn to their manager
for help. However, in principle, mature and newly established
squads as well as senior and junior employees at Spotify, as in
Zappos (Lee and Edmondson, 2017), enjoy autonomy.

Social integration: The studied squads discussed the importance
of maintaining a good contact network and knowing who knows
what, as being well integrated into the company’s network helps
to coordinate the work efficiently. A member of Delta explained
that getting their PRs done requires a buy-in and priority from
others. These depended on the negotiator’s social connections,
and the ability to influence others. As someone from a relatively
new squad, Zeta, explained: ‘‘You have to use your network or
find people who have been longer in Spotify, [they] have a larger
network. [. . . ] [Otherwise], sometimes we need to post to a squad’s
Slack channel: ‘‘Hey channel, can anybody help me out here?’’.’’
Squads that perceive being successful in negotiations often have
pioneer engineers who know nearly everyone (like Beta and Delta
in Fig. 6). Being aware of the organizational network, who knows
what and who does what is important not only when working
Fig. 6. Squad external networks of contact.

https://backstage.io/


D. Šmite, N.B. Moe, M. Floryan et al. The Journal of Systems & Software 200 (2023) 111649

o
w
Z
o
n

E
d
i
w
m
l
c
w
a
w
i
a
o
2

P
p
c
i
f
c
A
t
s
‘
d
c
o
o
P
o
v

O
t
e
T
o
e
g
i

5

c
w
p
t
m
i
o
w
f
t
i
o
i

c
o
d

s
a

i

n interdependent existing products, but also when coordinating
ork on new products. As evidenced in the challenge faced by
eta who are both new in the company and working on devel-
ping a new piece of software: ‘‘Since we are building something
ew, it’s unclear who we need to talk to’’.

mbedding: The practice of temporary mobility called embed-
ing, the social integration with other squads for some time,
s a practice encouraged at Spotify that helps grow social net-
orks and foster inter-squad communication. Embedding has
any positive effects, outweighing the pain of the temporary

oss of a squad member. As someone from Delta explained, ‘‘You
an pair with an engineer who knows something you don’t. This
ould help in doing pull requests and get an easier buy-in from
nother team. People could embed with us as well, to have people
ho could help us’’. Embedding has become popular also because

t contributes to personal growth. A similar practice of moving
round different teams to acquire first-hand knowledge of how
thers are working is also reported at Atlassian (Kalliamvakou,
017).

ersonal interaction: Despite Spotify being an international com-
any with extensive experience with distributed work and ex-
ellent technological infrastructure, we learned that effective
nteraction still highly depends on the ability to communicate
ace-to-face. Co-location was mentioned frequently when dis-
ussing how squads negotiate with other squads. As one from
lpha noted, ‘‘Other teams can be quite slow because they have
heir focus. You have to poke them a lot, sometimes through Slack,
ometimes I can go and say – Hey!’’ and another member added,
‘It helps if you can explain what you are doing and why it is
one like this’’. Such communication across offices becomes more
hallenging. As someone from Alpha explained, ‘‘Sometimes we
nly see them in Slack, we don’t really know them. If we knew them
r met them in person, the way we would talk would be different.
roblems would be solved much faster’’. Members who travel to
ther Spotify offices also acknowledged the positive effect of
isits on cross-site communication.

ffice spaces that facilitate socialization and networking: Spo-
ify has invested a lot of resources and attention to provide
ngineers with numerous opportunities to socialize in the office.
hese include comfortable large dining areas and coffee corners,
pen spaces for seminars, video- and board-gaming spaces and
ven billiards and pubs. Being introduced to a friend of a friend or
etting to know people who are interested in the same activities
n such companies as Spotify is thus a common happening.

.2.4. Strategies for information exchange
In contrast to teams working on isolated tasks or stand-alone

omponents, teams working on creating a joint system in parallel
ith many other teams are accompanied by the feeling of being a
iece of a system. As we discussed above, such systems are prone
o congestion, which occurs when teams are tasked to deliver
ore than they can (Cantor et al., 2016). Evidently congestion

s often caused by barriers to autonomy, the lack of competence
r many task dependencies, which may negatively affect the
hole company. One known congestion-avoidance mechanism

or teams in plan-driven organizations is to ask management
o limit their requests. But what happens in the contexts with
ncreased level of autonomy? At Spotify, squads often help each
ther and increase awareness and visibility into their work that

ndirectly supports alignment (Kalliamvakou, 2017). a

10
Fig. 7. Information sharing network. Every dot is an author of a StackOverflow
entry tagged with #Backend, every edge connects questions with answers and
comments.

Culture of mutual help: The culture of open collaboration and
contribution beyond organizational boundaries is emphasized in
Spotify’s Band Manifesto2 – ‘‘we’re all in this together’’. The suc-
ess of the multi-squad development at scale highly depends
n mutual help, which indirectly diminishes the autonomy (in-
ependence) of a particular squad. As an engineer stated, ‘‘The

number of dependencies is not a problem as long as no one becomes
a bottleneck’’. One way for a squad to become a bottleneck for oth-
ers and for the company is to constantly prioritize their own tasks
from the backlog. In fact, previous research has linked individual
autonomy with being less accessible for support (Drach-Zahavy,
2004), which evidently can be the case on a group level. This
is challenging because squads depend on community help, on
squads solving pull requests for others, and more experienced
Spotifiers responding to queries and providing expert opinions
about solutions to complex problems. Squads and individuals
have a reputation of being responsive or not. This is related not
only to availability for a conversation but also to personal activity
in solving pull requests promptly and responding to queries re-
ceived through open and focused information exchange channels
such as Slack3 and a corporate StackOverflow4.

Tools for information exchange: Our analysis suggests that tools
like Slack and StackOverflow are excellent facilitators of collab-
oration even in the absence of personal contact. For example,
junior backend developers, who do not know who the experts are,
often turn to the backend guild’s Slack channel, which resembles
a ‘‘support line’’ with hundreds of users and tens of members
monitoring the channel, ready to provide answers (Smite et al.,
2019). Similarly, the corporate StackOverflow accumulates an-
swers to a wide variety of questions from technical questions to
legal frameworks (e.g., GDPR) or even personal experiences (see
an example in Fig. 7). In slightly more than a year of its exis-
tence 2428 questions, 3112 responses and 3684 comments were
exchanged between the total of 929 users. Our analysis shows
that half of the questions posted in StackOverflow are answered
within thirty minutes and 59% of the accepted answers come
from members of other tribes, which engineers with the question
might not even know personally. Thus, those not knowing who

2 The Band Manifesto, https://www.spotifyjobs.com/the-band-manifesto/.
3 Slack at Spotify is one of the key communication tools used by individuals,

quads and groups. It is also used to share knowledge, facilitate Q&A, and store
n archive for everyone to use.
4 Spotify’s instance of StackOverflow. At Spotify this is a relatively new tool,

n use since 2018, as a platform where users can post questions and seek advice,
nswer others’ questions, comment and vote on posts.

https://www.spotifyjobs.com/the-band-manifesto/


D. Šmite, N.B. Moe, M. Floryan et al. The Journal of Systems & Software 200 (2023) 111649

k
c
i
i
t
k
S

D
f
i
d
t
s
b
o

m
o
p
i
t
r
d

6

t
p
c
e
s
p
2
a
z
a
b
g
o
r
a
p
a
s
o
a
i
a
m
s
b
n
e
a

d
n
f
w
o
s
p
a
o
c

nows what can reach out to basically everyone subscribed to a
hannel. More importantly, we found that 1/3 of the questions
n StackOverflow are answered by the authors themselves. This
s because engineers take the initiative to help others and post
ips and tricks to ease the work of peers. Those who donate
nowledge also receive points in the user reputation score in
tackOverflow, which adds an element of gamification.

emos: When squads build something good and potentially use-
ul for others, it should be shared. Sharing at Spotify is done
n many ways. Squads make demos, tribes circulate the latest
evelopments in regular ‘‘Show & Tell’’ and ‘‘All Hands’’ sessions,
here are a lot of ‘‘Lunch & Learn’’ sessions, where engineers and
quads share interesting findings, many engineers at Spotify write
log posts about new tools and libraries they’ve developed, and,
f course, post the news on Slack.
All these activities can be overwhelming and disturbing, as a

ember of a challenged squad Beta describes, ‘‘. . . activities outside
f development, going presenting at tribe meetings, contacting peo-
le – takes away the development focus and time. The expectation
s that developers are not just developers, but ambassadors for the
eam’’. Yet, many squads acknowledge that maintaining their
eputation is important as it creates the prerequisite for a higher
egree of authority.

. Conclusions

Many researchers and practitioners have been skeptical about
he applicability of autonomous teams in large-scale and complex
rojects. This is one reason why large-scale agile projects often
ombine agile and traditional methods to avoid chaos (Dingsøyr
t al., 2018; Bernstein et al., 2016), and in practice strive to
implify jobs by creating complex organizational structures ex-
ressed in increased managerial overhead (Petersen and Wohlin,
010). However, uncertainty and frequent changes, that often
ccompany software development, make increased bureaucrati-
ation and control inefficient (Bungay, 2011). Decentralization
nd de-bureaucratization instead suggest that the focus shall
e rather put on dealing with complex jobs within simple or-
anizations (de Sitter et al., 1997). Our study is one example
f a large decentralized organization developing software. Our
esults demonstrate that Spotify can empower its squads with
large degree of autonomy even at scale. Further, the com-
any managed to keep a low number of employees with man-
gerial roles despite organizational growth. What helps Spotify
ucceed? We found that the key is the ability of squads to self-
rganize – collaborate on the shared codebase, coordinate and
lign their efforts, share information and resources, and make
nformed decisions together. To facilitate squads with autonomy
nd ability to self-organize, the company promotes greater com-
itment and accountability, cultivates network structures and
upports formation of collective fora that bypass organizational
oundaries (i.e., typical mechanisms of a post-bureaucratic orga-
ization Burns and Stalker, 1961), while enabling just-necessary
nabling constraints, which help balancing adaptability and reli-
bility (Bernstein et al., 2016).
Of course, the Spotify journey is not problem-free. Our results

emonstrate that despite the efforts to decentralize the orga-
ization by design, squads’ autonomy might be constrained by
actors beyond the managerial control. In our study, not all squads
ere equally autonomous or accountable, some squads helped
thers more and faster while some admitted being a bottleneck,
ome were better in informing about the changes while others
rioritized their internal workload, some were better at handling
nd continuously removing technical interdependencies while
thers were too inexperienced to navigate themselves in the
omplex system evolution. Yet, as previously suggested (Elbanna,
11
2010), most squads can handle most of their mutual dependen-
cies and interactions. In fact, no scaled agile practice, up-front
planning, or supervision can yield similar results as also admitted
by prior research (Bungay, 2011; Kalliamvakou, 2017; Paasivaara
and Lassenius, 2014; Moe et al., 2021).

The company’s main challenge is to continue ensuring team
autonomy while growing. This is because being autonomous re-
quires being socially integrated into the company, which takes
time. As the Spotifiers from Alpha referred to a phenomenon
called the chain of autonomy: ‘‘If other teams are less autonomous,
we, being a part of the same system, become less autonomous. If we
want to do something and another team is blocked because they are
not as autonomous as we are, there is a chain reaction’’. Because of
these chain reactions, suboptimal solutions made by less mature
squads working in isolation that result in the accumulation of
technical debt might limit the future work of related squads.
As another from Alpha observed: ‘‘What affects us today is not
our quality, but others’ quality’’. This also means that maintaining
autonomy for a continuously growing organization will be a
constant challenge.

Several interesting directions for future research emerge from
our findings. First, we recommend looking into the conditions of
granted autonomy for immature and challenged teams and the
ways of coaching teams to be autonomous. Second, it is reason-
able to look at the team formation principles to maximize the
ability of a team to be autonomous (e.g., having a healthy mixture
of seniority at the company present in the team). Third, future re-
search may investigate the relationships between organizational
size and the very ability to employ autonomous teams, as well
as the possible thresholds when autonomy becomes technically
unmanageable.

Finally, one may wonder whether Spotify’s case is unique or
useful for others. The interest in autonomy and self-management
emerge in many different contexts, not only within modern IT
companies published in software engineering research, but also
in other industries published as research on the organizational
psychology and management (Lee and Edmondson, 2017; Bern-
stein et al., 2016). The strategies we describe that help Spotify
address autonomy at scale are per se not new. Although some
strategies, such as embedding, might have not been that well
documented and the special focus on the large scale might make
the collection of practices less common. In our study, we refer
to other more traditional environments (Ericsson) and modern
companies such as (Atlassian, Zappos), which also report similar
approaches. This means that our findings could be useful in large
industrial contexts with a high level of adaptability and fast-
changing environment, and even open-source projects, as pointed
out by related research (Bernstein et al., 2016).

CRediT authorship contribution statement

Darja Šmite: Conceptualization, Methodology, Investigation,
Data curation, Formal analysis, Writing – original draft. Nils
Brede Moe: Conceptualization, Methodology, Investigation, Writ-
ing — review & editing. Marcin Floryan: Conceptualization, Re-
sources, Validation, Writing – review & editing. Javier Gonzalez-
Huerta: Data Curation, Formal analysis, Writing – review & edit-
ing. Michael Dorner: Data Curation, Formal analysis, Visualiza-
tion, Writing – review & editing. Aivars Sablis: Data curation,
Formal analysis, Visualization, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.



D. Šmite, N.B. Moe, M. Floryan et al. The Journal of Systems & Software 200 (2023) 111649

D

A

t
t
(
2
1

R

B

B

B
C

C

C

D

D

E

F

G

G

H

I

J

J

J

K

L

L

M

M

M

O

P

ata availability

The data that has been used is confidential.

cknowledgments

We sincerely thank the Spotify squads for volunteering their
ime to participate in our study. This research is co-funded by
he Swedish Knowledge Foundation within the ScaleWise project
KK-Hög grant 2019/0087) and the SHADE project (KK-Hög grant
017/0176), and by the Research Council of Norway through the
0xTeams project (grant 309344).

eferences

ernstein, E., Bunch, J., Canner, N., Lee, M., 2016. Beyond the holacracy hype.
Harv. Bus. Rev. 94 (7/8), 38–49.

ungay, S., 2011. The Art of Action: How Leaders Close the Gaps Between Plans,
Actions, and Results. Nicholas Brealey Publishing.

urns, T., Stalker, G.M., 1961. The Management of Innovation. Tavistock, London.
antor, M., MacIsaac, B., Mannan, R., 2016. Steering software development

workflow: Lessons from the internet. IEEE Softw. 33 (5), 96–102.
aroli, P., Caetano, T., 2020. Fun retrospectives: activities and ideas for mak-

ing agile retrospectives more engaging. Available online: https://www.
funretrospectives.com/daki-drop-add-keep-improve/.

ohen, S.G., Bailey, D.E., 1997. What makes teams work: Group effectiveness
research from the shop floor to the executive suite. J. Manage. 23 (3),
239–290.

ingsøyr, T., Moe, N.B., Fægri, T.E., Seim, E.A., 2018. Exploring software develop-
ment at the very large-scale: a revelatory case study and research agenda
for agile method adaptation. Empir. Softw. Eng. 23 (1), 490–520.

rach-Zahavy, A., 2004. Exploring team support: The role of team’s design,
values, and leader’s support. Group Dyn.: Theory Res. Pract. 8 (4), 235–252.

lbanna, A., 2010. Rethinking IS project boundaries in practice: A multiple-
projects perspectve. J. Strateg. Inf. Syst. 19 (1), 39–51.

owler, M., 2006. Code ownership. https://martinfowler.com/bliki/
CodeOwnership.html.

rant, A.M., Parker, S.K., 2009. Redesigning work design theories: the rise of
relational and proactive perspectives. Acad. Manage. Ann. 3 (1), 317–375.

uzzo, R.A., Dickson, M.W., 1996. Teams in organizations: Recent research on
performance and effectiveness. Annu. Rev. Psychol..

ackman, J.R., 1986. The psychology of self-management in organizations. In:
Pallack, M.S., Perloff, R.O. (Eds.), Psychology and Work: Productivity, Change,
and Employment. American Psychological Association, Washington, DC.

ngvaldsen, J.A., Rolfsen, M., 2012. Autonomous work groups and the challenge
of inter-group coordination. Hum. Relat. 65, 861–881, 2012.

amshidi, P., Pahl, C., Mendonça, N.C., Lewis, J., Tilkov, S., 2018. Microservices:
The journey so far and challenges ahead. IEEE Softw. 35 (3), 24–35.

anz, B.D., Colquitt, J.A., Noe, R.A., 1997a. Knowledge worker team effectiveness:
The role of autonomy, interdependence, team development, and contextual
support variables. Pers. Psychol. 50 (4), 877–904.

anz, B.D., Wetherbe, J.C., Davis, G.B., Noe, R.A., 1997b. Reengineering the systems
development process: The link between autonomous teams and business
process outcomes. J. Manage. Inf. Syst. 14 (1), 41–68.

alliamvakou, E., 2017. Collaboration Via Aligned Autonomy for Commercial
Software Teams (Doctoral dissertation).

angfred, C.W., 2007. The downside of self-management: A longitudinal study
of the effects tf conflict on trust, autonomy, and task interdependence in
self-managing teams. Acad. Manage. J. 50 (4), 885–900.

ee, M.Y., Edmondson, A.C., 2017. Self-managing organizations: Exploring the
limits of less-hierarchical organizing. Res. Organ. Behav. 37, 35–58.

ankins, M., Garton, E., 2017. How Spotify Balances Employee Autonomy and
Accountability. Harvard Business Review.

anteli, C., Van Den Hooff, B., Van Vliet, H., 2014. The effect of governance on
global software development: an empirical research in transactive memory
systms. Inf. Softw. Technol. 56 (10), 1309–1321.

oe, N.B., Šmite, D., Paasivaara, M., Lassenis, C., 2021. Finding the sweet spot
for organizational control and team autonomy in large-scale agile software
developent. J. Empir. Softw. Eng. 26 (5), 101. http://dx.doi.org/10.1007/
s10664-021-09967-3.

lsson, H.H., Bosch, J., 2016. No more bosses? In: International Conference on
Product-Focused Software Process Improvement. Springer, Cham, pp. 86–101.

aasivaara, M., Lassenius, C., 2014. Communities of practice in a large distributed
agile software development organization - case ericsson. Inf. Softw. Technol.
56, 1556–1577, 2014.
12
Paasivaara, M., Lassenius, C., Heikkila, V.T., 2012. Inter-team coordination in
large-scale globally distributed scrum: Do scrum-of-scrums really work? In:
Proceedings of the ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement. IEEE, New York, pp. 235–238, 2012.

Petersen, K., Wohlin, C., 2010. The effect of moving from a plan-driven to an
incremental software development approach with agile practices. Empir.
Softw. Eng. 15, 654–693, 2010.

Rey, C., Pitta, N., Ramonas, D., Sotok, P., 2019. Agile purpose: Overcoming
bureaucracy. In: Purpose-Driven Organizations. Palgrave Macmillan, Cham,
pp. 75–86.

Runeson, P., Host, M., Rainer, A., Regnell, B., 2012. Case Study Research in
Software Engineering: Guidelines and Examples. John Wiley & Sons.

de Sitter, U., Den Hertog, J.F., Dankbaarl, B., 1997. From complex organizations
with simple jobs to simple organizations with complex jobs. Hum. Relat. 50
(5), 497–534.

Šmite, D., Moe, N.B., Floryan, M., Levinta, G., 2020. Spotify guilds: When the
value increases engagement, engagement increases the vlue. Commun. ACM
63 (3), 56–61.

Smite, D., Moe, N.B., Levinta, G., Floryan, M., 2019. Spotify guilds: How to succeed
with knowledge sharing in large-scale agile organizatons. IEEE Softw. 36 (2),
51–57.

Šmite, D., Moe, N.B., Šāblis, A., Wohlin, C., 2017. Software teams and their knowl-
edge networks in large-scale software developent. J. Inf. Softw. Technol. 86,
71–86.

Stray, V., Gundelsby, J.H., Ulfsnes, R., Moe, N.B., 2002. How agile teams make
objectives and key results (OKRs) work. In: Proceedings of the International
Conference on Software and System Processes and International Conference
on Global Software Engineering. pp. 104–109.

Sutherland, J., Schwaber, K., 2013. The scrum guide. In: The Definitive Guide to
Scrum: The Rules of the Game. Scrum. Org, p. 268.

Darja Smite is a Professor of Software Engineering at Blekinge Institute of
Technology, Sweden and a part-time research scientist at SINTEF in Norway.
She leads research efforts on global software development and more recently
remote working from home. Her research interests include large-scale agile
software development and software process improvement. Šmite received a
Ph.D. in computer science from the University of Latvia. She has led a number
of nationally funded research projects related to the effects of offshoring and
scaling for the Swedish software industry, with partners such as Ericsson,
Spotify, Telenor, ABB, DXC, Emerson Process Management, and Boss Media.

Nils Brede Moe is a chief scientist at SINTEF im Norway. He works with
software process improvement, intellectual capital, innovation, autonomous
teams, agile and global software development, and digital transformation. He has
led several nationally funded software engineering research projects covering
organizational, sociotechnical, and global/distributed aspects. Moe received a
dr.philos. in computer science from the Norwegian University of Science and
Technology, and holds an adjunct position at the Blekinge Institute of Technology
in Sweden.

Marcin Floryan is the Technology Operations Lead at Spotify. He is a passionate
technology leader focused on creating an environment where people can do
their best work together. Floryan is interested in complex adaptive systems,
agile software development, leadership, and organizational development. Floryan
received an M.Sc. in biomedical engineering from the Warsaw University of
Technology, Poland.

Javier Gonzalez Huerta is an associate professor in Software Engineering at
the Blekinge Institute of Technology, in Sweden, working on making companies
more effective when managing their software assets aiming at helping them
to avoid asset degradation and Technical Debt. Gonzalez-Huerta received his
Ph.D. in Computer Science from the Universitat Politècnica de Valencia (UPV) in
2014, after working in the industry for more than 10 years. His research focuses
on Asset Management, Asset Degradation, and Technical Debt. Gonzalez-Huerta
has been doing applied research together with industrial partners like Ericsson,
Spotify, Fortnox, and Swedbank for the last five years.

Michael Dorner is researcher and doctoral candidate at Blekinge Institute of
Technology, Sweden. His primary research is to measure, leverage, and improve
the continuous exchange and flow of information within communication net-
works in software engineering and to understand the communication networks’
capabilities to cache, transport, deliver, and diffuse information on time. Before
academia, he was data scientist and software engineer at Siemens.

Aivars Sablis is a Project Manager in SAF Tehnika JSC, Latvia and a Ph.D.
student in Software Engineering at Blekinge Institute of Technology. His research
interests include knowledge management and team coordination in large-scale
agile software development. He has participated in nationally funded research
projects related to global software development and project management in
large-scale distributed software development projects, with partners such as
Ericsson, ABB, Telia, and Spotify.

http://refhub.elsevier.com/S0164-1212(23)00044-4/sb1
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb1
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb1
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb2
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb2
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb2
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb3
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb4
https://www.funretrospectives.com/daki-drop-add-keep-improve/
https://www.funretrospectives.com/daki-drop-add-keep-improve/
https://www.funretrospectives.com/daki-drop-add-keep-improve/
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb6
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb7
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb8
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb8
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb8
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb9
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb9
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb9
https://martinfowler.com/bliki/CodeOwnership.html
https://martinfowler.com/bliki/CodeOwnership.html
https://martinfowler.com/bliki/CodeOwnership.html
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb11
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb11
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb11
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb12
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb12
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb12
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb13
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb14
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb15
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb17
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb17
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb17
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb17
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb17
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb18
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb18
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb18
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb22
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb22
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb22
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb22
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb22
http://dx.doi.org/10.1007/s10664-021-09967-3
http://dx.doi.org/10.1007/s10664-021-09967-3
http://dx.doi.org/10.1007/s10664-021-09967-3
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb24
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb24
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb24
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb28
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb28
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb28
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb28
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb28
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb29
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb29
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb29
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb33
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb34
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00044-4/sb35

	Decentralized decision-making and scaled autonomy at Spotify
	Introduction
	Background: Spotify Squads
	Details of the Research Study
	Results – Decentralization of Authority
	What do Spotify Managers Decide?
	What Can Spotify Squads Decide?
	Where Are Spotify Squads Obliged to Compromise, Align or Coordinate?

	Discussion
	Barriers to Squad Autonomy
	Strategies for Autonomy at Scale
	Strategies for Sharing the Codebase
	Strategies for Achieving Alignment
	Strategies for Networking
	Strategies for Information Exchange


	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


