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Abstract.  The energy industry is experiencing significant changes in terms of 

sustainability and competition, primarily driven by the introduction of renewable 

energy targets and emission limits. Demand response is a potential solution to 

reduce the critical peak; however, its implementation in industries can be chal-

lenging due to their production requirements. Technology enablers such as digital 

twin technology can enhance energy flexibility and optimize manufacturing and 

service processes. In this study, we aim to develop a framework that can help the 

manufacturing industry to optimise industrial demand response services and 

achieve a seamless interaction of different layers such as the physical, data infra-

structure, digital twin, management, and aggregator. A systematic literature re-

view and workshops were conducted to identify key technologies, decision areas 

and methods to enable both manufacturing and energy flexibility to reach demand 

response. Based on the results, an energy-flexible framework for manufacturing 

industries was developed. 

Keywords: Digital Twin, Energy flexibility, Manufacturing flexibility, Demand 

response 

1 Introduction 

The EU Green Deal sets the EU on the path to a green transition which aims to reach 

climate neutrality by 2050 [1]. Along with the shortage of natural resources [2], this 

exerts pressure on the manufacturing industries, particularly on the high energy inten-

sity industries like glass and steel, to reduce carbon emissions. This is because most of 

them still heavily depend on fossil fuel-based energy sources. For example, the indus-

trial sector in Germany consumes 44% of the total electricity [3].  Therefore, greener 

energy transition efforts are increasingly necessary to reduce negative environmental 

impacts [4]. 
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In energy demand response, customers dynamically change their electricity con-

sumption behaviour in response to time-of-use electricity price signals or real-time dis-

patching instructions to reduce critical-peak demand [5]. However, this approach can 

be challenging for industries like steel production, as it requires to heat up and maintain 

production at a high temperature. At present, the research on demand response mainly 

focuses on the traditional demand response in power systems, while the research in the 

analytical technique and evaluation method is not comprehensive enough and fail to 

consider from an industrial perspective [5]. 

Digital twin (DT) can provide ideas for solving the above problem through forming 

a one-to-one mapping between the physical and virtual layers and then optimizing man-

ufacturing and service processes [6, 7].  The increasing application of Internet of Things 

(IoT) utilized in the manufacturing sector which generated a massive amount of data 

[8], which are useful for product lifecycle monitoring and maintenance, which are cru-

cial tasks in manufacturing, aim to detect production exceptions and ensure normal task 

execution [9]. These technologies can enhance energy and production flexibility, but 

the actual implementation in the industries still faces problems and barriers like data 

integration [10] and the lack of industrial knowledge. A common challenge with the 

existing framework is inability to provide better decision support for industries when it 

comes to energy management. Therefore, there is a need for a holistic framework which 

can not only improve the decision-making process but a to reach the long-term goals of 

energy efficiency.  

In this work, we aim to develop a framework which considered various key require-

ments and enabling technologies which can help the manufacturing industry to better 

implement them into their systems.  In order to develop a feasible and adequate frame-

work, we combine both systematic literature review to obtain a clearer overview of the 

current state of the art of energy systems and workshops with industry experts to pro-

vide actual industry practice to make our framework more robust. The following re-

search questions will guide this study: 

1. What are the key enabling technologies, decision areas, and methods for 

implementing industrial demand response in a manufacturing environment? 

2. How can industrial demand response be applied and optimized in a manu-

facturing environment? 

The structure of this paper is as follows: Section 2 presents a theoretical background 

of industrial demand response. The research methodology for the systematic literature 

review (SLR), workshops, and case study is outlined in Section 3. The results of the 

SLR are presented in Section 4, followed by the introduction of a novel framework in 

Section 5. Section 6 discusses the results and limitations of industrial demand response 

and concludes the paper in Section 7.  

2 Industrial demand response 

Flexibility on the demand side is an important resource to address the flexibility gap in 

the power grid caused by the rise of variable renewable energy sources  [11]. Demand-

side flexibility involves strategies aimed at adjusting end-user electricity consumption, 
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typically achieved through energy efficiency measures and demand response programs. 

[11]. Demand response is defined as “changes in electric usage by end-use customers 

from their normal consumption patterns in response to changes in the price of electricity 

over time or incentive payments designed to induce lower electricity use at times of 

high wholesale market prices or when system reliability is jeopardized” [13].  

Demand response strategies are gaining attention in power system operations as they 

can reduce peak load, defer infrastructure costs, enable active participation of consum-

ers in grid operations, and enhance the efficiency, reliability, and safety of the power 

system. [14, 15].  

As the industrial sector holds a significant portion of the cost-effective demand re-

sponse potential [16], industrial Demand Response stands out as a highly promising 

solution for unlocking the potential of demand-side flexibility [17]. Successful imple-

mentation examples have been documented across various industrial sectors. However, 

barriers such as regulations, information and technology infrastructure requirements, 

production disruption risks, limited knowledge, and social acceptance still hinder the 

adoption of demand response programs and strategies in industries [18–20]. 

Different resources are currently available to support the effective implementation 

of industrial demand response, such as tools for defining energy-aware scheduling and 

planning of manufacturing systems, as well as aggregators and the use of DT [21–26]. 

Flexibility market regulations are also evolving rapidly to facilitate demand response 

adoption. However, additional research is necessary to overcome the remaining chal-

lenges [18] and can provide valuable insights into the implementation and outcomes of 

various industrial demand response programs. 

3 Methods 

To develop a manufacturing and energy flexible framework for industrial demand re-

sponse, a two-step research methodology is proposed. Firstly, a systematic literature 

review will be conducted to investigate the current state-of-the-art at the intersection of 

manufacturing, energy, and digitalization. This will assist in creating an initial version 

of the framework. Secondly, inputs from industrial experts will be gathered through 

workshops to refine the framework and make it more applicable to an industrial setting. 

 

3.1 Systematic literature review  

The goal of a systematic literature review is to facilitate theory development, align ex-

isting research, and discover areas where additional research is needed [27]. The sys-

tematic literature review was conducted using Scopus and Web of Science to provide 

wide coverage of published literature. The reporting of this review was guided by 

PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-analysis 

extension for Scoping Reviews) [28]. To identify relevant literature, the search was 

performed on “Title, abstract and keywords” with Terms listed in Table 1.  
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Table 1. Keywords used in the SLR 

Manufacturing Energy Digitalization  

Production Aggregator Digital twin 

Manufacturing Demand response Cloud computing 

Industry Smart grid Digitalization 

 

 

Fig. 1. Systematic literature review process flow.  

In our search, we focused on peer-reviewed articles and conference proceedings 

to provide a wider overview of current digital tools used to achieve industrial demand 

response of energy systems. Only publications in English were considered. No-full pa-

per and posters are excluded in our search. A total of 25 articles were included in the 

final review. The SLR process flow is summarized in Fig. 1 and the results are presented 

in section 4. 

 

3.2 Workshops 

To enhance the systematic literature review and address its limitations, several work-

shops were conducted. These workshops involved participants from both academia and 

industry, with diverse roles including researchers, consultants, IT experts, production 

leaders, and engineers. During the initial workshop, the results of the literature review 

were presented and discussed among the experts. Based on these discussions, the main 
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layers and connections of the manufacturing and energy flexible framework for indus-

trial demand response were determined. The participants were then divided into smaller 

focus groups to delve deeper into the main functions, activities, and decisions required 

at each layer. A total of five workshops, including one for the main structure and one 

for each layer, were conducted to develop an industrial-ready framework for demand 

response based on the literature review. The final framework is presented in section 5. 

4 Literature review results 

The following section presents an overview of key enabling technologies and applied 

decision areas that are utilized to enable and operate demand response. A summary of 

the collected papers is provided in Table 2. 

Table 2. Summary of the collected papers  

Author Key enabling technology Decision areas Methods 

[29] WiMAX communication technology is 

the most preferred 

Communication ZigBee, Multi-criteria deci-

sion making 

[30] Highlighted operational data generated 

during the building life cycle are essential 

for realizing the energy-efficient opera-

tion 

Data processing 

and information 

sharing 

Data-driven deep learning, 

physical model-driven  

[31] Traditional equipment efficiency correc-

tion models only consider the historical 

load factors and variations in the environ-

mental factors 

Energy load predic-

tion and visualiza-

tion  

Digital twin models, visual-

ization models, polynomial 

regression, back propaga-

tion neural network  

[32] Framework using blockchain as an addi-

tion of a security layer  

Cybersecurity Copula model 

[33] Reinforced Learning algorithms select the 

optimum battery planning measures 

based on forecasts of wind power and 

photovoltaic availability. 

Data visualization, 

forecasting 

Multi-criteria decisions via 

an individual user 

 

[34] Deep learning layout that uses generative 

adversarial networks (GAN) to forecast 

the hourly power generation  

Forecasting Reinforced learning  

[35] Machine learning algorithms for forecast-

ing, storage optimisation, energy manage-

ment systems, power stability and qual-

ity, security, and energy transactions. 

Optimising energy 

scheduling  

Machine learning 

[36] Integrated digital twin and big data pro-

vides key technologies for data acquisi-

tion (such as sensor, Bluetooth, and WIFI 

for data communication) in energy-inten-

sive production environments  

Data processing 

and integration, 

prediction  

Data mining algorithm, Big 

data analyses 
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[37] The importance of the transformation 

from a traditional centralized energy sys-

tem to a decentralized one using IoT, 

smart grid, blockchain, fog computing       

Decentralized en-

ergy system 

Decentralized decision 

making 

[38] AI has been applied for network provi-

sion, forecasting (weather and energy de-

mand), routing, maintenance and secu-

rity, and network quality management. 

Forecasting ANN, fuzzy logic, SVMS 

and genetic algorithms  

[39] Energy systems are no longer passive and 

uni-directional but active and bi-direc-

tional with end-users taking active roles 

in the operation and management of the 

energy system 

Energy demand 

based on user be-

haviour 

Distributed Energy optimi-

zation method  

[40] Developed a novel approach to identify 

critical branches to strengthen and shield 

the smart-grid power system threats  

Cybersecurity Markov Decision Process 

Model 

[41] Developed uncertainty modelling ap-

proaches for optimization problems under 

uncertainty for circumventing the impact 

of ambiguous parameters 

Operation and tech-

nical uncertainties 

in the energy grid 

Deterministic model 

[42] The architecture can be used to reproduce 

any functional plant with minimal cost 

and which is scalable 

Communication Cybersecurity testing, re-

search, and education 

[43] Proposed a unified Hypervision scheme 

based on structured decision-making con-

cepts, providing operators with proactive, 

collaborative, and effective decision sup-

port 

Data management, 

security 

Human-centered design ap-

proaches 

[44] Proposed an energy behaviour simulation 

in equipment digital twin model. 

Energy demand 

management 

 

Data-driven hybrid Petri-

net, Gaussian kernel ex-

treme learning machine 

[45] Highlighted digital technologies can 

make modern power systems more effec-

tive, reliable, secure, and cost-effective 

Energy demand 

management 

 

Markov model and cluster-

ing algorithms, SVM-based 

technique  

[46] Concluded AI-initiated learning pro-

cesses by using digital twins as training 

environments can enhance buildings’ 

adaptability 

Energy demand 

management 

 

Building-integrated AI, re-

inforcement learning 

[47] The proposed DT-based method can re-

duce the operating cost of IES by 63.5%, 

compared to the existing forecast-based 

scheduling methods. 

Scheduling, fore-

casting 

 

Deep neural network, multi-

vector energy system 

[48] Investigated how blockchain and IoT to-

gether can improve existing smart grid 

Energy manage-

ment and load con-

trol 

Energy load control 
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ecosystem toward facilitation of better 

monitoring services. 

[49] Presented new empirical evidence to vali-

date data-driven twin technologies as 

novel ways of implementing consumer-

oriented demand-side management 

Energy demand 

management 

 

DNN, ordinary differential 

equation, linear autoregres-

sion, Linear regression, Na-

ïve model, predictive ana-

lytics model 

[50] Highlighted that government should in-

vest in the development of AI  

Energy demand 

management 

Various AI models 

[51] Proposed the use of the Open Automated 

Demand Response standard protocol in 

combination with a Decentralized Per-

missioned Market Place based on Block-

chain 

Contracting and 

Services 

Simulation modelling 

 

[52] Formulated a lumped model for forecast-

ing the rate at which electricity is con-

sumed with inadequate real-time energy 

data 

Forecasting Lumped model for forecast-

ing  

[53] Propose an IoT-based privacy protection 

strategy via edge computing, data predic-

tion strategy 

Cybersecurity and 

prediction  

Numerical simulations, 

edge computing system  

 

From the collected papers, smart grid systems with communication technology have 

been highlighted as a key enabler for industrial demand response which can provide 

stable, efficient, scalable, and cleaner electrical energy system [29, 37, 48, 53, 54]. Ab-

dulsalam et al., [29] concluded that iMax is the most suitable for advancing metering 

in smart grids, followed by Zigbee; while Power Line Communication is the least suit-

able. Smart grids can generate different types of data, from energy generation to con-

sumption, and can move from silo systems to integrated networks for data analysis to 

improve operational efficiency [30]. Moreover, the DT depends on communication 

technologies to efficiently manage devices in the system [41].   

With the adoption of different data communication tools, cybersecurity of the energy 

system must be considered to prevent any malicious activities such as hacking. Lei et 

al., [40] proposed a chain of defence concept using reinforcement learning framework 

to empower the system operator to incorporate existing cyber protections and strategy 

in a more dynamic, adaptive, and flexible ways to enhance cyber-resilience. Chen et 

al., [53] proposed a privacy protection strategy via edge computing, data prediction 

strategy, and pre-processing to overcome the drawbacks of the current cloud computing 

system. Blockchain can also be adopted in the energy system as an additional security 

layer. The data-storage structure of blockchain enables energy tracing and prevents data 

tampering [32, 55]. This is because any form of data tampering can alter the data anal-

ysis for forecasting.  

Forecasting and predicting are the main decision areas in the demand response to 

improve energy efficiency by flattening the daily energy demand level [56]. By con-

structing digital twins of an integrated energy system, the manufacturing industry can 
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benefit from its capabilities to improve coordination among various energy converters, 

hence enhancing energy efficiency, cost savings and carbon emission reduction [47]. 

For example,  Ye et al., [31] demonstrate that digital twin forecasts of the renewal en-

ergy and load of both wind and solar energy were closely matched to the actual values. 

[47] trained a deep neural network to make statistical cost-saving scheduling by histor-

ical forecasting errors and day-ahead forecasts, and the proposed methods can reduce 

operating costs by 65%. 

Forecasting the demand for energy usage is critical for better energy management 

where the industry can better coordinate with the production schedule [35]. In our 

search, most of the collected work only focuses on the energy perspective. Tomat et al., 

[57] highlighted that user behaviour can have a critical impact on demand response 

effectiveness. Lee and Yim [58] concluded that having a clear understanding of on-

demand behaviour can enable an efficient operation of energy supply. Similarly, for the 

manufacturing sector, a better integration of production scheduling and planning man-

agement with energy management is important to enable optimizing industrial demand 

response services. For example, steel production requires a high amount of energy, of-

ten fossil fuel to bring the heat up to and must continue even though the cost of energy 

has gone up during operation.  

From the literature review, the published frameworks identified mainly focus on the 

interaction between the smart grid and aggregator layers or have a strong energy de-

mand management focus in industrial cases. However, a holistic integration of the 

methods and technology integration is still missing [38] .  

5 Framework for industrial demand response services 

To enable demand response services, consistent and seamless interaction between the 

physical, data infrastructure, DT, management, and aggregator layers is essential. 

Through the use of an SLR and workshops with experts, the crucial activities and com-

munication structure required for industrial demand response services have been iden-

tified and integrated into a framework. 

Throughout the workshops with experts from the aggregator, energy, digitalization, 

and manufacturing sides, all agreed that the current frameworks in literature lack 

providing a comprehensive framework that allows for implementation in industrial 

companies and for layers to be connected and communicated from the physical to the 

aggregator layer. The SLR results (section 4) emphasize the importance of smart grid 

systems in enabling industrial demand response, which can help create a stable, effi-

cient, scalable, and cleaner electrical energy system. As a result, this framework focuses 

specifically on the key activities relevant to aggregators and industrial manufacturing 

companies. Both the literature and expert group have recognized the general DT frame-

work as suitable for representing the entire communication line with critical activities 

for industrial demand response services. This framework is visualized in Fig. 2 and 

described in the following.    
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Fig. 2. Framework for industrial demand response services 

Manufacturing companies can find interruptions or significant reductions in produc-

tion difficult to manage. To provide demand response capabilities that are attractive, it 

is advantageous to have local renewable energy and storage systems. These systems 

can be highly effective in allowing production to continue while simultaneously provid-

ing demand services to reduce energy peaks in the grid. However, these systems must 

be properly managed to interact with production and the aggregator at the right time. 

Therefore, it is essential to establish an end-to-end data infrastructure. Data plays a 

critical role in identifying high-energy consumers in production and understanding en-

ergy reduction capabilities. Appropriate sensors and meters need to be selected and 

applied to identify high-energy consumers in manufacturing, and machine data needs 

to be extracted.  

In the digital layer, which includes the data infrastructure layer, it is important to 

define data collection, interfaces, data structure, and data storage to ensure consistency, 

interoperability, and system robustness. The data must be processed (e.g., data cleaning, 

fusion, etc.) to enable data-driven simulation and optimizations. In the DT layer, vari-

ous DTs need to be established and interact to reflect both manufacturing and energy 

flow processes. Their detailed representation allows for simulating and optimizing 
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complex manufacturing processes, with a focus on energy factors, to provide a baseline 

and different scenarios for energy consumption profiles. The results of simulation and 

optimization must be presented and visualized for decision-making, which occurs in 

the management layer.  

The management layer focuses on establishing a manufacturing and energy system 

for flexible and adaptive consumption profiles. Decision-making in this layer ranges 

from strategic to operational levels. Production needs to identify its manufacturing flex-

ibility in times of production scheduling, while energy needs to integrate renewable 

energy and storage systems and drive effective demand-side management. The aggre-

gator agent that provides demand response services connects many different manufac-

turing companies, usually through a platform. The aggregator agent performs forecast-

ing of energy demands and supplies to identify potential energy gaps and provide flex-

ibility to the grid. By communicating with manufacturing companies and exchanging 

possible consumption profiles, the aggregator can optimize the cluster and provide in-

centives back to the manufacturing companies to encourage them to provide energy 

flexibility to the grid.  

6 Discussion  

The introduced framework aims for a consistent and seamless interaction between the 

physical, data infrastructure, DT, management, and aggregator layers. This is essential 

for all types of manufacturing industries, particularly high energy intensive industry, to 

enable a more flexible demand response. The central part of the framework for indus-

trial demand response is the identification, optimization, and adaption of energy con-

sumption profiles of manufacturing processes. The data-driven models with real-time 

and historical production data enable the identification of different energy consumption 

down to the product, machine, and process levels. This allows moving away from ag-

gregated energy consumption data and supports the reduction of complexity in the in-

terplay between manufacturing processes and energy consumption. The interplay be-

tween manufacturing and energy management and the aggregator agent is crucial to 

develop schedules that meet demand and orders and, on the other hand, improve energy 

consumption to reduce energy prices and CO2 emissions. Real-time communication 

with manufacturers and aggregator needs to enable cluster optimization and allow the 

manufacturer to change their manufacturing schedules in time. 

The energy industry is going through significant changes in terms of sustainability 

and competition, with the introduction of renewable energy targets and emission limits. 

One potential solution to balance the power supply during periods of over- and under-

supply from high levels of uncertain, renewable generation is through demand re-

sponse. The framework can help balance fluctuating power supply, but it requires ac-

curate control and market frameworks to optimize the use of this geographically dis-

tributed resource. Moreover, it can support the replacement of the traditional model of 

large and centralized generators operating within a monopoly with vertically integrated 

systems that enable competitive marketplaces. However, the development of complex 

models of electrical demand is necessary at both the component and system levels to 



11 

accurately represent the highly diverse, dynamic, and uncertain nature of demand, as 

well as the complexities of end-user interaction with the system. 

The presented framework serves as a useful guideline for industries seeking to im-

prove the flexibility of their industrial demand response. However, it is important to 

note that the framework has limitations. While it primarily focuses on production 

scheduling and energy strategy, it is important to consider deeper level components 

such as changes in the human workforce, disruption of the supply chain, and geopolit-

ical factors to build a more robust and resilient energy system for the industry. Further-

more, the framework has only been tested in the steel industry and large-scale compa-

nies. To implement this framework successfully, a high level of digital infrastructure, 

particularly the data infrastructure layer, is required. The availability and accessibility 

of different types of data are crucial for the digital twin process to simulate and optimize 

a process or production system, which requires sensors to be installed at desired loca-

tions. Therefore, while larger manufacturing firms may find this framework more read-

ily applicable due to their greater resources, SMEs may face more challenges in its 

implementation. 

7 Conclusion 

This study aimed to address the current limitations and enhance the understanding of 

the interplay between manufacturing and energy industries and reduce the complexity 

for demand response.  The developed framework creates an end-to-end communication 

and data sharing between the management of the manufacturing sites and the aggregator 

providing demand response services. Data-driven models and simulations based on DT 

can help manufacturing industry to identify a variety of possible energy consumption 

profiles for different manufacturing schedules to meet demand and orders. This frame-

work can service a guideline for manufacturing sector to cope with the changes in the 

energy sector but the level of digital infrastructure the manufacturer can be the main 

limitation of the for a successful implantation.  

Future research should focus on expanding the framework and identifying additional 

key decision areas and decision-making methods. Furthermore, it should be tested in 

various industries beyond steel and small and medium enterprises, and their feedback 

should be used to improve the framework. 
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