
Replay-Driven Continual Learning for the Industrial
Internet of Things

Sagar Sen
SINTEF Digital

Sustainable Communication Technologies
Oslo, Norway

sagar.sen@sintef.no

Simon Myklebust Nielsen
University of Oslo

Department of Informatics
Oslo, Norway

simonmn@ifi.uio.no

Erik Johannes Husom
SINTEF Digital

Sustainable Communication Technologies
Oslo, Norway

erik.johannes.husom@sintef.no

Arda Goknil
SINTEF Digital

Sustainable Communication Technologies
Oslo, Norway

arda.goknil@sintef.no

Simeon Tverdal
SINTEF Digital

Sustainable Communication Technologies
Oslo, Norway

simeon.tverdal@sintef.no

Leonardo Sastoque Pinilla
University of the Basque Country

CFAA
Zamudio, Spain

edwarleonardo.sastoque@ehu.eus

Abstract—The Industrial Internet of Things (IIoT) leverages
thousands of interconnected sensors and computing devices to
monitor and control large and complex industrial processes.
Machine learning (ML) applications in IIoT use data acquired
from multiple sensors to perform tasks such as predictive main-
tenance. While remembering useful learning from the past, these
applications need to adapt learning for evolving sensor data stem-
ming from changes in industrial processes and environmental
conditions. This paper presents a continual learning pipeline to
learn from the evolving data while replaying selected parts of the
old data. The pipeline is configured to produce ML experiences
(e.g., training a baseline neural network model), improve the
baseline model with the new data while replaying part of the
old data, and infer/predict using a specific model version given a
stream of IIoT sensor data. We have evaluated our approach from
an AI Engineering perspective using three industrial case studies,
i.e., predicting tool wear, remaining useful lifetime, and anomalies
from sensor data acquired from CNC machining and broaching
operations. Our results show that configuring experiences for
replay-driven continual learning allows dynamic maintenance of
ML performance on evolving data while minimizing the excessive
accumulation of legacy sensor data.

I. INTRODUCTION

The Industrial Internet of Things (IIoT) is the interconnec-
tion of sensors, computing devices (on the edge and the cloud),
and industrial machines (e.g., industrial robots, machine tools,
boilers) in a production network. IIoT provides streaming ac-
cess to thousands of sources of time-varying data from sensors
used in numerous use cases supported by Machine Learning
(ML) applications [1], [2]. These applications include pre-
dictive maintenance [3], remote quality monitoring [4], and
energy optimization [5].

The de-facto standard for ML applications in IIoT is to learn
from a large static set of multivariate sensor data acquired over
a fixed period to predict business-critical attributes such as
faults, failure, quality, and energy consumption. However, data
is not static and evolves in a dynamic IIoT environment. For
instance, manufacturing data evolves due to the replacement

of cutting tools, the changes in the parts manufactured, and
the environmental conditions (e.g., temperature variations at
the tooltip, vibrations on a shop floor, and electromagnetic
interference due to coupling with other electric cables). It is
impossible for ML applications to consistently make accurate
predictions through learning from a static IIoT dataset. Fur-
thermore, it is environmentally unsustainable to store high-
volume and high-velocity IIoT data perpetually while com-
putationally expensive to re-train new ML models using an
infinitely growing dataset. In this paper, we answer if we can
conceive and evaluate a continual learning pipeline preserving
historical and topical learning performance while minimizing
the IIoT data storage.

Humans can continually learn from new experiences with-
out ignoring the past. However, artificial neural networks
catastrophically forget learned knowledge if trained only with
new data using standard training algorithms such as online
error back-propagation. The change in neural network weights
induced by training is the root cause of catastrophic forgetting
of past knowledge. Replay is a mechanism in biology where
the brain’s hippocampus re-activates neural patterns similar to
activation patterns of past waking experiences to consolidate
short-term memory to long-term memory [6]. Therefore, we
investigate whether we can mimic replay to train artificial
neural networks in IIoT on new and evolving data without
forgetting past learned knowledge.

In this paper, we propose, apply and assess an ML pipeline
for replay-driven continual learning that can train a baseline
model and subsequently update it based on new data minimiz-
ing catastrophic forgetting of the past. Some continual learning
approaches [7]–[10] support the minimization of catastrophic
forgetting in the context of IIoT. However, they focus on a
specific prediction task and do not offer a generic pipeline that
can be applied to various prediction tasks. They also do not
discuss extensively how continual learning can be engineered
and deployed for industrial settings. Our pipeline is the first

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works.

Author accepted manuscript version of the publication in 
2023 IEEE/ACM 2nd International Conference on AI Engineering – Software Engineering for AI (CAIN)

Published version: https://doi.org/10.1109/CAIN58948.2023.00014



one using the concept of replay as a simple yet effective
approach to avoid catastrophic forgetting in multiple prediction
tasks (see Section VIII) with IIoT data. We extensively discuss
the engineering aspects of the pipeline and how to deploy
replay-driven continual learning in industrial settings.

An engineer (we call an ML experience engineer) can
configure our pipeline to create ML experiences (e.g., training
a baseline neural network model), improve the baseline model
with the new data and the replay of X% of the old data, and
infer/predict using a specific version of a model given a stream
of IIoT sensor data. She can specify a purge policy to delete
data periodically from a message queue for incoming data
after it has been consumed for learning and partially stored
for replay. Furthermore, the configuration can either deploy
a model for inference or pause inference (e.g., due to input
drift and deteriorating performance) to start a new learning
experience using new data and the replay of some old data.

We assessed our replay-driven continual learning pipeline
with three different predictive inference tasks (i.e., estimating
data anomalies, predicting tool wear, and anticipating tool
breakage) in our IIoT case studies (see RQ1 and RQ2 in
Section VIII). Tool wear in manufacturing is the gradual
failure of cutting tools due to regular operation caused by
mechanical abrasion from the workpiece, chipping, thermal
cracking, and fracture. Tool wear, when undetected, causes
defects in products and, consequently, abnormal production
stops and the generation of industrial waste from defective
parts. The main challenge with accurately predicting tool
wear is to adapt to the process and environmental changes
in the manufacturing process without forgetting the tool wear
prediction learned from the past. We used our pipeline to create
ML experiences that result in a baseline model and replay
experience models with 0% replay, 20% replay, 40% replay,
and 60% replay to compare their performance to the perfor-
mance of a model with 100% replay. We observed that models
with 0% replay result in catastrophic forgetting of learned
knowledge. However, models with n% replay performed better
than those with 100% replay in our case studies, indicating that
the replay mechanism helps minimize catastrophic forgetting.

Our pipeline solves a model learning problem in the IIoT
domain. However, numerous challenges arise in its engineering
and deployment in industrial production environments. There-
fore, we also analyzed and evaluated our pipeline from the AI
engineering perspective [11] (see RQ3 in Section VIII). We
investigated how the replay-driven continual pipeline could be
configured and deployed in a production environment. Our
main contributions are as follows.

• Novel Replay-Driven Continual Learning Pipeline. We
introduce an ML pipeline that enables the ML experience
engineers to create various learning and inference expe-
riences for ML models with IIoT data.

• New Tool Support. We open-source our ML pipeline for
replay-driven continual learning1.

1https://github.com/SINTEF-9012/Erdre-Continual-Learning

• Evaluation on Industrial Case Studies. We demonstrate
that replay-driven continual learning can minimize catas-
trophic forgetting and adapt to new data. Furthermore,
we show that the pipeline requires less data to remember
past experiences while performing well on new data.

The paper is structured as follows. Section II presents the
background regarding continual learning, data pipelines, and
AI engineering. Section III discusses the related work. In
Section IV, we present an overview of our pipeline. Sec-
tions V, VII, and VI describe the core technical details. Sec-
tion VIII reports on the evaluation results for three industrial
case studies. In Section IX, we present some insights into the
evaluation and limitations of the pipeline. We conclude the
paper in Section X.

II. BACKGROUND

Our pipeline employs continual learning (Section II-A) and
is engineered as a data pipeline (Section II-B). We evaluated
it from an AI engineering perspective (Section II-C).

A. Continual Learning

Continual learning [12] (also called incremental learning
or lifelong learning) is a concept in ML (in particular deep
learning) in which models continuously learn and evolve
with increasing amounts of input data while retaining learned
knowledge. It embraces the non-stationary world, where mod-
els need to be updated for changes in the input data (i.e.,
due to changes in the environment). A continual learning
system should demonstrate both plasticity (acquisition of new
knowledge) and stability (preservation of old knowledge) [13].

Continual learning aims to minimize catastrophic forgetting
(i.e., the failure of stability, in which new experience over-
writes previous experience) in neural networks due to online
back-propagation with new data. Learning requires weights in
neural networks to change but changing the ones associated
with past learning results in forgetting. This dilemma of
remembering the past vs. updating weights for new data is
known as the stability-plasticity dilemma [14]. Replay-driven
or rehearsal-based approaches for continual learning involve
storing part of the old data and replaying it with a mix of new
data. Replay-driven approaches have been applied to image
classification [15]–[17]. Experience replay has been shown to
reduce catastrophic forgetting in reinforcement learning for
video games [13]. Another approach to continual learning is
elastic weight consolidation [8] which freezes the weights
critical to making predictions of past knowledge or assigns
them low learning rates while a new layer of neurons with
higher learning rates is added to learn from new data. Similar
to elastic weight consolidation, it is possible to progressively
grow a neural network to achieve continual learning with new
data as presented by Ashfahani and Pratama [18]. Another
approach is to leverage knowledge distillation [19] to transfer
the knowledge of one or several neural network models to
a new model where a teacher model trains a student model.
Distillation can augment experiences in continual learning by
providing input/output pairs from past learning. It is also



possible to combine replay and knowledge distillation for
continual learning. Buzzega et al. [20] present dark experience
replay that integrates replay, distillation, and regularization
where training aims to match a network’s non-normalized
predictions (a.k.a. logits) sampled through the optimization
trajectory to ensure adherence to past learning.

We utilize the ML research given above to devise and assess
an ML pipeline of replay-driven continual learning for IIoT.
We evaluate replay-driven continual learning in practice with
industrial datasets and address AI engineering dimensions that
enable us to put our pipeline in production for IIoT data.

B. Data Pipelines

A data pipeline is a digital infrastructure that facilitates the
movement and processing of data. ML applications generally
require complex data pipelines that can handle steps, including
processing raw data and producing a trained (and possibly
deployed) ML model [21]. The first part of such pipelines
involves data cleaning, feature engineering, and data restruc-
turing for the appropriate input format required by the given
ML algorithm. It is followed by building and training an ML
model evaluated and eventually deployed. Developing an ML
model typically involves running several experiments to fine-
tune configuration and control parameters.

Traditional version control systems like Git [22] easily keep
track of changes in source code and control parameters but
are ill-suited for tracking big data and binary files, e.g., ML
models. One alternative solution is to use the Data Version
Control (DVC) framework [23], [24] to support big files
in data pipelines. A DVC pipeline is created by defining a
set of stages. Each stage has a run command(s) concerning
its dependencies to other stages. The dependencies usually
involve input data, control parameters, expected output, and
source code. DVC can skip the execution of certain stages
and instead fetch the correct output from the cache if they
have already run in the same configuration.

C. AI Engineering

Bosch et al. [11] define ”AI engineering” as an extension
of software engineering with new processes and technologies
for the development and evolution of AI systems. The goal
of AI engineering is to address the engineering challenges
of AI systems from the software engineering point of view.
One needs to address numerous AI engineering concerns to
implement continual learning. Below we briefly describe some
AI engineering dimensions [11] we considered while devising
and evaluating our pipeline for continual learning.

• Data versioning and dependency management. Data
versioning needs to be handled since data generated even
by consecutive software versions may not be compatible.
In addition, data quality is crucial in training to achieve
high model performance. Since data pipelines are less
robust than software pipelines, they need data quality
management, which can be particularly challenging when
different data types and sources are used.

• Deployment infrastructure. Companies need an infras-
tructure that reliably deploys subsequent model versions,
measures model performance, and raises warnings for
anomalous behavior. Deployment of ML models may
require a substantial change in the system architecture.

• Quality attributes. The key challenge of data science for
ML models is to achieve high accuracy and precision.
Several other quality attributes, including computation
performance, the number of inferences per time unit, real-
time properties, and system robustness, are also relevant
from the AI engineering perspective.

• Monitoring and Logging. Once an ML model is de-
ployed and operational, it is needed to monitor and log
its performance. Since ML models have insufficient ex-
plainability, monitoring and logging are required to build
confidence in the model’s accuracy while detecting when
its performance declines or is poor from the beginning.

• Integration of models and components. Since an AI
system has not only AI components, companies need to
integrate ML models with the traditional software compo-
nents of the system. Software verification techniques need
to be adapted to check whether AI and regular software
components are integrated seamlessly. Depending on the
criticality of ML models, the validation and verification
activities need to be more elaborate and strict.

III. RELATED WORK

Realizing continual learning in practice for the IIoT forms
the subject of this paper. We present some background on core
ML techniques for continual learning in Section II-A. This
section focuses on the role of software and AI engineering
in bringing continual learning into practice and its consequent
impact within the context of IIoT. We present the related work
on both aspects of the problem.

Continual learning leads to several AI engineering concerns
to orchestrate several components in an ML pipeline. Some
of these components are concerned with the acquisition of
streaming IIoT data, monitoring drift in input data, managing
learning and replay, monitoring ML performance, ML model
storage & retrieval, (re-)deployment, and inference. Diethe et
al. [25] present a reference architecture for continual learn-
ing that addresses the challenges of implementing continual
learning in practice. They emphasize the need to handle both
streaming and batch data and briefly present concepts such as
self-diagnosis through monitoring, self-correction policies, and
self-management of resources. They also discuss parameters
that control the automation of the ML life-cycle, such as
horizon (how quickly does the data point become part of the
model?), cadence (how often should we retrain?), provenance
(can we trace decisions back to underlying causes?), and cost
(what is the retraining cost?). However, they do not propose
or assess any continual learning approach with experiments.
Mirzadeh et al. [26] focus on the impact of parameters such as
the width and depth of neural networks in continual learning.
Schwarz et al. [27] present a similar approach, called progress
and compress, leveraging knowledge distillation for continual



learning that avoids the need for architectural growth in neural
networks. These two approaches do not explicitly address
software/AI engineering challenges of deploying continual
learning production. Yang et al. [28] present an Automated
Machine Learning (AutoML) pipeline for anomaly detection
in IoT data in dynamic environments. They enlist several ML
models that can be automatically updated based on concept
drift detection. However, their pipeline is linear and does not
consider cyclical dependencies that may arise due to replay.

Industrial IoT data stems from a dynamic environment
requiring adaptations to ML models to maintain prediction
performance. There are works applying ML to IIoT data on
edge. For instance, Sun et al. [29] present an AI-enhanced
offloading scheme to process IIoT data on edge. Bellavista et
al. [30] provide an architecture for ML model deployment
on the edge-cloud continuum for federated learning. Their
approach entails updates to initial models on edge based on
local data followed by data aggregation in the cloud. It creates
new models based on false negatives but does not address
catastrophic forgetting or remembering past knowledge. There
are some continual learning approaches [7]–[10] that focus
on the minimization of catastrophic forgetting in the context
of IIoT. For instance, Maschler et al. [7], [8] present a
regularization-based approach based on elastic weight consol-
idation to realize continual learning while detecting anomalies
in the metal forming process. Tercan et al. [9] use memory-
aware synapse cloning to perform continual learning in a
real-world predictive quality case in injection molding. None
of these works discuss how to deploy continual learning in
industrial settings. They focus on a specific prediction task
(e.g., only predicting tool wear) and do not propose a pipeline
like ours that can be applied to various prediction tasks.
Furthermore, replay has not been used as a simple yet effective
approach to avoid catastrophic forgetting with IIoT data.

Engineering AI systems [11] (e.g., devising continual learn-
ing techniques for industrial processes or infusing unsu-
pervised learning into manufacturing) for industrial settings
has not been discussed extensively. Angelopoulos et al. [31]
present learning algorithms for fault detection in Industry 4.0
with little focus on how to design and deploy them. Some
works [32]–[34] discuss unsupervised learning for predictive
maintenance and anomaly detection without mentioning AI
engineering aspects. Only recently, Husom et al. [35] ex-
plicitly discuss and evaluate their AI-based approach (i.e.,
an unsupervised learning pipeline for sensor data validation)
for industrial settings from the AI engineering perspective.
Our work presents the field knowledge of how a continual
learning pipeline is engineered and its learning and inference
experiences are employed, from which researchers can benefit.

IV. OVERVIEW OF THE APPROACH

Humans learn from experiences over their lifetime. These
experiences include learning continuously from new infor-
mation by sensing the real world, replaying to consolidate
memory during sleep, and using the learned knowledge to
infer decisions under new circumstances. This paper answers if

we can design a machine learning pipeline to mimic learning,
replay, and inference as experiences generated from IIoT data.
To this end, we present a replay-driven continual learning
pipeline for IIoT data (see Figure 1).

The pipeline receives multi-variate time series data as input
from an IIoT system that employs several sensors to monitor
a physical process and take action to control it. For instance,
position, velocity, acceleration, torque, temperature, force, and
vibration sensors are used to control an IIoT system for
manufacturing (e.g., CNC milling, broaching, and grinding).
The input also contains labels or target variables provided
by human experts or other automated processes that measure
product/process quality. The pipeline’s initial output is an ML
model generated by a baseline learning experience using a
static dataset extracted from a raw data queue. The meta-
information of the dataset should include input and target
variables, and the dataset should contain values for each.
The pipeline can output updated ML models by undergoing
replay-driven learning experiences (training with new data and
replaying past data). These experiences are configured and
orchestrated by an ML experience engineer observing model
performance and drift. If the engineer deems that the model
performance is satisfactory and the data is not drifting, she
can configure the pipeline to deploy an ML model through an
inference service. This ML model as a service can have infer-
ence experiences where it predicts anomalies, process/product
quality, or equipment performance (e.g., tool wear prediction)
in IIoT. Baseline models are produced, updated, and deployed,
through continual learning and inference, based on dynamic
changes due to input data drift and concept drift in ML
performance. We present the pipeline in six stages:

Experience configuration. The ML experience engineer
configures the learning and inference experiences of our
pipeline through the experience configuration stage. She can
invoke three experiences: a baseline learning experience, an
inference experience, and a replay-driven learning experience.
We explain their details in Sections V, VI, and VII. Parameters
include experience type, which features to extract in the input
times series, train/test split, how much data to replay along
with new data, which ML model to train from the model
database, and model evaluation parameters.

Data pre-processing. Multivariate sensor data from IIoT ar-
rives in a message queue we call raw data queue (implemented
using messages queue software such as MQTT and Apache
Kafka), where each message contains a timestamp, variable,
and value. Data is extracted from this queue by specifying (as
part of the configuration) a timestamp range and set of sensor
variables to create a dataset (CSV file) for an experience.
The experience configuration can also specify which data to
purge/delete over time when it is consumed for learning/infer-
ence. The dataset for any experience goes through several sub-
stages common in ML pipelines: data profiling, data cleaning,
feature engineering, splitting test/training data, data scaling,
and data sequentializing (splitting data into sub-sequences).
Data profiling includes computing the non-linear maximum
information coefficient [36] and the linear Pearson’s correla-



Replay-driven Continual Learning Pipeline Service in Production
Legend

Inference API

Data
cleaning

Feature
engineering

Splitting
 training/test

set
Scaling Training

ML model

Evaluating
model

performance

Replay
experience  

data

Experience
configuration

ML Experience Engineer

Model
DB

sensor
data

purge data
select model

store and recallRaw data
queue

configures Evaluation plots
& metrics

Data
profiling 

verifies

Drift metrics

verifies

Sequentialize Experience
fusion

calls

(de-)activatesqueries

predictions

API action
Output

Human action

store and retrieve

Industrial IoT
Applications

Database action

Fig. 1. Replay-Driven Continual Learning.

tion coefficient [37] to find correlations between data columns
of different sensors. It generates statistical quantities for each
column and alerts if any column contains several zeros or
missing values. Data cleaning uses this output to automatically
remove unwanted data (e.g., columns with several constant or
null values). Affected observations are removed (a missing
value is replaced by zero if it is consistent with the behavior
of the affected variable).

Feature engineering extracts statistical properties, called
features, from the raw input data that exhibit invariance to
noise. Furthermore, the feature-based representations of time-
series data [38] perform well in classifying tasks at a fraction
of the computational cost of processing raw time-series data.
The input and output data can be split into training and test
datasets. The pipeline uses the training set to train the ML
model and tune hyper-parameters (see Training ML Model).
The test dataset is locked away during training and used as an
unbiased dataset to evaluate model performance.

The datasets contain measurements from different sensors
with varying value ranges and are, thus, scaled [39] for a
comparable influence during training. The training (including
validation dataset) and test datasets are restructured into input
and output sub-sequences of the specified window size since
predictions rely on a window of time-varying observations
from input sensors and the desired window of output values.

Experience fusion. Experience fusion entails combining
new data and data from past experiences. This stage stores
or recalls the replay part of the dataset used in the pipeline.
When a model is created or updated, part of the dataset can be
configured to be stored as replay experience data and used later
when creating replay-driven learning experiences. Sampled
parts of the datasets going through the pipeline are replayed
to avoid catastrophic forgetting. When a model is updated,
replay experience data recalled in the experience fusion stage
and integrated into the dataset is passed to the training stage.

Training ML model. The input and output sub-sequences
are used to configure and train the ML model. Our pipeline en-

ables specifying learning parameters and selecting ML model
types (architectures). We consider Dense Neural Networks
(DNNs)/Fully Connected Neural Networks (FCNNs), Convo-
lutional Neural Networks (CNNs) [40], and Long Short-Term
Memory (LSTM) [41] to train ML models. A small part of the
training dataset (e.g., 20%) is set apart as a validation dataset
before training. Our pipeline automatically stops training if
the prediction error of the validation set stops improving,
preventing the over-fitting of the model to the training data.
It saves the ML model for evaluation in the model database
(Model DB).An ML experience engineer can configure the
pipeline to create a model from scratch or select any previous
model in the Model DB as a starting point.

Evaluating model performance. The test dataset is an
unforeseen dataset used to evaluate the model performance
to minimize bias due to hyper-parameter tuning in model
training. We compare the model output and the ground truth to
assess how accurately the model predicts the target variable. To
this end, the pipeline generates the plots of predictions on test
data. Mean Squared Error (MSE), coefficient of determination
(R2 score), and Mean Absolute Percentage Error (MAPE) are
metrics used to evaluate the performance of regression models,
and accuracy and F1-score are used for classification models.
We use the R2 score as a metric for the performance of regres-
sion models in this paper (see Sections VIII-B and VIII-B).
For the classification models, we assess the model performance
using F1-score (see Sections VIII-B and VIII-B).

Sections V, VII, and VI explain the details of the replay-
driven continual-learning in Figure 1.

V. BASELINE LEARNING EXPERIENCE

The first step in our pipeline involves creating a baseline
learning experience by training an ML model with a static
dataset (running through the pipeline stages of data profiling,
data cleaning, feature engineering, train/test set split, scaling,
sequentializing, training, experience fusion and evaluation in
Figure 1). When the ML experience engineer chooses the



baseline learning experience in the experience configuration
stage, sensor data collected from the industrial environment is
the input to the pipeline stages. This training dataset needs to
contain the target variable or label that the model should learn
to predict. Data profiling is important for creating the baseline
model since the correlations between the input and target
variables are leveraged when deciding what input features
to use for the model. The baseline learning experience in-
volves reiterating the stages and fine-tuning control parameters
during each iteration to produce a model with acceptable
performance. Feature selection, scaling method, and window
size for sequentializing are parameters affecting the model
performance. The training stage typically relies on a large set
of control parameters, defining the size and configuration of
the neural network and the training duration. In the experience
fusion stage, the engineer specifies the amount of data for
future replay where the model needs to be updated. After
training and evaluation, the model is stored in the Model DB.

VI. INFERENCE EXPERIENCE

An inference experience refers to utilizing an existing ML
model to produce a prediction from IIoT data. The pipeline
does not concern itself with training but runs the model against
a batch of new data. The engineer invokes the inference service
via REST API, the command line (of a virtualized Docker
container), or using a Graphical User Interface (all three
options call the pipeline components). The inference service is
configured to query/read the raw data queue to obtain sensor
variables for a given time range and put them into a batch
dataset. Next, the engineer specifies the identifier of the model
in Model DB. The pipeline pre-processes the data with some
exceptions (there is no need to prepare for training by profiling
and splitting the data). The configuration invokes components
to clean the input data, extract features, load a trained model
from Model DB, obtain a prediction, and send it back to
the IIoT system either as a message to another service or
by displaying it on a user interface. The inference experience
is invoked when learning experiences are not occurring (the
model is stable under the current circumstances).

VII. REPLAY-DRIVEN LEARNING EXPERIENCE

Learning experiences use new incoming data to improve
past ML models, including the baseline model. The engineer
monitors the inference process to recognize (a) when input
IIoT data drifts away from aggregate statistical properties of
data used to create past models in Model DB (data drift) and
(b) when the performance of the current model is poor for the
incoming data. Once she observes consistent deviation in per-
formance, she invokes the replay-driven learning experience
in the experience configuration stage.

The replay-driven learning experience is configured to use
an existing model in Model DB with new data and part of the
past data stored in the Replay Experience Data reservoir (see
Figure 1). New and past data should have the same schema
for input and target variables/labels in the configuration. The
configuration also specifies the amount of new data maintained

in the Replay Experience Data reservoir for future use. New
data are extracted from the raw data queue and preprocessed
for training. The configuration invokes the Experience Fusion
stage to combine the replay experience data (part of past data
for replay) with the new data. The combined dataset is used
to train an existing ML model from Model DB (specified by a
Model identifier in the configuration). The engineer evaluates
the performance of the new ML model. If the performance
is satisfactory, she invokes the inference experience with the
new model (see Section VI).

As part of the configuration, the engineer may keep infer-
ence active or inactive on incoming data during the replay-
driven learning experience. To automatically start the replay-
driven learning experience, she may specify thresholds and
constraints for the statistical properties of input data based
on past observations and ML performance metrics. These
constraints can be domain-specific, and it is hard to trace and
verify their consequences as many new models can be created
automatically in the Model DB without supervision.

VIII. EVALUATION

We evaluate replay-driven continual learning on three indus-
trial case studies to address three Research Questions (RQ)s:

• RQ1. How does a baseline model based on static legacy
data perform on new IIoT data for predictive inference?

• RQ2. How does replay-driven continual learning perform
on new and old IIoT data for predictive inference?

• RQ3. How can our approach be run in industrial pro-
duction environments?

A. Subjects of the Evaluation

We applied our approach to categorize signals (normal
and anomalous) and predict tool wear (the gradual failure of
cutting tools due to regular operation) and remaining useful
lifetime of a tool in three case studies.

1) Bosch CNC Machining Dataset: The dataset is a collec-
tion of real-world industrial vibration data obtained from three
milling CNC machines (each executing fifteen processes) in
a real-world production plant using a smart data collection
system over a two-year period. The machines were processing
aluminum workpieces in an operation sequence on aluminum
parts (see Figure 2).

frame

Motor

tower

tool

spindle housing

workpieces

MEMS Sensor
X

Z

Y

Fig. 2. Schema of the 4-axis machining center with mounted sensor [42].

The acceleration was measured using a tri-axial accelerom-
eter (Bosch CISS sensor [43]) mounted to the rear end of the
spindle housing. Each sensor was at a constant distance to the



tool center point, while the three axes of the accelerometer
were in alignment with the linear motion axis of the machine
(see the sensor coordinate system in Figure 2). The accelerom-
eter X- Y- and Z-axes were recorded using a sampling rate
of 2 kHz for four different time frames, each lasting five
months from February 2019 until August 2021, and labeled
accordingly (i.e., normal and anomalous data).

The dataset contains labels on whether the accelerometer
data are anomalous. We create a predictive model (a classifica-
tion model) to categorize the signals as normal or anomalous.

Fig. 3. Broaching machine.

2) Broaching of Airplane
Turbine Discs: Broaching is
a manufacturing process for
forming internal or external
round, flat, or contoured sur-
faces. A broaching machine
pushes a multi-toothed cut-
ting tool, a broach, into a
workpiece to remove mate-
rial (see Figure 3). Slots of
various dimensions are cut
at high production rates. Our
dataset was collected from
three broaching tools in a
broach tool holder broaching
fifty slots for around three
hours. The broaching oper-
ation was to broach fir tree
slots on jet engine turbine
discs. We had three data sources: (i) two accelerometers with
a sample rate of 12.8 kHz, (ii) a data logger with a rate of 250
Hz, and (iii) tool wear measured with an optical microscope.
We use the accelerometer data as input to predict the tool wear
measured in millimeters.

Fig. 4. Index C65 lathe generating the piston rod dataset [44].

3) Piston Rod Manufacturing Dataset: This dataset was
recorded during the machining process of piston rods (pneu-
matic cylinder components) at the Center for Industrial Pro-
ductivity (CiP) learning factory in Darmstadt, Germany. The
piston rods made of stainless steel were manufactured in
batches of four in a turning machine (i.e., Index C65 lathe
in Figure 4). The machine was equipped with a Siemens 840d
CNC control streaming relevant internal signals to a host PC
storing the data. The dataset contains the part IDs, machine

control data, and timestamp information on when tools were
changed in the lathe. The process data (machine control data)
includes torque, current, spindle speed, and feed rate for every
record with a sampling rate of 5 Hz. Using the process data,
we predict the remaining useful lifetime of the tool.

B. Results

This section discusses the results of our case studies,
addressing, in turn, each of the RQs.

RQ1: How does a baseline model based on static legacy
data perform on new IIoT data for predictive inference?:
We address RQ1 by computing the performance of baseline
models using (a) F1-score on the binary classification of
anomalous behavior in the Bosch CNC machining of alu-
minum workpieces and (b) R2 score for regression models
predicting tool wear during broaching of aero-engine discs
and time until the tool change during the manufacturing of
piston rods.

TABLE I
BASELINE MODEL PERFORMANCE

ON BOSCH CNC DATASET.

Evaluated Data F1-score

M01 2019 02 0.891
M01 2019 08 0.217
M01 2020 02 NC
M01 2021 02 0.025
M01 2021 08 0.489

Table I presents the base-
line model’s performance
scores (F1-score) across five
different datasets for CNC
machining across time. The
number in the name of the
dataset in the left column
indicates the year and month
the data was collected. Each
dataset was collected several
months apart, enabling us to study how the model performance
changes over time.

TABLE II
DISTRIBUTION OF ANOMALOUS

VIBRATIONS ON BOSCH CNC
DATASET

Dataset Anomalous
vibrations

M01 2019 02 21.2%
M01 2019 08 3.1%
M01 2020 02 0.0%
M01 2021 02 0.8%
M01 2021 08 21.2%

The baseline model has
an F1-score of 0.891 when
tested on the first dataset
(i.e., M01 2019 02 refers
to the first data set) with
test data from the same pro-
cess in which we trained
the model. The F1-score is
significantly lower on the
other datasets and ranges
from 0.489 to 0.025, which
may indicate a change in the
underlying pattern. The dataset M01 2020 02 has only non-
anomalous vibrations, and the F1-score is, therefore, non-
calculable (NC). The F1 score and the imbalance in the
datasets have a significant correlation (see Tables I and II).
The baseline model was trained on a dataset having a relatively
high proportion of anomalous vibrations. Therefore, we have
poor F1-scores on M01 2019 08 and M01 2021 02, which have
few anomalous vibrations, and a better score on M01 2021
08, which has a similar distribution of anomalous vibrations
to that of the first dataset. Even considering the imbalance, we
can see that the performance has deteriorated from the first to
the last dataset, which shows the need for updating the model
through continual learning.



TABLE III
BASELINE MODEL PERFORMANCE

ON BROACHING DATASET.

Evaluated Data R2 Score

Slot Set 1 -6.086
Slot Set 2 -155.462
Slot Set 3 -5666.836
Slot Set 4 -8137.291
Slot Set 5 -7439.583

Table III presents the per-
formance scores (R2 scores)
of the baseline model of
the broaching use case. The
broaching dataset is divided
into five sub-datasets; each
contains sensor data ac-
quired from broaching six to
ten fir-tree slots on the tur-
bine disc. The slot broaching
occurs sequentially over time; the evaluation of the five
datasets shows how the baseline model performs worse when
evaluated on more recent data. The baseline model was trained
on Slot Set 1, i.e., the sensor data collected from broaching
the first six slots. When the baseline model is evaluated on test
data from the same dataset, it performs poorly (see the first
row in Table III). However, the training was mainly on the
earliest slots of the dataset; the testing was on the last ones.
The tool wear increases gradually in each slot, implying that
the target variable moves out of the training distribution. The
R2 score is lower than zero when the model performs worse
than predicting the mean target value for every prediction, i.e.,
the model cannot beat a naive estimator outputting the average
target value of the test set for any input values. The initial
performance of the baseline model is unsatisfactory since the
tool wear moves into a range that the model has not seen
before. Furthermore, the performance degrades quickly in each
subsequent dataset, and the baseline model becomes outdated
and even more unusable.

TABLE IV
BASELINE MODEL PERFORMANCE

ON PISTON ROD DATASET.

Evaluated Data R2 Score

Piston Rod Set 1 0.539
Piston Rod Set 2 -0.052
Piston Rod Set 3 -0.592
Piston Rod Set 4 -0.347
Piston Rod Set 5 -1.110

Table IV presents the per-
formance scores (R2) of the
baseline model of the pis-
ton rod use case. The pis-
ton rod dataset is divided
into five sub-datasets hav-
ing roughly equal sizes (ap-
proximately 150 production
cycles in each sub-dataset).
The model has an R2 score
of 0.539 when tested on Pis-
ton Rod Set 1. However, the performance quickly deteriorates
when the model is evaluated on subsequent sets. The R2 score
is negative already on the second dataset and down to -1.110
on the last dataset.

Answer to RQ1: The baseline models in the case studies
showed deteriorating performance over time when eval-
uated on newer data. The results indicate the need for
continual learning to update the models to avoid model
performance decline.

RQ2: How does replay-driven continual learning perform
on new and old IIoT data for predictive inference?: Replay
entails the fusion of a certain percentage of past data from
a replay experience reservoir with new IIoT data to train

an existing ML model in the Model DB. This experience is
only invoked when we observe the drift and poor ML model
performance during inference experiences. New vibration data
from the IIoT stream is curated periodically to detect anoma-
lies during Bosch CNC machining; Table V summarizes the
performance of replay-driven continual learning for the Bosch
dataset. Similarly, new vibration data acquired from broaching
fir-tree slots on airplane turbine discs are grouped as slot sets
to predict tool wear in a broaching tool. Table VI presents
the performance of our approach in the broaching dataset.
Table VII shows the equivalent results for the piston rod
dataset. Tables V, VI, and VII give the identifier for a batch of
new datasets arriving over time, performance (F1-score or R2

score) for the datasets in the recent past, and performance on
the part of the new dataset reserved for testing. We evaluated
replay-driven continual learning for 0%, 20%, 60%, and 100%
replay. 100% replay is equivalent to traditional ML, where
training and testing use the dataset without new data.

The Bosch CNC machining dataset has very few rare events
or anomalies. All degrees of replay work well in predicting
anomalies in new data from CNC machining (see Table V).
However, the F1-score could not be computed (NC) in one
incoming set (M01 2020 02) since there were no anomalous
vibrations. When using 0% replay, training on datasets with
very few anomalies caused the F1-score to decrease signif-
icantly, making the model seem unusable. Training on the
most recent dataset with a considerable number of anomalies
caused the model to regain its performance on past data. All
other degrees of replay (20%-100%) prevented catastrophic
forgetting and helped the model detect anomalous vibrations
by replaying a portion of older data.

The time scale for predicting tool wear from CNC broaching
is much smaller than in the Bosch case. The number of times
an expensive broaching tool (sometimes costing several thou-
sand euros) is used does not exceed two orders of magnitude.
Therefore, there is a need to rapidly detect tool wear after
broaching a few slots. Detecting tool wear is a regression
problem as it is measured in millimeters. We observe in
Table VI that 0% replay results in steady deterioration in the
performance of predicting tool wear from Slot Set 2 to Slot
Set 5. Increasing the amount of replay to 20% improves the
performance on past data for 20% replay, 60% replay, and
100% replay. However, there is a varying poor performance
in predicting tool wear for the most recent new unforeseen
data across all percentages of replay. An explanation for poor
and variable performance on new unforeseen data but good
performance on the most recent past data could be that new
data is considerably different from anything seen before due
to increasing tool wear. The physics knowledge of the tool
wear process could significantly enhance our understanding
of how vibrations affect tool wear and why it is consistently
out-of-distribution. Both traditional ML (due to 100% replay)
and replay-driven continual learning perform poorly on new
data calling for further study of the phenomena.

We do not have direct measurements of tool wear in the
piston rod use case, but we have timestamps of when the



TABLE V
PERFORMANCE SCORES OF THE REPLAY MODELS TRAINED ON BOSCH CNC DATASET.

New Data 0% replay 20% replay 60% replay 100% replay

F1-score: past new past new past new past new

M01 2019 08 0.681 0.593 0.620 0.454 0.657 0.443 0.690 0.450
M01 2020 02 0.005 NC 0.659 NC 0.619 NC 0.718 NC
M01 2021 02 0.002 0.000 0.571 0.778 0.628 0.747 0.672 0.762
M01 2021 08 0.485 0.689 0.644 0.830 0.630 0.784 0.751 0.904

TABLE VI
PERFORMANCE SCORES OF THE REPLAY MODELS TRAINED ON BROACHING DATA SET.

New Data 0% replay 20% replay 60% replay 100% replay

R2 Score: past new past new past new past new

Slot Set 2 0.089 -8.207 0.086 -7.831 -0.032 -8.100 0.035 -7.882
Slot Set 3 -0.028 -57.522 0.716 -65.488 0.702 -57.952 -0.075 -1297.407
Slot Set 4 -0.723 -24.926 0.699 -301.906 0.714 -294.650 0.748 -261.217
Slot Set 5 -0.841 -54.646 0.805 -82.818 0.809 -52.086 0.891 -56.382

TABLE VII
PERFORMANCE SCORES OF THE REPLAY MODELS TRAINED ON PISTON ROD MANUFACTURING DATASET.

New Data 0% replay 20% replay 60% replay 100% replay

R2 Score: past new past new past new past new

Piston Rod Set 2 0.088 0.349 0.341 0.494 0.321 0.420 0.421 0.484
Piston Rod Set 3 -0.524 0.785 0.437 0.692 0.506 0.556 0.515 0.616
Piston Rod Set 4 -0.045 0.569 0.362 0.530 0.425 0.496 0.434 0.365
Piston Rod Set 5 -0.180 0.409 0.335 0.309 0.394 -0.032 0.379 -0.237

tool was replaced (which happened ten times during the
data collection) obtained from the visual tool inspection. We
predict the useful remaining tool lifetime by using the tool
replacement info. With 0% replay, the performance is poor
for past data but much better for new data (see Table VII).
We expect this poor performance to happen when data changes
over time without any updates in the model. Using 20% replay
or more significantly improves the model performance on past
data, which indicates the need for using methods for retaining
past knowledge. We have high model performance on the new
data when using 100% replay for each case (except for Piston
Rod Set 5). The tool was replaced at irregular intervals during
the data collection. These irregular intervals may indicate that
the process behavior was significantly different across the five
sub-datasets and explain why we have varying performances
with no clear trend across the datasets.

Early machining data often contains only good vibrations
(or a few bad vibrations reflecting tool wear) since tool wear
increases in time while bringing new unforeseen patterns
resulting in imbalanced data. Hence, the prediction perfor-
mance of ML models is relatively good initially and gradually
deteriorates, e.g., in the Broaching and Piston Rod cases
(Tables VI and VII). With 0% replay, we observe performance
deteriorates for baseline and new data in the Broaching and the
Piston Rod datasets. Using 20% replay significantly mitigates
the performance deterioration on the baseline; we still have

poor performance on new data due to the imbalance caused
by very few new bad patterns. There is, however, a slight
improvement in predicting wear for new data for the Broaching
case at Slot 5 (Table VI). The performance for 60% and 100%
replay in the Piston Rod case is worse than the performance
for 20% replay at Piston Rod Set 5, indicating that excessive
use of baseline data may make performance poor on new
data. Therefore, selecting data for 20% replay is important
to maintain the prediction performance.

Answer to RQ2: We conclude that 20% replay is adequate
to maintain good performance on continual learning, min-
imizing catastrophic forgetting. However, both continual
learning and traditional ML with 100% replay perform
poorly on new unforeseen data that is likely out-of-
distribution from what has been seen before.

RQ3: How can our approach be run in industrial produc-
tion environments?: To address RQ3, we report the lessons
learned while engineering replay-driven continual learning in
two different industrial settings. We summarize our experience
based on the AI engineering dimensions in Section II-C.
Data versioning and dependency management: DVC [24]
is a popular framework keeping track of large data and binary
files like ML models (see Section II). Using DVC to cache
replay data and different model versions can be time-saving



in a setting where one wants to experiment with various factors
such as replay percentage, training epochs, and train/test split.
However, the challenges in using DVC due to the cyclical na-
ture of continual learning, with training, evaluating, inference,
and back-to training interfere with the versioning system of
a DVC pipeline. Therefore, we developed our pipeline with
custom data and model management, where the location of
data and models are parameters specified by the engineer. This
practice contrasts with using DVC automatically managing
data and model versions and locations.
Deployment infrastructure: The pipeline ingests batch data
arriving over periods or as a stream and is deployable as a
virtualized Docker container. Raw batch data can be ingested
from sensors by (i) connecting to a database on an IIoT system,
(ii) pulling data from an IIoT system using protocols such as
REST, OPC-OA, and MQTT, or (iii) reading time-stamped
CSV files dumped by an IIoT system in a live folder. The
engineer configures an experience to extract data for learning
from sources such as a folder, database, or message broker
for inference or learning. She monitors drift in input data
and concept drift as reported by the pipeline and determines
which experience to run for replay-driven continual learning.
Invocation of an experience results in the orchestration of
specific pipeline components (see Figure 1). Deployment in
continual learning requires that training and inference share
the model repository and computing infrastructure as models
are generated continually over time when the engineer deems
a model update necessary. The engineer needs to specify rules
that put the deployed system into either baseline training,
replay-driven training, or inferencing when performance is
stable. This practice is different from traditional model de-
ployment (where we deploy a static model after training).
Quality Attributes: Data quality attributes completeness, cur-
rency, and accuracy are prerequisites for creating and updating
a reliable AI model but are also necessary for meaningful
inference. We profile the data and present statistical properties
to the ML experience engineer. The engineer may also specify
domain-specific assertions on the data using tools such as
Great Expectations [45]. These expectations are continually
verified during profiling datasets extracted from the raw data
queue. The engineer can evaluate the trustworthiness of pre-
dictions based on the quality of the data.
Monitoring and Logging: Continual learning presents chal-
lenges in monitoring data inflow and detecting when and
how to update ML models. The first challenge is incoming
data purge for inference and learning experiences in resource-
constrained systems (e.g., the edge) having limited data stor-
age. A purge policy should determine when to remove what
data from the raw data queue for what experience. To this
end, we should log data consumed in the data queue. The
second challenge is manually monitoring input distribution and
model performance for input and concept drifts (respectively)
to invoke a new experience. To address this challenge, we
can train Bayesian neural networks that estimate uncertainty
in the model as confidence intervals. These intervals can
automate the continuation of inference experiences (for short

ones) or trigger a new learning experience (for long intervals
and high uncertainty). However, expert-guided or automated
experiences may lead to numerous datasets and models in the
pipeline and its storage system. ML models should be aggre-
gated over time, while others should be purged to maintain a
sustainable system. Auditability of the continual learning may
require different levels of logging to search for transformations
of data and models created in a cyclical loop. Systematically
addressing these challenges still remains an open problem.
Integration of models and components: The inference ex-
perience requires that ML models (typically stored in a Model
DB with unique identifiers) be integrated into a callable infer-
ence software service (see Figure 1). The engineer specifies
which ML model to use in experience configuration for an
inference experience. She gives the Model ID in a parameter
file to run the pipeline and infer all incoming data in the
raw data queue. We consider the continual learning pipeline
as standalone software that we can use for learning and
inferencing based on its configuration. We believe that both
inferencing and learning should be part of the same system,
unlike traditional ML (models are deployed in a device without
access to a continually evolving database of new ML models).

Answer to RQ3: We advocate engineering a standalone
continual learning pipeline where learning and inference
are coupled closely. The pipeline requires monitoring
of data accumulation and model creation to enable the
purging of old data already consumed for learning. Fur-
thermore, models should be aggregated and discarded to
keep the pipeline sustainable. Comprehensive management
of data and model life-cycle in continual learning is still
an open problem.

C. Threats to Validity

Internal validity. We show that replay of past data can
minimize catastrophic forgetting. However, ML performance
(the F1-score and R2 score) may be affected by data re-
dundancy over time. It is common in manufacturing that
the same process is repeated often. It might be difficult to
distinguish the effect of replay vs. redundancy in new data.
We observe vibration data varies considerably over time in
our case studies, making our experiments legitimate.
External validity. The external threat to validity concerns the
generalizability of continual learning to all types of IIoT data.
We mitigate this threat by using three representative produc-
tion lines manufacturing different components for different
companies and generating data in different sizes and natures.
Construct validity. Construct threats to validity concern the
degree to which our measure accurately assesses what it’s
supposed to. Datasets may contain sensor data not correlated,
which could introduce noise while measuring the performance
of ML models. To mitigate this threat, we asked domain
experts to identify the sensor data for predictions.



IX. DISCUSSION

Generalizability: We have experimented with using replay-
driven continual learning in the IIoT domain, where the repe-
tition of a task such as manufacturing is a hallmark. Our results
are based on the assumption that the time series data from
the same manufacturing process reflect a repetitive process
with small variations that should be continually learned. We
cannot generalize our conclusions to other domains unless we
experiment with data of the same nature.
Safety Concerns: We should consider implementing continual
learning from sensor data with caution in safety-critical sce-
narios where a malfunction or failure may cause significant
damage to humans or the environment. One approach to
address safety concerns is to have a learning process human
experts monitor and control (a feedback loop where the system
output is constantly monitored and any abnormal behavior
is detected and flagged for inspection). Additionally, safety-
critical systems can be designed with redundancy and fail-
safes to prevent catastrophic failures. Another approach is to
use a hybrid learning system that combines machine learning
algorithms with human expert knowledge. The algorithms are
trained on sensor data to detect patterns and anomalies, and
human experts provide feedback and input to ensure that the
system functions safely and correctly. In both cases, it is im-
portant to test and validate the system before its deployment in
a safety-critical environment. The testing involves simulating
various scenarios to ensure the system responds appropriately
to unexpected events. It is also crucial to ensure that the system
is continuously monitored and updated to adapt to changes in
the environment or system behavior.
Actionable Guidelines for Engineers: Engineers should con-
figure the pipeline to create a baseline model based on in-
coming sensor data for the ideal operation of the IIoT system.
The baseline model should be used for inference and then
for updates when the engineer detects a drop in performance.
The engineer should monitor performance metrics on new and
unforeseen data to assess training on new data. She should also
evaluate the pros and cons of forgetting past knowledge.
Selection of Replay Data: We assume a realistic scenario
where new data constantly arrives, and the engineer has little
room to select data carefully. Hence, 20% of old training
input/output pairs are chosen randomly from each old dataset.
However, we can employ other data selection techniques, such
as those that aim to maintain a balance between classes and a
range of values.

X. CONCLUSION

In this paper, we presented a replay-driven continual learn-
ing pipeline that trains a baseline model and updates it subse-
quently based on new data minimizing catastrophic forgetting
of the past. We assessed our pipeline with three IIoT case
studies. Our results show that the performance of models
using static data quickly degrades due to data drift. However,
replaying 20% of the past data whenever we encounter new
data maintains performance. Furthermore, we discussed how
we handled some AI engineering dimensions in our pipeline.

A. Future work

New continual learning metrics: Continual learning intro-
duces new aspects of the learning process that go beyond
what is measured by the performance metrics applied in
conventional ML settings. A new set of metrics (e.g., perfor-
mance maintenance, forward transfer, and backward transfer)
has been designed for lifelong learning scenarios [46]. These
metrics enable a more formal expression of how well continual
learning strategies work, e.g., whether models can adapt to
new data and to what degree they lose or gain knowledge on
old tasks. Using such metrics will improve the evaluation of
lifelong learning scenarios and give a better picture of model
reliability and the continual learning process.
Continual balancing: Various techniques (e.g., random over-
sampling, randomly duplicating data points from the minority
class, and removing data points from the majority class) have
been proposed to balance datasets. Some of these techniques
(e.g., the Synthetic Minority Oversampling Technique) are
computationally expensive [47]. It is hard to know in advance
which balancing methods paired with which learning methods
will perform best on a given dataset. We plan to implement
the selection of balancing techniques in the pipeline.
Uncertainty estimation: We can quantify uncertainty to ana-
lyze and verify the input and outputs of ML-enabled software
systems and, hence, improve the trustworthiness of such
systems. One way forward is to use uncertainty estimation [48]
to autonomously guide the generation and deployment of
new learning experiences using recent data. Bayesian Neural
Networks (BNNs) can determine the uncertainty of a model’s
performance in a confidence interval for the prediction [49].
When the interval is above a threshold, we should store new
data and train a new model based on new and some old data
to minimize catastrophic forgetting.
Heterogeneous architectures: The pipeline should execute
learning and inference experiences on heterogeneous edge
devices. We plan to investigate the generation of intermediate
representations (IR) in Multi-level Intermediate Representa-
tion (MLIR) [50] for our pipeline. MLIR can be translated to
lower-level representations such as LLVM [51] and compiled
for x86 (32-bit and 64-bit), ARM, PowerPC, MIPS, and RISC-
V across various devices on the edge-cloud continuum.
Green AI and Continual Learning: Research in Green AI ad-
dresses reducing power consumption for inference and training
of models on the edge-cloud continuum. We aim to investigate
continual learning techniques for sustainable IoT including the
batteryless edge [52], [53]. Our plan also includes tackling
the challenge of continual learning in the context of the edge-
cloud continuum, where diverse data storage and computa-
tional capabilities demand swift and efficient coordination
of training, inference, and knowledge aggregation to attain
optimal performance while meeting Green AI criteria.

ACKNOWLEDGMENT

The work has been conducted as part of the InterQ project
(958357) funded by the European Commission within the
Horizon 2020 research and innovation programme.



REFERENCES

[1] S. Sen, E. J. Husom, A. Goknil, S. Tverdal, P. Nguyen, and I. Man-
cisidor, “Taming data quality in ai-enabled industrial internet of things,”
IEEE Software, 2022.

[2] M. Isaja, P. Nguyen, A. Goknil, S. Sen, E. J. Husom, S. Tverdal,
A. Anand, Y. Jiang, K. J. Pedersen, P. Myrseth et al., “A blockchain-
based framework for trusted quality data sharing towards zero-defect
manufacturing,” Computers in Industry, vol. 146, p. 103853, 2023.

[3] J. Zenisek, F. Holzinger, and M. Affenzeller, “Machine learning based
concept drift detection for predictive maintenance,” Computers & Indus-
trial Engineering, vol. 137, p. 106031, 2019.

[4] B. Zhou, T. Pychynski, M. Reischl, E. Kharlamov, and R. Mikut,
“Machine learning with domain knowledge for predictive quality moni-
toring in resistance spot welding,” Journal of Intelligent Manufacturing,
vol. 33, no. 4, pp. 1139–1163, 2022.

[5] T. Ahmad, H. Zhu, D. Zhang, R. Tariq, A. Bassam, F. Ullah, A. S.
AlGhamdi, and S. S. Alshamrani, “Energetics systems and artificial
intelligence: Applications of industry 4.0,” Energy Reports, vol. 8, pp.
334–361, 2022.

[6] T. L. Hayes, G. P. Krishnan, M. Bazhenov, H. T. Siegelmann, T. J.
Sejnowski, and C. Kanan, “Replay in deep learning: Current approaches
and missing biological elements,” Neural Computation, vol. 33, no. 11,
pp. 2908–2950, 2021.

[7] B. Maschler, T. T. H. Pham, and M. Weyrich, “Regularization-based
continual learning for anomaly detection in discrete manufacturing,”
Procedia CIRP, vol. 104, pp. 452–457, 2021.

[8] B. Maschler, H. Vietz, N. Jazdi, and M. Weyrich, “Continual learning
of fault prediction for turbofan engines using deep learning with elastic
weight consolidation,” in ETFA’20, vol. 1, 2020, pp. 959–966.

[9] H. Tercan, P. Deibert, and T. Meisen, “Continual learning of neural
networks for quality prediction in production using memory aware
synapses and weight transfer,” Journal of Intelligent Manufacturing,
vol. 33, no. 1, pp. 283–292, 2022.

[10] J. Hua, Y. Li, W. Mou, and C. Liu, “An accurate cutting tool wear
prediction method under different cutting conditions based on continual
learning,” Proceedings of the Institution of Mechanical Engineers, Part
B: Journal of Engineering Manufacture, vol. 236, no. 1-2, pp. 123–131,
2022.

[11] J. Bosch, H. H. Olsson, and I. Crnkovic, “Engineering AI systems: A
research agenda,” in Artificial Intelligence Paradigms for Smart Cyber-
Physical Systems, 2021, pp. 1–19.

[12] R. Hadsell, D. Rao, A. A. Rusu, and R. Pascanu, “Embracing change:
Continual learning in deep neural networks,” Trends in cognitive sci-
ences, vol. 24, no. 12, pp. 1028–1040, 2020.

[13] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne, “Expe-
rience replay for continual learning,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[14] W. C. Abraham and A. Robins, “Memory retention–the synaptic stability
versus plasticity dilemma,” Trends in neurosciences, vol. 28, no. 2, pp.
73–78, 2005.

[15] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl:
Incremental classifier and representation learning,” in CVPR’17, 2017,
pp. 2001–2010.

[16] P. Mazumder, P. Singh, and P. Rai, “Few-shot lifelong learning,” in
AAAI-21, vol. 35, no. 3, 2021, pp. 2337–2345.

[17] F. M. Castro, M. J. Marı́n-Jiménez, N. Guil, C. Schmid, and K. Alahari,
“End-to-end incremental learning,” in ECCV’18, 2018, pp. 233–248.

[18] A. Ashfahani and M. Pratama, “Autonomous deep learning: Continual
learning approach for dynamic environments,” in SDM’19, 2019, pp.
666–674.

[19] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” International Journal of Computer Vision, vol. 129, no. 6, pp.
1789–1819, 2021.

[20] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara, “Dark
experience for general continual learning: a strong, simple baseline,”
Advances in neural information processing systems, vol. 33, pp. 15 920–
15 930, 2020.

[21] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagap-
pan, B. Nushi, and T. Zimmermann, “Software engineering for machine
learning: A case study,” in ICSE-SEIP’19, 2019, pp. 291–300.

[22] J. Loeliger and M. McCullough, Version Control with Git: Powerful
tools and techniques for collaborative software development. ” O’Reilly
Media, Inc.”, 2012.

[23] R. Kuprieiev, D. Petrov, P. Redzyński, S. Pachhai, C. da Costa-Luis,
A. Schepanovski, P. Rowlands, I. Shcheklein, J. Orpinel, F. Santos,
A. Sharma, Zhanibek, Gao, B. Taskaya, D. Hodovic, A. Grigorev, Earl,
N. Dash, nik123, G. Vyshnya, maykulkarni, M. Hora, Vera, S. Mangal,
W. Baranowski, C. Wolff, A. Maslakov, A. Khamutov, K. Benoy, and
O. Yoktan, “Dvc: Data version control - git for data & models,”
https://doi.org/10.5281/zenodo.4544110, Feb. 2021.

[24] iterative.ai, “Open-source version control system for machine learning
projects,” https://dvc.org/, Visited in 2022.

[25] T. Diethe, T. Borchert, E. Thereska, B. Balle, and N. Lawrence,
“Continual learning in practice,” arXiv preprint arXiv:1903.05202, 2019.

[26] S. I. Mirzadeh, A. Chaudhry, D. Yin, T. Nguyen, R. Pascanu, D. Gorur,
and M. Farajtabar, “Architecture matters in continual learning,” arXiv
preprint arXiv:2202.00275, 2022.

[27] J. Schwarz, W. Czarnecki, J. Luketina, A. Grabska-Barwinska, Y. W.
Teh, R. Pascanu, and R. Hadsell, “Progress & compress: A scalable
framework for continual learning,” in ICML’18, 2018, pp. 4528–4537.

[28] L. Yang and A. Shami, “Iot data analytics in dynamic environments:
From an automated machine learning perspective,” Engineering Appli-
cations of Artificial Intelligence, vol. 116, p. 105366, 2022.

[29] W. Sun, J. Liu, and Y. Yue, “Ai-enhanced offloading in edge computing:
When machine learning meets industrial iot,” IEEE Network, vol. 33,
no. 5, pp. 68–74, 2019.

[30] P. Bellavista, R. Della Penna, L. Foschini, and D. Scotece, “Machine
learning for predictive diagnostics at the edge: An IIoT practical
example,” in ICC’20, 2020, pp. 1–7.

[31] A. Angelopoulos, E. T. Michailidis, N. Nomikos, P. Trakadas,
A. Hatziefremidis, S. Voliotis, and T. Zahariadis, “Tackling faults in
the industry 4.0 era—a survey of machine-learning solutions and key
aspects,” Sensors, vol. 20, no. 1, p. 109, 2020.

[32] M. Wocker, N. K. Betz, C. Feuersänger, A. Lindworsky, and J. Deuse,
“Unsupervised learning for opportunistic maintenance optimization in
flexible manufacturing systems,” Procedia CIRP, vol. 93, pp. 1025–
1030, 2020.

[33] C.-Y. Chen, S.-C. Chang, and D.-Y. Liao, “Equipment anomaly detection
for semiconductor manufacturing by exploiting unsupervised learning
from sensory data,” Sensors, vol. 20, no. 19, p. 5650, 2020.

[34] E. Wescoat, M. Krugh, A. Henderson, J. Goodnough, and L. Mears,
“Vibration analysis utilizing unsupervised learning,” Procedia Manufac-
turing, vol. 34, pp. 876–884, 2019.

[35] E. J. Husom, S. Tverdal, A. Goknil, and S. Sen, “Udava: an unsu-
pervised learning pipeline for sensor data validation in manufacturing,”
in Proceedings of the 1st International Conference on AI Engineering:
Software Engineering for AI, 2022, pp. 159–169.

[36] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman,
G. McVean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C.
Sabeti, “Detecting novel associations in large data sets,” science, vol.
334, no. 6062, pp. 1518–1524, 2011.

[37] P. Sedgwick, “Pearson’s correlation coefficient,” Bmj, vol. 345, 2012.
[38] C. H. Lubba, S. S. Sethi, P. Knaute, S. R. Schultz, B. D. Fulcher,

and N. S. Jones, “catch22: Canonical time-series characteristics,” Data
Mining and Knowledge Discovery, vol. 33, no. 6, pp. 1821–1852, 2019.

[39] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural networks: Tricks of the trade, 2012, pp. 9–48.

[40] Y. LeCun et al., “Generalization and network design strategies,” Con-
nectionism in perspective, vol. 19, pp. 143–155, 1989.

[41] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[42] M.-A. Tnani, M. Feil, and K. Diepold, “Smart data collection system for
brownfield cnc milling machines: A new benchmark dataset for data-
driven machine monitoring,” Procedia CIRP, vol. 107, pp. 131–136,
2022.

[43] Bosch Connected Devices and Solutions GmbH, https://www.bosch-
connectivity.com/products/industry-4-0/connected-industrial-sensor-
solution/downloads/, Visited in 2022.

[44] BETRIEBSANLEITUNG, INDEX-Werke GmbH & Co. KG, 2006.
[45] Great Expectations, https://greatexpectations.io/, Visited in 2022.
[46] A. New, M. Baker, E. Nguyen, and G. Vallabha, “Lifelong learning

metrics,” arXiv preprint arXiv:2201.08278, 2022.
[47] V. Kumar, G. S. Lalotra, P. Sasikala, D. S. Rajput, R. Kaluri,

K. Lakshmanna, M. Shorfuzzaman, A. Alsufyani, and M. Uddin,
“Addressing binary classification over class imbalanced clinical
datasets using computationally intelligent techniques,” Healthcare,
2022. [Online]. Available: https://www.mdpi.com/2227-9032/10/7/1293



[48] N. Jourdan, S. Sen, E. J. Husom, E. Garcia-Ceja, T. Biegel, and
J. Metternich, “On the reliability of machine learning applications in
manufacturing environments,” in NeurIPS 2021 Workshop on Distribu-
tion Shifts: Connecting Methods and Applications, 2021.

[49] J. Gawlikowski, C. R. N. Tassi, M. Ali, J. Lee, M. Humt, J. Feng,
A. Kruspe, R. Triebel, P. Jung, R. Roscher et al., “A survey of uncertainty
in deep neural networks,” arXiv preprint arXiv:2107.03342, 2021.

[50] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pien-
aar, R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “Mlir:
Scaling compiler infrastructure for domain specific computation,” in
2021 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2021, pp. 2–14.

[51] C. Lattner, “Llvm and clang: Next generation compiler technology,” in
The BSD conference, vol. 5, 2008, pp. 1–20.

[52] A. Goknil and K. S. Yildirim, “Toward sustainable iot applications:
Unique challenges for programming the batteryless edge,” IEEE Soft-
ware, vol. 39, no. 5, pp. 92–100, 2022.

[53] F. Erata, E. Yildiz, A. Goknil, K. S. Yildirim, J. Szefer, R. Piskac,
and G. Sezgin, “Etap: Energy-aware timing analysis of intermittent pro-
grams,” ACM Transactions on Embedded Computing Systems, vol. 22,
no. 2, pp. 1–31, 2023.


