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Abstract—Unsupervised learning systems using clustering have
gained significant attention for numerous applications due to
their unique ability to discover patterns and structures in large
unlabeled datasets. However, their effectiveness highly depends
on their configuration, which requires domain-specific expertise
and often involves numerous manual trials. Specifically, selecting
appropriate algorithms and hyperparameters adds to the com-
plexity of the configuration process. In this paper, we propose,
apply, and assess an automated approach (AutoConf ) for config-
uring unsupervised learning systems using clustering, leveraging
metamorphic testing and Bayesian optimization. Metamorphic
testing is utilized to verify the configurations of unsupervised
learning systems by applying a series of input transformations.
We use Bayesian optimization guided by metamorphic-testing
output to automatically identify the optimal configuration. The
approach aims to streamline the configuration process and
enhance the effectiveness of unsupervised learning systems. It has
been evaluated through experiments on six datasets from three
domains for anomaly detection. The evaluation results show that
our approach can find configurations outperforming the baseline
approaches as they achieved a recall of 0.89 and a precision of
0.84 (on average).

I. INTRODUCTION

Unlike supervised learning, which relies on labeled data,
unsupervised learning requires no explicit supervision to learn
meaningful representations of the input data. It can identify
hidden structures, such as clusters or low-dimensional man-
ifolds, in massive datasets, e.g., time-series sensor data ob-
tained from Cyber-Physical Systems (CPS), or discover novel
and unexpected relationships between data points. This capa-
bility has made unsupervised learning an attractive alternative
for many applications, ranging from anomaly detection [1]
to predictive maintenance [2]. For instance, unsupervised
anomaly detection techniques can be preferred over supervised
ones [3] when anomalies are rare or unknown, data distribution
is not well-defined, or real-time anomaly detection is needed.

The effectiveness of systems using unsupervised learning
methods, e.g., clustering, highly depends on the configuration
of these methods, e.g., the selection of data preprocessing
hyperparameters, features, and appropriate clustering algo-
rithms and their hyperparameters. For instance, the hyper-
parameters govern various aspects of the learning process,
such as the number of clusters, the dimensionality of the
learned representations, or the regularization strength. Finding

the optimal configuration of an unsupervised learning system
for a specific dataset and application is often challenging due
to the large configuration space and requires numerous manual
trials and errors. Therefore, there has been a growing need for
developing automated approaches to configure unsupervised
learning systems. On the other hand, the absence of ground
truth labels due to the systems’ unsupervised nature poses a
challenge for automating the configuration process.

Considerable research has been devoted to developing au-
tomation support for several machine learning (ML) steps
(including data preprocessing, feature engineering, model gen-
eration, and model evaluation) in the context of automated
machine learning (AutoML) [4]–[6]. AutoML aims to simplify
and accelerate the ML process, allowing non-experts to use
ML effectively and efficiently. Existing AutoML approaches
primarily focus on supervised learning systems [4]–[6], with
limited support for unsupervised learning methods such as
clustering. The approaches for unsupervised learning support
clustering algorithm selection or hyperparameter tuning with-
out considering other critical ML steps such as data prepro-
cessing and feature engineering [7]–[13]. To deal with the lack
of ground truth labels in unsupervised learning, they mostly
rely on internal validity metrics like the silhouette score [14],
which may not adequately capture the “dynamic” nature of a
dataset (i.e., the effect of changing the input datasets on the
clustering results) or account for data characteristics like noise,
density, and skewed distribution [15], [16].

In this paper, we propose, apply, and assess a novel ap-
proach, AutoConf , which leverages metamorphic testing [17]–
[19] and Bayesian optimization [20] to automate the configura-
tion of clustering-based unsupervised learning systems. Meta-
morphic testing is a software testing technique that involves
verifying the behavior of a system by applying a series of
transformations to the inputs and observing whether the output
is consistent with the expected behavior. Our approach utilizes
metamorphic testing to address the lack of ground truth while
evaluating the performance of unsupervised learning configu-
rations. Metamorphic testing applies dynamic transformations
to the dataset, such as adding white noises with respect to
different clusters or adding/removing new samples around
cluster centers, to validate the robustness of the configura-
tions against various dataset characteristics such as noise and
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density. Our approach uses Bayesian optimization [20] guided
with metamorphic testing output as the objective function to
automatically determine the optimal configuration of unsu-
pervised learning systems. To perform the optimization, we
employ the Tree Parzen Estimator (TPE) approach [21], [22],
a widely-used optimization method for expensive black-box
functions. TPE focuses on identifying the promising regions
of the search space (which includes clustering algorithms, their
hyperparameters, and hyperparameters related to other ML
steps such as data preprocessing and feature engineering).

We present six metamorphic relations (MRs) for the meta-
morphic testing part of our approach. Our MRs are designed
for anomaly detection since detecting anomalies holds sig-
nificant importance in the fields of Software Engineering
and CPS. Moreover, depending on the surrounding environ-
ment, CPS involves more components than regular software
systems. Continuing along this train of thought, automating
the configuration of ML algorithms for anomaly detection is
crucial for several compelling reasons: (1) to fine-tune the
systems without excessive manual intervention, (2) to search
through various combinations for optimal performance, and
(3) to rapidly prototype or test. By modifying our six MRs
or providing new MRs, we can apply AutoConf to other
types of unsupervised learning systems, such as predictive
maintenance. In addition, AutoConf employs five generic
(application-agnostic) MRs proposed by Xie et al. [16] for
testing clustering algorithms.

AutoConf was subjected to evaluation via experiments on
six datasets sourced from three distinct CPS domains (i.e.,
Drones, Electrocardiogram machine, and Computer Numeri-
cal Control machine) for anomaly detection. These datasets
included naturally occurring anomalies and those induced
artificially, with the latter generated through utilizing the
industry partner’s environment. The results demonstrate that
AutoConf can identify configurations capable of detecting
anomalies, surpassing the baseline approaches (based on recall
and precision metrics). On average, AutoConf recorded recall
and precision scores of 0.89 and 0.84, respectively.

Our contributions can be summarized as follows:
1) Formulation of metamorphic testing to address the lack

of ground truth labels for automated configuration of
unsupervised learning systems.

2) Configuration support not only for clustering algorithms
and their hyperparameters but also for other ML steps,
such as data preprocessing and feature engineering.

3) Novel metamorphic relations for testing unsupervised
anomaly detection, utilized for automated configuration.

4) Extensive empirical evaluation based on multiple experi-
ments utilizing six different datasets from three domains.

5) A tool of our approach and the datasets in our experi-
ments, available at [23].

II. BACKGROUND

A. Unsupervised Learning

Unsupervised learning refers to ML identifying patterns
in datasets without any label or human guidance. Its ability

to discover similarities and differences in datasets makes
it feasible for anomaly detection, exploratory data analysis,
behavior profiling, predictive maintenance, etc. While our
approach is applicable to various use cases, in this paper we
limit its scope to anomaly detection. Unsupervised learning
for anomaly detection techniques are as follows.

• Clustering methods include KMeans [24], [25], Mean-
Shift [26], [27], DBScan [28], and Optics [29].

• Outlier detection methods include One-Class SVM [30],
Local Outlier Factor [31] and Isolation Forest [32].

One unsupervised learning method is clustering observa-
tions in a data set based on their characteristics. It aims to
find a cluster configuration with the maximum similarity be-
tween in-cluster observations and the maximum dissimilarity
between different clusters. Measuring the Euclidean distance
between observations gives observation similarity. There are
several clustering algorithms (e.g., KMeans [24], [25], Mini-
batch KMeans [33], MeanShift [26], [27], DBScan [28],
Optics [29], and affinity propagation [34]) in the literature.

Outlier detection methods are classification-like as these
methods only consider the binary classification of data (inliers
and outliers) without considering clusters. In our approach,
we focus on configuring clustering algorithms because they
serve other purposes, such as behavior profiling and predictive
maintenance (requirements of our industry partner), on top of
anomaly detection. Assume a CPS with a CNC (Computer
Numerical Control) machining having several phases. We can
map clusters to different phases of its time-series sensor data,
perform data analysis of distinct clusters, and reason about the
process behaviors. For example, outliers persistently occurring
around a particular cluster may indicate the maintenance need
of the CNC parts involved in the corresponding phase.

B. Metamorphic Testing

Metamorphic testing is an effective testing technique to
address the oracle problem [17]–[19]. It is based on the notion
that it may be easier to analyze the relations (metamorphic
relations) between outputs of different test runs, rather than to
define the expected input-output behavior [35].

Metamorphic testing relies on metamorphic relations (MRs),
which are fundamental properties of the program being tested,
applicable to multiple inputs and their expected outputs [36].
The testing methodology involves running the system with
different inputs for the same test case and verifying the outputs
against the metamorphic relation (MR) to determine pass/fail.
The three key steps in metamorphic testing are as follows [35]:

• Construction of MRs. Program properties to be tested are
identified and represented as MRs for multiple test case
inputs and their expected outputs.

• Generation of source test cases. Source test cases could
be generated using various testing techniques (e.g.,
Boundary testing [37] or Equivalence partitioning [38]).

• Execution of MRs. After generating follow-up test cases
based on the source test cases, both are executed to verify
the described MRs.
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C. Bayesian Optimisation

Bayesian optimization [20] is a sequential design strategy
used to globally optimize black-box functions without assum-
ing any functional forms. It is utilized to optimize functions
expensive to evaluate. It provides a promising approach to
explore the search space effectively and efficiently by min-
imizing the number of function evaluations required. Due to
this property, it is a favorable option for hyperparameter tuning
in ML as well as for optimization problems in other domains.

III. CONFIGURATION OF UNSUPERVISED LEARNING

This section exemplifies unsupervised learning systems and
their configuration. Figure 1 illustrates an example of an
unsupervised learning system [39], i.e., an ML pipeline that
automatically discovers reference patterns for process behavior
in sensor data for AI-enabled IIoT. The pipeline consists of
three main steps: data preprocessing, unsupervised learning
of clusters, and labeling and validating new data.

Training 
Data

New Data

Pre-processing
< … >

Labeling & 
Validating

Training the 
Model

Vectors

Model

Labeled  
New Data

Divide the data into 
subsequences. 
Vectorize the 
sequences. 
Train the model with 
an unsupervised 
learning algorithm. 

Cluster and label  
the validating data.

1

2

3

Fig. 1: An example unsuper-
vised learning system.

The pipeline splits training
time series data into subse-
quences and extracts statis-
tical features from them in
Step 1 (❶). Each feature vec-
tor represents a subsequence.
With the obtained feature vec-
tors, it performs cluster anal-
ysis on them in Step 2 (❷).
Each vector is assigned to a
cluster/category. The output is
a model, consisting of several
cluster centers. The feature vectors of the data are being
validated in Step 3 (❸). The subsequences are labeled cor-
responding to the cluster information that they are assigned
to in the model. It finally calculates a deviation metric giving
how far a given feature vector is from the cluster centers in
feature space. The options and algorithm parameters in these
three steps particularly affect the pipeline output for an input
time series.

Data preprocessing (Step 1). This step has three parame-
ters —- sliding window size, overlap, and features (Table I).
Information in raw time series exists as relations between
consecutive time-varying data points. Clustering high volumes
of raw time series is computationally expensive. Features (e.g.,
mean and variance) are extracted from data subsequences,
thus removing the temporal dimension. Lubba et al. [40]
discuss several features we can extract from time series data,
while each one may have a different impact on the pipeline
output. The sliding window technique [41], [42] requiring
more computing time provides the finer granularity needed
(sliding window size).

The optimal window size (the length of a sliding cutout of
a time sequence of data) depends on the sampling frequency
of the time series and the order of magnitude of the labels
and segments produced. We can choose to overlap between
the subsequences/windows. For instance, with a window size
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Fig. 2: Overview of our approach AutoConf

of ten and an overlap of nine, we can get a maximum of 190
subsequences from a time series of two-hundred data points.

Unsupervised learning of clusters (Step 2). An unsuper-
vised learning system is configurable for several clustering
methods, such as KMeans, DBScan, and Optics, which require
different parameters. For instance, the standard KMeans is
used for its efficiency when the number of clusters is specified.
It has the following configuration parameters: (i) the number
of clusters, (ii) predefined centroids (true or false), (iii)
the initialization method (k-means++ and init), (iv) the
number of runs with different centroid seeds, (v) the maximum
number of iterations for a single run, (vi) the relative tolerance
with regards to the Frobenius norm of the difference in cluster
centers of two consecutive iterations to declare convergence,
and (vii) KMeans algorithm (e.g., lloyd and elkan).

Labeling and validating new data (Step 3). The purpose
is to validate time series data and detect anomalies in an early
stage using a deviation metric. There are a few metrics for
detecting deviation/anomalies. One such metric is to compute
the (Euclidean) distance of an incoming new data to each clus-
ter centriod and identify the nearest cluster; and if the distance
to the nearest cluster is greater than a given threshold (e.g.,
two standard deviation of the mean distances-to-centriods of
all the samples in the nearest cluster), then the new data is
flagged as an anomaly.

IV. APPROACH

Figure 2 presents an overview of our approach, where the
core component is enclosed by a dotted box. Our approach
endeavors to identify the optimal configuration for accurately
clustering the input data by considering the user-defined search
space and input dataset. The output configuration includes the
optimal parameters for preprocessing the input dataset to fit it
into the best model determined by our approach.

Algorithm 1 presents the high-level algorithm for our search
process using metamorphic testing. It takes two input pa-
rameters: refData and searchSpace. refData is any time-
series data (it may contain some outliers or white noises)
collected under normal operating conditions of any cyber-
physical system (CPS). searchSpace is the search space of

3



Algorithm 1 FindBestConfig
Require: refData
Require: searchSpace : {window, overlap,model,modelParams}

1: losses, selectedV alues← {}
2: meanLoss← 1
3: while ¬timeout ∨meanLoss ̸= 0 do
4: selectedV alues← OptimizeSearch(searchSpace,meanLoss)
5: X ← ExtractFeatures(refData, selectedV alues)
6: model← BuildClusterModel(X, selectedV alues)
7: silhouetteScore = ComputeSilhouetteScore(model)
8: if silhouetteScore < 1 then
9: losses← |silhouetteScore|

10: else
11: losses← 1− silhouetteScore
12: end if
13: losses← NumOfOutiers(model)/totalNumOfSamples
14: for all mr ∈ BenignMRs do
15: X ′ ← GenerateFollowupDataset(X,mr)
16: model′ ← BuildClusterModel(X ′, selectedV alues)
17: losses← EvaluateBenignMR(model,model′)
18: end for
19: for all mr ∈ AnomalyMRs do
20: X ′ ← GenerateFollowupDataset(X,mr)
21: model′ ← BuildClusterModel(X ′, selectedV alues)
22: losses← EvaluateAnomalyMR(model,model′)
23: end for
24: meanLoss← mean(losses)
25: end while

each (hyper)parameter. For example, the ‘model’ parameter
specifies the search space of ‘clustering’ algorithms, such as
KMeans, DBScan, and Optics (see Section III).

The algorithm performs an iterative search for the best
configuration until either a timeout occurs or the loss, which
penalizes the bad configuration, becomes zero (Line 3). In
each iteration, it carries out the following steps:

• OptimizeSearch in Line 4 chooses a value for each
parameter defined in searchSpace using Bayesian op-
timization [21]. This method optimizes the search for
promising regions of the hyperparameter space based on
historical ‘losses’ collected through the input parameter
meanLoss obtained from previous iterations.

• ExtractFeatures in Line 5 produces dataset X having
the statistical features extracted from refData, according
to the selected configuration values (selectedV alues).

• BuildClusterModel in Line 6 produces (source) clus-
tering model (model) based on dataset X and the selected
configuration values.

• We compute the silhouette score [14] that reports the
intrinsic quality of model (Line 7). We then calculate
loss with respect to the silhouette score (Lines 8-12).

• We compute loss with respect to the number of outliers
produced by model (Line 13).

• In Line 15, the follow-up dataset X ′ is generated from
the source dataset X based on a benign MR (i.e., an
MR specifying the same clustering model behavior for
source and follow-up models). A follow-up clustering
model (model′) is then built using X ′ (Line 16) and
evaluated against the source clustering model (model)

using function EvaluateBenignMR (Line 17). The
function expects the two clustering models’ outcomes to
be the same. If not, the samples that deviate from the
expected outcome are considered erroneous. The func-
tion computes loss as the number of erroneous samples
relative to the total number of samples.

• In Line 20, the follow-up dataset X ′ is generated from
the source dataset X based on an anomaly MR (i.e.,
an MR specifying different model behaviors for source
and follow-up models). A follow-up clustering model
(model′) is then built using X ′ (Line 21) and evaluated
against the source clustering model (model) using func-
tion EvaluateAnomalyMR (Line 22). The function ex-
pects the two clustering models’ outcomes to be different.
If not, the samples not leading to the expected deviation
are considered erroneous. The function computes loss
based on the number of erroneous samples relative to the
number of manipulated samples (Line 22).

• We compute 13 losses, and their mean (meanLoss in
Line 24) is used in the next iteration to select the next
best parameters by OptimizeSearch (Line 4).

In the rest of the section, we first present the search space
(searchSpace) (Section IV-A), explain the hyperparameter
search optimization in OptimizeSearch in Line 4 (Section
IV-B), introduce our metamorphic relations (Section IV-C),
and finally give the details of loss computation (Section IV-D).

A. Search Space

The user defines the search space as per the application’s
requirements, such as anomaly detection and predictive main-
tenance, and may omit some configuration options to expedite
the search process (see Figure 2). A search space has been
specified for the example system in Section III with hyperpa-
rameters including window, overlap, feature, model, and
modelParams. window denotes the subsequence size of time
series and is a uniform distribution of integers between 30
and 1500, with a step size of 1. overlap is a continuous
hyperparameter with a uniform distribution between 0 and 1,
indicating the ratio of overlap between subsequences. feature
is a set of engineered features extracted from subsequences
(see Table I); an arbitrary number is selected for a configu-
ration. model refers to clustering algorithms (e.g., KMeans,
DBScan, Optics); one is chosen for each configuration.

modelParams refers to parameters defined for each clus-
tering algorithm, e.g., eps, min samples, metric, algorithm
for DBScan. eps represents the maximum distance be-
tween two samples (one in the neighborhood of the other),
min samples is the number of samples in a neighborhood for
a point considered a core point, metric is the distance measure
(e.g., Euclidean and manhattan) for instances in a feature
array, algorithm refers to algorithms (e.g., ball tree, brute)
computing pointwise distances and find nearest neighbors.

B. Hyperparameter Search Optimization

Our search space is extensive and includes a variety of
clustering algorithms and hyperparameters, such as the time
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TABLE I: List of features for the system in Section III.
Feature name Mathematical definition
Mean µ = 1

w

(∑w
i=1 xi

)
Range r = max(x)−min(x)
Gradient ∇x =

xi+1−xi−1

2d

Variance v = 1
w

∑w
i=1(xi − µ)2

Frequency strength ν = |DFT(w)|2
Related quantities Symbol
Sliding window size w
Overlap of sliding windows d

window and overlap for computing statistical features over
time series data. The time window can be an integer between
1 and the dataset size, while the overlap is a percentage
between 0% and 100% (exclusive). Furthermore, we need to
optimize hyperparameters for the clustering algorithms, such
as the epsilon value in DBScan and the number of clusters
in KMeans. We use Bayesian optimization to optimize our
search (OptimizeSearch in Line 4 in Algorithm 1), which
is more efficient than random or grid searches because it uses
past evaluations to guide future ones. Bayesian optimization
quickly identifies promising areas of the search space and
avoids areas that are unlikely to yield good results.

For Bayesian optimization, we employ TPE [21], which
creates a “surrogate” probabilistic model mapping hyperpa-
rameters to a probability of a score on the objective function,
i.e., P (score|hyperparameters). This probabilistic model
guides the selection of the next set of hyperparameters by
choosing the ones that perform best on the surrogate function.
As the surrogate function is easier to optimize than the
objective function, Bayesian methods can efficiently find the
best values for the objective function.

TPE takes hyperparameters and an objective function as
inputs. It builds a surrogate probability model of the objec-
tive function, finds the hyperparameters performing best on
the surrogate, applies them to the actual objective function,
updates the surrogate model with new results, and repeats the
process until the maximum iterations or time limit is reached.

C. Metamorphic Relations

Our approach offers a practical and accessible means for
end-users to identify the best-performing configuration of their
unsupervised learning system, without requiring extensive
theoretical background knowledge. To do so, we apply eleven
MRs in the search process including the five generic MRs
proposed by Xie et al. [16] for testing clustering algorithms.

Our MRs are tailored for anomaly detection in CPS but
can be customized for other unsupervised applications such
as predictive maintenance [2]. They fall into two categories:
benign and anomaly. Benign MRs define the same cluster-
ing model behavior for source and follow-up models, while
anomaly MRs define different behaviors for the two models.

Given an anomaly detection system U and dataset D,
we denote Rs = U(D) as the anomaly detection result. A
transformation τ applied to D leads to Dτ . Let us refer to
Rf = U(Dτ ) as the new anomaly detection result. An MR

defines the behavior of U by transforming D by τ . In other
words, an MR defines the expected relation γ between Rs and
Rf after τ . We refer to the original dataset D and the result Rs

as the source dataset and output, respectively. Dτ and Rf are
referred to as the follow-up dataset and output, respectively.

Assume that dataset D = {s1, s2,..., sn} contains n
instances, and each instance si = (si1, si2,..., sid) has d-
dimensional attributes. The transformation τ in our MRs
manipulates instances (si) and their attributes (sid) in the
source dataset D transformed into the follow-up dataset Dτ :
Benign MR1.1 modifying attributes: Modifying the original
raw attribute (sij) of an instance (si) in time-series dataset
D to represent white noise, which can result from electronic
interference, is not expected to alter the anomaly detection
result (Rf ) compared to the original result (Rs). While this
may seem counterintuitive, the modification is made on the
raw attribute rather than the statistical attribute used in clus-
tering. Hence, a single attribute spike should not substantially
affect the statistics. This metamorphic relation is based on the
assumption that machinery in CPS may produce white noises
and, if infrequent, is considered normal behavior.
Anomaly MR1.2 modifying attributes: Modifying the raw
attribute (sij , si+1

l,..., si+k
z) of several consecutive instances

(si, si+1, ...., si+k) to reflect anomalous behavior is expected
to yield an anomaly detection result (Rf ) different than
the original result (Rs), which should flag the manipulated
instances as anomalies. This MR considers variations observed
in consecutive instances to indicate actual anomalies, rather
than white noise or temporary signal inference.

For testing an example anomaly detection system in a
drone flight scenario, MR1.1 can simulate a sudden wind gust,
causing a spike in speed or rotation, which should not be
reported as an anomaly to avoid unnecessary investigations.
However, if such a condition persists, MR1.2 can be used
to test and flag it as an anomaly, indicating an extreme
environmental condition that may require aborting the mission.
Benign MR2.1 modifying clusters: We modify the raw at-
tribute (sij) of an instance (si) from each distinct cluster to
represent white noise specific to the cluster. If the anomaly
detection system is robust, the modified instances should not
be detected as anomalies, i.e., the new anomaly detection result
(Rf ) should remain the same as the original result (Rs). For
instance, a machinery process may have multiple phases that
operate differently and produce distinct clusters. Each phase
may experience spikes or white noise that are considered
normal (it is the case with our industry partners).
Anomaly MR2.2 modifying clusters: If we modify the raw
attribute (sij , si+1

l,..., si+n
z) of n consecutive instances (si,

si+1, ...., si+n) from few clusters to represent anomalous be-
havior with respect to distinct phases of a machinery process,
the new result (Rf ) should differ from the original result (Rs).
The modified instances should be flagged as anomalies.
Benign MR3.1 adding new instance(s): If one new instance
(s1) that statistically significantly deviates from the core
samples of the clusters (white noise) is added to D (Dτ ),
the new and original results (Rf and Rs) should be the same.
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Algorithm 2 EvaluateBenignMR

Require: model,model′

1: count← GetSampleCount(model′)
2: err ← 0
3: for all sample ∈ model′ do
4: if ¬IsSameCluster(sample,model) then
5: err ← err + 1
6: end if
7: end for
8: loss← err/count
9: return loss

Anomaly MR3.2 adding new instance(s): If n new, consec-
utive instances that statistically significantly deviate from all
the core samples of the clusters are added to D (Dτ ), the
new and original results (Rf and Rs) should be different. The
manipulated instances should be flagged as anomalies.

The generic MRs (proposed by Xie et al. [16]) used in our
approach are: manipulating cluster density, adding informative
or uninformative attributes, removing redundant attributes,
and scaling data. We refer the reader to [16] for their details,
noting that not all the MRs provided by Xie et al. are applica-
ble to our context. For instance, the MR about reordering the
samples in the dataset is not suitable for time-series data.

D. Objective Function

Our objective function aims to assess the ‘fitness’ of the
currently selected algorithm and hyperparameter values and
provide a ‘fitness’ score to guide the search optimization
function in finding better values in the next iteration.

Metrics such as accuracy, precision, and recall are com-
monly used for assessing and tuning ML algorithms. However,
these metrics require labeled data not available in our context.
Therefore, we use metamorphic testing as a performance
measure to address the test oracle problem. Metamorphic
testing evaluates the ‘dynamic’ aspects of clustering systems
by testing the effects of dataset transformations on clustering
results. This approach ensures that the clustering model works
well with interconnected datasets.

Essentially, meeting the constraint of an MR can be treated
as an objective. We adopt the generic MRs proposed by Xie
et al. [16] and introduce our MRs specific to our context of
anomaly detection in CPS (see Section IV-C).

While applying benign MRs (EvaluateBenignMR in Line
17 in Algorithm 1), we expect the same model behav-
ior for source and follow-up test cases. Algorithm 2 gives
EvaluateBenignMR that evaluates the performance of a
clustering model (model) with a follow-up model (model′)
created by a benign MR. For each sample in the follow-up
model, we check if it belongs to a different cluster in the
source model (Line 4). If yes, the error count is incremented
(Line 5). We divide the error count by the number of samples
in the follow-up model to calculate the loss (Line 8). The loss
represents the clustering results’ deviation on the follow-up
model from the source model under a benign MR. We return
the loss as output (Line 9).

Algorithm 3 EvaluateAnomalyMR

Require: model,model′

1: goodLabels← ExcludeOutliers(models.labels)
2: count, badSamples← GetInjectedBadSamples(model′)
3: err ← 0
4: for all badSample ∈ badSamples do
5: if badSample.label ∈ goodLabels then
6: err ← err + 1
7: end if
8: end for
9: loss← err/count

10: return loss

While applying anomaly MRs (EvaluateAnomalyMR in
Line 22 in Algorithm 1), we expect different model behav-
ior for source and follow-up test cases. Algorithm 3 gives
EvaluateAnomalyMR that evaluates the performance of a
clustering model (model) with a follow-up model (model′)
created by an anomaly MR. For each bad sample (anomaly)
injected into the follow-up model, we check if it is an outlier
in the source model (Lines 4 and 5). If yes, the error count is
incremented (Line 6). We divide the error count by the number
of injected bad samples to calculate the loss (Line 9). The
loss represents the clustering results’ deviation on the follow-
up model from the source model under an anomaly MR. We
return the loss as output (Line 10).

In total, we use eleven MRs to evaluate configurations. We
also employ two more metrics (Lines 8-13 in Algorithm 1):

• Silhouette Score. We incorporate the silhouette score
(Lines 7-12 in Algorithm 1), i.e., an internal validation
technique that assesses the effectiveness of a clustering
system by measuring intercluster compactness and in-
tracluster separation [15], [43]. Although the silhouette
score has received criticism for its static approach, as
it does not consider input dataset changes or the rela-
tionships between various clustering outcomes [16], we
believe it could still be a valuable metric in evaluating
configurations. It ranges from −1 (worst) to +1 (best),
with values close to 0 indicating overlapping clusters
and negative values indicating incorrect sample assign-
ments. In each trial, we calculate the silhouette score of
the resulting clusters. For negative scores, we penalize
the model with losses equal to the absolute value of
the score. For positive scores, we calculate losses as
losses← 1− silhouetteScore.

• Noise. We assume that the training dataset contains only
benign data with no anomalies and that the model should
be robust against white noise or interference spikes in the
data without reporting them as anomalies. We calculate
the number of outliers the model produces for each trial
and penalize the model for generating outliers. The loss
is calculated as the ratio of the number of outliers to the
total number of samples (Line 13 in Algorithm 1).

Users can assign weighted scores to each objective based on
their relative importance. For instance, if the intrinsic quality
of the clusters is more important than others, the silhouette
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TABLE II: Configuration domain applied in our experiments
Data Sliding window size w=[30,1500]
preprocessing Overlap d=[0,1)

features={mean,range,gradient,variance}
Clustering method {KMeans, Mini-batch KMeans, DBScan, Optics}

Hyperparameters
KMeans n clusters=[1,15]
Mini-batch KMeans n clusters=[1,15]

max iter={50, 100, 150}
batch size={256, 512, 1024, 2048}

DBScan & Optics eps=[0.1,5]
min samples=[5,70]
metric=[‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’]
algo=[‘auto’, ‘ball tree’, ‘kd tree’, ‘brute’]

TABLE III: Statistics of the datasets. Training dataset (Column
‘#Train’) contains no known anomaly. Test dataset (Column
‘#Test’) contains a mix of normal samples and real/injected
faulty samples.

Dataset CPS Anomaly #Train #Test
DJI-Windy Drone Extreme wind 10,016 20,000
DJI-VelFault Drone Faulty Sensor 5,000 2,000
PX4-Vibrate Drone Anomalous vibrations 43,547 10,887
Ardu-GyroFault Drone Faulty Sensor 144,176 2,000
Sleep-Apnea ECG Sleep Apnea 50,000 5,000
Bosch-CNC CNC Anomalous vibrations 59,393 99,400

score is given more weight (ws) to calculate the loss as
losses← ws × (1− silhouetteScore) in Algorithm 1.

V. EMPIRICAL EVALUATION

We evaluate our approach on six datasets from three distinct
domains to address the following Research Questions (RQ)s:

• RQ1. How does unsupervised learning systems perform
with AutoConf?

• RQ2. Is clustering-based anomaly detection configured
by AutoConf more effective than baseline anomaly de-
tection approaches?

• RQ3. How does Bayesian optimization boost the effi-
ciency of the search process in AutoConf?

A. Experiment Design

Configuration domain. Table II shows the configuration
search space in our experiments. It is determined based on the
discussions with our industry partners. Note that our approach
is not limited to this particular space.

Datasets. Our evaluation used six datasets, including simu-
lated and actual time-series log data from three CPS domains:
Drones, Electrocardiogram (ECG) machine, and Computer
Numerical Control (CNC) machine. The datasets consist of
four simulated Drone datasets, acquired from various drone
control programs (DJI, Ardupilot, and PX4), and two real ECG
and CNC datasets (Sleep-Apnea and Bosch-CNC). Table III
lists the dataset statistics. All datasets contain real or realistic
anomalies, including those specified by our industry partner.
The Sleep-Apnea dataset represents actual ECG measurement
data of the sleep-apnea condition of a patient, while Bosch-
CNC contains real sensor data from the Bosch CNC machine.

DJI-Windy includes drone log data under harsh weather
conditions, causing the pilot to abort the mission. The anomaly

was motivated by a real-world accident caused by wind gusts
making the drone descend at the wrong angle [44]. We
simulated the wind using the DJI simulator and collected
acceleration data from the DJI Matrice 300 [45] during a
mission without anomalies (train dataset) and under strong
wind halfway through the mission (test dataset).

Ardu-GyroFault and DJI-VelFault simulate faulty sensors,
Gyroscopic and Velocity, respectively (motivated by Son et
al. [46]). We injected sensor failures to simulate cases with
abnormal sensor readings (very low or high). We used the
Ardupilot simulator [47] for Ardu-GyroFault and the DJI sim-
ulator for DJI-VelFault to conduct the standard flight mission
AVC2013 [48]. In the test dataset, the “Gyroscopic Y-axis”
and “Velocity Y-axis” are set to abnormally high values.

PX4-Vibrate simulates a flight for a PX4-powered drone.
The fault was injected into acceleration Z-and Y axes for the
heavy vibration drone behavior.

Sleep-Apnea is obtained from a sleep heart health study [49]
(determining sleep apnea based on the patient’s breathing
behavior) with 6000 patients. We randomly selected one of the
patient’s records, which contains measurements of nasal/oral
airflow (thoracic respiratory) and the sleep apnea condition
(dependent variable). According to their report, apneas start
if the nasal/oral airflow amplitude decreases below approxi-
mately 25% of the baseline identified during regular breathing
with stable oxygen levels for more than 10 seconds.

Bosch-CNC contains vibration behavior captured from three
different CNC milling machines executing 15 processes [50],
including normal and anomalous conditions (see Figure 5(a)).
Tri-axial accelerometers were mounted in each machine, mea-
suring acceleration in X, Y, and Z-axes at a sampling rate of
2 kHz. For the training set, we selected a sequence with no
anomalies, while for the test set, we chose a data sequence
containing both normal and anomalous data.

Setup. We implemented AutoConf using Python 3, Scikit-
Learn libraries [51], and HyperOpt [22]. The experiments were
done on a Linux machine with 40 cores Intel CPU E5-2640
2.40GHz and 330GB RAM. For each training dataset, we ran
10,000 trials to find the optimal configuration. Depending on
the dataset size, the time to complete the trials ranges from
one to seven days. After finding the optimal configuration, the
clustering model is built and is used to validate the test data
(see Figure 2 and Step 3 in Section III).

B. Results

RQ1: How does unsupervised learning systems perform
with AutoConf?: To address RQ1, we compared the anomaly
detection results of the configurations produced by AutoConf
and a baseline method utilizing an internal validity metric,
since current approaches [8], [12], [13] use such metrics
(e.g., silhouette score, Calinski-Harabasz score, and Davies-
Bouldin score [15]) to optimize clustering systems. Initially,
we performed a preliminary experiment on a sample dataset
to assess these metrics and identified the silhouette score as
the best-performing one. We thus chose it for the baseline
approach in our evaluation. The baseline approach is simply
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TABLE IV: Best Configurations found by AutoConf
Dataset w d Model Model Min.

Params Loss
DJI-Windy 42 28 DBScan eps=0.3 0.052

min samples=19
metric=l1

algo=brute
DJI-VelFault 48 30 KMeans n clusters=3 0.067
PX4-Vibrate 49 40 DBScan eps=4.77 0.278

min samples=13
metric=l2

algo=brute
Ardu-GyroFault 47 27 DBScan eps=2.88 0.283

min samples=20
metric=euclidean

algo=brute
Sleep-Apnea 250 10 DBScan eps=1.35 0.042

min samples=15
metric=euclidean

algo=auto
Bosch-CNC 1100 330 DBScan eps=0.53 0.107

min samples=6
metric=euclidean

algo=auto

AutoConf using only the silhouette score (Silhouette-Only-
Approach). Therefore, we also implicitly assessed to what
extent metamorphic testing improves the configuration search.

Table V shows the anomaly detection results of Auto-
Conf and the Silhouette-Only-Approach baseline using the
internal validity metric. AutoConf consistently outperformed
Silhouette-Only-Approach. The F1-score is above 0.7 for all
datasets, indicating that AutoConf is generally effective in
finding the best configurations for anomaly detection in di-
verse CPS. The configurations provided by AutoConf achieved
high recall and precision, particularly for DJI-VelFault, PX4-
Vibrate, and Ardu-GyroFault having distinct anomalies, such
as constantly high sensor values for a prolonged period.

Table IV lists the configurations delivered by AutoConf for
the datasets (w is the window size, and d is the overlap). Dif-
ferent CPS datasets require unique configurations. An anomaly
detection model built from the “best” configuration should
ideally represent the reference training data well and detect
anomalies more effectively than models that utilize default
hyperparameters. Figure 3 presents the DJI-Windy time-series
training dataset, its clustering of principal components (pca)
with the “best” configuration, and its clustering with default
DBScan hyperparameter values from the Scikit-learn library.
Each color represents a cluster. The best model correctly
captured roughly seven patterns in the training data with seven
clusters (excluding the outlier cluster), while the default model
produced four clusters. The default model had an F1 score of
0.55 whereas the best model had an F1 score of 0.71 (Table V).

The hyperparameter w (window) in Table IV depends on the
data sampling rate and the duration of the behavior we want to
capture. For example, the Sleep-Apnea dataset requires a large
window size (250) to capture the breathing patterns, which last
several seconds. In contrast, the drone log data, which has a
sample rate in milliseconds, requires a smaller window size.

The performance of the configuration produced by AutoConf

is slightly lower for the DJI-Windy dataset due to inconsis-
tencies in the test data, which can lead to confusion in the
anomaly detection model. Figure 4(a) presents the acceleration
sensor values in the training and test data. During some periods
in the test data, the flight direction of the drone aligns with
the wind direction, resulting in low acceleration values that
are similar to those in the training data. However, the training
data contains high acceleration data for a certain duration,
indicating a strong-wind situation (the wind condition was
to match the current weather as closely as possible). These
situations can result in false alarms and false negatives (see
Figure 4(a) for the actual labels and the labels predicted with
AutoConf ), affecting recall and precision.

Figure 5(a) displays a time series of the Bosch-CNC training
and test datasets, while Figure 5(b) depicts the actual and
predicted labels (with AutoConf) for the same dataset. The
anomalous data in the test dataset has larger amplitudes than
the normal data in the training dataset, aiding in distinguishing
the two types of behavior. However, statistical properties
such as the mean and range of the values show similar
characteristics in certain portions of both the anomalous and
normal data, which could be the reason for the relatively low
performance of AutoConf on the Bosch-CNC dataset.

Answer to RQ1: As each CPS may produce datasets with
different characteristics, unsupervised learning systems
should be configured differently for each CPS dataset.
Thanks to metamorphic testing, AutoConf provides con-
figurations yielding better results than the ones delivered
by the baseline approach using an internal validity metric.

RQ2: Is clustering-based anomaly detection configured
by AutoConf more effective than baseline anomaly detec-
tion approaches?: To address RQ2, we performed a com-
parison between the anomaly detection outcomes derived
from the clustering-based approach that was configured by
AutoConf and the corresponding results produced by three
baseline anomaly detection techniques, i.e., One-Class SVM
(OneSVM), Isolation Forest (IF), and Local Outlier Factors
(LOF) [52]. Our aim was to assess if AutoConf is capable
of discovering configurations that lead to superior anomaly
detection than the competing anomaly detection techniques.

The last three columns in Table V list the F1 scores of the
three baseline approaches. The AutoConf configurations out-
perform these approaches except for DJI-VelFault and Ardu-
GyroFault datasets. Overall the baseline approaches failed to
achieve high accuracy, whereas the AutoConf configurations
attain above an F1-score of 0.7 for all the datasets.

Answer to RQ2: AutoConf can identify configurations
that yield similar or better anomaly detection results than
the baseline anomaly detection approaches.

RQ3: How does Bayesian optimization boost the efficiency
of the search process in AutoConf?: To address RQ3, we
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Fig. 3: (a) Timeseries reference data of DJI-Windy dataset; (b) Clustering using the best configuration found by AutoConf ; (c)
Clustering using default configuration.

TABLE V: Comparison of AutoConf and baseline approaches
AutoConf Silhouette-Only-Approach OneSVM IF LOF

Dataset Recall Precision F1-score Recall Precision F1-score F1-score F1-score F1-score
DJI-Windy 0.76 0.66 0.71 0.18 0.43 0.26 0.51 0.65 0.49
DJI-VelFault 1 1 1 1 1 1 1 1 1
PX4-Vibrate 1 0.92 0.96 1 0.87 0.93 0.64 0.64 0.4
Ardu-GyroFault 1 0.9 0.95 1 0.87 0.93 0.93 0.9 0.9
Bosch-CNC 0.76 0.72 0.74 0.5 0.66 0.57 0.56 0.55 0.49
Sleep-Apnea 0.84 0.85 0.85 1 0.65 0.78 0.39 0.39 0.39
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Fig. 4: (a) Time series plot of DJI-Windy train and test dataset.
(b) Comparison of actual labels vs predicted labels.

conducted a comparative analysis of the hyperparameter selec-
tion and exploration strategies of two versions of AutoConf -
one using the TPE algorithm and the other using random
search. The results of our analysis were consistent across all
six datasets; therefore, we present the outcomes solely for the
DJI-Windy dataset. Figure 6(a) and (b) present the scatter plots
of the hyperparameter values (eps and min samples) selected
by AutoConf using the TPE algorithm for each experiment
trial. TPE initially selects values from the entire range with
equal probability. As it gains more knowledge about the impact
of the hyperparameter on the objective function, it gradually
concentrates on areas it anticipates the highest benefit. It
still explores the whole solution space, but less frequently.
Figure 6(c) shows the scatter plot of loss vs. trial, with the
search space concentrated around the minimum loss of 0.05.
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Fig. 5: (a) Time series plot of Bosch-CNC train and test
dataset. (b) Comparison of actual labels vs predicted labels.

Figure 7(a) and (b) present the scatter plot of hyperparame-
ter values (eps and min samples) selected by random search,
which randomly explores the entire solution space without
focusing on any particular area. Consequently, the resulting
loss values are not concentrated at the lower end (see Figure 7).

AutoConf aims to find the optimal configuration, which does
not necessarily converge to zero loss due to trade-offs between
different loss functions. For example, while the silhouette
score loss prioritizes compact clusters, the noise loss focuses
on the inclusion of white noises or spikes in the clusters, which
may degrade their compactness. AutoConf seeks the best
possible loss value by considering all relevant loss functions.
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Fig. 6: Bayesian Optimization search: (a) eps vs trial (b)
min samples vs trial (c) loss vs trial
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Fig. 7: Random search: (a) eps vs trial (b) min samples vs
trial (c) loss vs trial

Answer to RQ3: AutoConf leverages Bayesian optimiza-
tion to achieve a superior guarantee of identifying the
optimal configuration within a time budget. It efficiently
guides the search toward the input space that minimizes
the loss as determined by the prescribed loss functions. In
doing so, it ensures that the entire search space is explored,
thus avoiding being trapped in local optima. The pursuit of
minimal loss is vital to finding configurations that enable
the construction of effective anomaly detection models.

C. Threats to Validity

One threat to the validity of our results pertains to the
accuracy of the drone flight simulator in replicating actual
physical and environmental conditions. As a result, the logged
sensor data may not be entirely realistic. To mitigate this
threat, we conducted experiments with both a widely-used
simulator (Ardupilot) and a proprietary simulator (DJI).

The validity of our results may be jeopardized by the rele-
vance and authenticity of the injected faults. We address this
threat by ensuring that these faults align with well-documented
faults and by confirming the fault scenarios with our industry
partner. Note that only drone datasets are simulated.

We determined the configurations using 10,000 trials in our
experiments. Different results may emerge when fewer or more
trials are conducted. To address this threat, it is necessary to
repeat the experiments with different numbers of trials.

For RQ3, we compared our approach with three baseline ap-
proaches using predefined hyperparameters in Scikit-learn [51]
without fine-tuning. Tuning these hyperparameters necessitates
ground truth labeled data. Future work will investigate hyper-
parameter tuning of these approaches without labeled data.

VI. RELATED WORK

AutoML Solutions. Most AutoML approaches primarily focus
on supervised learning systems [4]–[6], while some others [7]–
[13] concentrate on either clustering algorithm selection or
hyperparameter tuning, with an emphasis on cluster numbers.
Few approaches [8], [12], [13] consider both algorithm se-
lection and hyperparameter tuning, while they exclude hyper-
parameters for other ML steps such as data preprocessing.
To deal with the lack of ground truth labels in unsuper-
vised learning, they rely on internal validity metrics (e.g.,
the silhouette score). However, these metrics do not capture
the dynamic nature of the dataset, and their performance is
sensitive to data characteristics such as noise, density, and
skewed distribution [15], [16]. In contrast, AutoConf employs
metamorphic testing to address the lack of ground truth labels.
Testing Unsupervised Learning. While most ML testing
research concentrate on supervised ML, few studies investigate
testing for unsupervised learning [53]. One such approach, in-
troduced by Murphy et al. [54], utilizes MRs applicable to both
supervised and unsupervised learning algorithms. Ramanathan
et al. [55] combine symbolic and statistical techniques to test
KMeans, while Lu et al. [56] introduce a mutation testing
approach to simulate unstable situations and potential errors
that may arise in unsupervised learning systems. Xie et al. [16]
propose generic MRs for unsupervised learning. AutoConf
uses metamorphic testing with custom MRs to identify un-
supervised learning configurations yielding the best results.
Metamorphic Testing. Considerable research has been con-
ducted on metamorphic testing [53] to test various aspects of
ML, including deep learning models [57]–[60], their domain-
specific applications [61]–[64], and supervised learning clas-
sifiers [65]–[67]. Xie et al. [16] introduce METTLE, a meta-
morphic testing approach for testing unsupervised learning.
METTLE includes eleven MRs that manipulate instance order,
distinctness, density, and attributes, and introduce outliers to
the data. Our approach utilizes some of these general MRs
and the MRs we introduce for anomaly detection. Unlike the
MRs Xie et al. designed, our approach is tailored to address
the complex behaviors exhibited by machinery within systems.
This emphasis arises due to the notable differences between
standard software and physical systems. For instance, consider
the effect of a sudden gust of wind on a drone, causing a
rapid increase in speed or rotation. Additionally, a CPS often
involves multiple phases, each with distinct operations that
lead to different clusters of behaviors.
Deep Learning Methods. Although deep learning methods
such as LSTM, CNN, and autoencoders have proven effective
in detecting anomalies in CPS (a focus on residual error-based
detection) [3], we did not incorporate them in our experiments.
The rationale behind this decision stems from their significant
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differences in implementation for anomaly detection compared
to our example anomaly detection system and the approaches
we compared. Thus, we consider them as potential avenues for
future research. Despite their effectiveness, our industry part-
ner cannot yet adopt deep learning methods as a replacement
for clustering methods due to their lack of interpretability and
the need for a substantial amount of high-quality data [3].

VII. DISCUSSION AND FUTURE WORK

Multi-objective Search. While TPE has been regarded as a
single-objective Bayesian optimization algorithm, more recent
advancements in research have broadened its scope to ac-
commodate multi-objective optimization scenarios [68], [69].
Recognizing that the configuration problem inherently involves
multiple conflicting objectives, we intend to leverage the
expanded capabilities of TPE to address this as a multi-
objective challenge. By harnessing the extended TPE, we
anticipate the ability to delve into a comprehensive analysis
of configurations, spanning the Pareto front and encompassing
diverse sets of solutions optimized for multiple objectives
simultaneously. This strategic adoption of multi-objective TPE
will offer a promising avenue for a nuanced understanding of
trade-offs and synergies among the objectives inherent to the
automated configuration of unsupervised learning systems.
Continuous Configuration: One future work is to design ap-
proaches enabling continuous configuration, where the config-
uration is continuously updated as new data becomes available
or the system’s requirements evolve. Metamorphic testing can
again play a valuable role in the continuous configuration
of unsupervised learning systems by providing a systematic
and dynamic approach to continuously assess and validate
the effectiveness of the unsupervised learning system. It can
frequently apply input transformations to newly incoming data
and compare the system’s responses. This ongoing validation
can serve as an automated check to ensure that the system’s
performance remains consistent and effective in the face of
changing conditions.
Expanding AutoConf across Diverse Domains: Future work
includes extending AutoConf ’s applicability to various unsu-
pervised learning domains, such as customer segmentation,
natural language processing, and image analysis. Investigating
the unique configuration requirements of these tasks and
tailoring our MRs and optimization strategies accordingly
will broaden the impact of AutoConf , contributing to more
efficient and effective unsupervised learning across a spectrum
of applications.
Assessing AutoConf on more Datasets: In future endeavors,
a comprehensive assessment of AutoConf across a broader
spectrum of datasets entails rigorous testing on various data
distributions, sizes, and complexities to ascertain the robust-
ness and generalizability of the proposed approach. Evaluating
AutoConf ’s performance on datasets spanning diverse domains
will provide deeper insights into its adaptability and efficacy,
enabling us to uncover potential challenges and opportunities
for fine-tuning. Furthermore, exploring dataset-specific char-
acteristics and their impact on configuration outcomes could

yield valuable guidelines for tailoring AutoConf to specific
application contexts, thus advancing its practical utility in
unsupervised learning scenarios.
AutoConf and Software Engineering Research: The symbi-
otic relationship between AutoConf and software engineering
research is noteworthy. AutoConf ’s utilization of metamor-
phic testing and Bayesian optimization techniques mirrors the
growing trend of harnessing advanced software testing and
optimization methods in the field. This convergence bridges
the gap between machine learning and software engineering,
fostering cross-disciplinary synergy. AutoConf ’s automated
configuration not only streamlines the deployment of un-
supervised learning systems but also contributes insights to
software engineering, especially in applying software testing
techniques to hyperparameter tuning and system optimization.
This dynamic interplay holds promise for enhancing both
fields, accentuating the significance of multidisciplinary col-
laboration at the intersection of machine learning and software
engineering research.

VIII. CONCLUSION

In this paper, we introduced AutoConf , an automated ap-
proach that leverages metamorphic testing and Bayesian opti-
mization to configure clustering-based unsupervised learning
systems. We demonstrated the effectiveness of AutoConf in
detecting anomalies through experiments conducted on various
datasets. Thanks to metamorphic testing, AutoConf outper-
formed the baseline approaches, achieving an average recall of
0.89 and a precision of 0.84. The custom and generic metamor-
phic relations employed enabled AutoConf to address the lack
of ground truth labels while capturing the “dynamic” nature of
datasets together with data characteristics, such as noise and
density, which the internal validity metrics are sensitive to.
Bayesian optimization helped to achieve a superior guarantee
of identifying the optimal configuration within a time budget.
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