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Abstract
Piezoelectric excitation of quartz mineral phase in granite using high-frequency and high-voltage alternating current (HF-
HV-AC) is a potential new weakening pretreatment in comminution of rock. The present study addresses this topic numeri-
cally by quantifying the weakening effect on the compressive strength of granite. For this end, a numerical method based 
on a damage-viscoplasticity model for granite failure under piezoelectric actuation is developed. The rock material is 
modelled as heterogeneous and isotropic. However, the piezoelectric properties of quartz are anisotropic. The governing 
global piezoelectro-mechanical problem is solved in a staggered manner explicitly in time. Numerical simulations predict 
that the weakening effect on compressive strength of granite is 10% with the excitation frequency and voltage of 274.4 kHz 
and 150 kV of the pretreatment. As the weakening effect takes place at a natural frequency of the numerical rock sample, 
the quartz content has only a slight effect on the frequency at which maximum weakening occurs. Moreover, the weaken-
ing effect depends strongly on the orientation of the quartz crystals. In a more practical application of simulating low-rate 
compression of a sphere-shaped rock sample, a weakening effect of 8% after the HF-HV-AC pretreatment was predicted.

Highlights

• Substantial damage can be induced on granite by piezoelectric excitation by high-voltage and high-frequency alternating 
current.

• This pretreatment by piezoelectricity of quartz can be used to weaken granite samples before mechanical comminution.
• The frequency of the excitation needs to match one of the natural frequencies of the rock sample.
• A weakening effect of 10% on the compressive strength can be achieved at frequency of 274 kHz and voltage of 150 kV.
• Experimental validation of the theoretical/numerical predictions is needed.

Keywords Piezoelectric actuation · Alternating current · Quartz mineral · Granite · Rock fracture · Diametral compression · 
Rock ball

1 Introduction

Comminution and excavation of rocks and ores suffer from 
low energy efficiency and excessive tool wear. Indeed, com-
minution processes use more than half of the total energy 
used in mines (Klein et al. 2018; Napier-Munn 2015). These 
shortcomings of the traditional comminution methods, based 
on mechanical breakage, have spurred intensive search for 
new, more energy efficient comminution methods. The focus 
of research has lately been on the unconventional techniques, 
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where a nonmechanical agent, such as an electric pulse of 
a thermal jet, is applied either alone or as a rock weakening 
pretreatment prior to mechanical comminution (Aditya et al. 
2017; Sefiu et al. 2020). As a pretreatment, such methods 
can mitigate tool wear, thus enhancing the cost efficiency of 
comminution.

Electricity is exploited in a class of unconventional com-
minution methods. There are two varieties of this approach, 
the first being the electro-pulse drilling/excavation based on 
the electric breakdown phenomenon (Cho et al. 2016; Shi 
et al. 2014; Walsh and Vogler 2020; Li et al. 2020), and 
the second, potential new method exploits the piezoelec-
tric properties of quartz mineral present in rocks such as 
quartzite and granite. This new method exploits the converse 
piezoelectric effect by electric actuation of the quartz phase.

The piezoelectricity in rocks, illustrated in Fig. 1, has 
been studied to some extent experimentally (Parkhomenko 
1971; Bishop 1981; Tuck et al. 1977; Ghomshei and Tem-
pleton 1989). However, the question whether quartz bearing 
rocks truly exhibit a piezoelectric effect, through the pres-
ence of a quartz texture (i.e. a trend in the orientation of 
quartz crystal c-axes), remains controversial. According to 
Parkhomenko (1971), the quartz bearing rocks do display 
a texture. Notwithstanding, Tuck et al. (1977) reached the 
opposite conclusion and considered the weak piezoelectric-
ity to be a statistical effect or caused by isolated large sin-
gle/few quartz grains. Nevertheless, the measurements by 
Ghomshei and Templeton (1989) do seem to suggest the 
existence of piezoelectric textures in these rocks. In any 
case, rocks are aggregates of difference minerals and grains 
and, thus, the piezoelectric effect in quartz bearing rocks 
is orders of magnitude weaker than that of a single quartz 
crystal (Parkhomenko 1971; Bishop 1981). The magnitude 
of the electric field required to cause 10 MPa of stress in a 
quartz crystal by converse piezoelectric effect is ~ 500 kV/
cm. As this value exceeds the electric breakdown strength of 

granites, it seems that exploiting piezoelectric phenomenon 
of quartz is not a feasible pretreatment method.

However, Saksala (2021) demonstrated by numerical 
simulations that actuation using alternating current (AC) of 
high frequency (HF) and high voltage (HV) leads to crack-
ing of granite rock samples. More precisely, tensile cracks 
were induced on cylindrical (numerical) rock samples by 
sinusoidal AC excitation at the frequency of ~ 100 kHz and 
the amplitude of ~ 10 kV. In order to induce cracks, the fre-
quency of the excitation needs to match one of the natural 
frequencies of the sample. Therefore, the fracture mecha-
nism is related to the resonance phenomenon of the sample. 
Saksala et al. (2022) continued this work, in a conference 
paper, demonstrating by numerical modelling that the tensile 
strength of rock can be weakened by 12% with the HF-HV-
AC pretreatment.

The present paper continues the theoretical-numerical 
research on this method and tests, for the first time, how 
much the compressive strength of a granite can be weakened 
by the HF-HV-AC pretreatment. For this end, a numerical 
method including a staggered method to solve the govern-
ing piezoelectro-mechanical equations at global level, and 
a damage-viscoplasticity model to describe the rock mate-
rial failure, is developed. A more practical comminution-
oriented problem of crushing a spherical rock sample by dia-
metral compression is also addressed. It should be stressed 
that this study, as a forerunner in the field, is theoretical 
speculative in nature and, therefore, no experimental stud-
ies on the topic seem to exist. Hopefully, thereby, this study 
motivates experimentalists to test the feasibility of the HF-
HV-AC pretreatment for comminution.

2  Theory of the Numerical Method

The numerical method to simulate rock failure under pie-
zoelectric excitation is presented in this section. First, the 
piezoelectric rock failure description based on a damage-vis-
coplasticity model is given. Then, the finite element discre-
tized piezoelectro-mechanical problem and the time stepping 
method to solve it are presented. The basics of piezoelectric-
ity related to rocks can be found e.g. in Parkhomenko (1971).

2.1  Rock Constitutive and Failure Description

The rock is described here as an elastic (up to failure) iso-
tropic and heterogeneous material. This means that the rock 
constituent minerals are taken as isotropic, but each mineral 
phase has its specific material properties. However, the pie-
zoelectric properties are taken, as they truly are (see Fig. 1), 
anisotropic. The failure model for rock consists of a visco-
plastic part and a damage part. It should be noted that the 3D 
embedded discontinuity approach used by Saksala (2021) 

Fig. 1  Direct and converse piezoelectric effects for single 
α-quartz crystal and the piezoelectric coefficients (d11 = 2.27 and 
d14 = − 0.67 pC/N) (illustration modified from Saksala (2021))
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and Saksala et al. (2022) cannot be used here as it cannot 
adequately describe the compressive failure. In the present 
approach, the (perfectly) viscoplastic part indicates the stress 
states leading to rock failure and inelastic deformation while 
the damage part quantifies the failure by separate isotropic 
damage variables in compression and tension.

The stress states leading to failure and inelastic flow are 
indicated by a bi-surface yield criterion consisting of the 
Hokka power law criterion (Hokka et al. 2016) for compres-
sive (shear) fracture, called here the MH criterion, and the 
modified Rankine (MR) criterion for the tensile fracture. 
The MH criterion matches the experimental data for Kuru 
granite under confined dynamic compression better than the 
Hoek–Brown criterion (Hokka et al. 2016). Perfect visco-
plasticity is assumed, as the damage model accounts for stiff-
ness and strength degradation. These criteria are written as

where the symbols are as follows: σi is the ith principal stress 
of the stress tensor � ; σc, σt are the dynamic uniaxial com-
pressive and tensile strengths of the material; �̇�MH and �̇�MR 
are the rates of the internal variables in compression and ten-
sion, respectively; and sMH and sMR are the constant viscosity 
moduli in compression and tension, respectively. Moreover, 
the Macaulay brackets, i.e. the positive part operator, are 
used in the MR criterion while B and n in the MH criterion 
are experimentally calibrated parameters. The rate sensi-
tivity of the model is provided by adding the product of 
viscosity and the rate of the internal variable to the static 
values, σc0, σt0, of the compressive and tensile strength. This 
method is reliable, as demonstrated by the experimental 
results by Zhao (2000) showing that the dynamic failure 
envelope of Bukit Timah granite can be obtained from the 
quasi-static one by translation. Equation (4) presents the 
loading–unloading conditions of Kuhn–Tucker form, which 
means that the present formulation is based on the viscoplas-
tic consistency model by Wang et al. (1997).

The damage part is formulated with separate scalar dam-
age variables in tension and compression due to the asym-
metric behavior of rocks in these stress regions. Following 
Grassl and Jirásek (2006), the damage variables are driven 
by viscoplastic strain. Consequently, there is no need for 
additional damage loading functions, which simplifies the 

(1)fMH(�, �̇�MH) = 𝜎1 − 𝜎3 + B𝜎n
1
− 𝜎c(�̇�MH)

(2)fMR(�, �̇�MR) =

����
3�

i=1

⟨𝜎i⟩2 − 𝜎t(�̇�MR) with

(3)𝜎c
(
�̇�MH

)
= 𝜎c0 + sMH�̇�MH, 𝜎t (�̇�MR) = 𝜎t0 + sMR�̇�MR

(4)�̇�i ≥ 0, fi ≤ 0, �̇�ifi = 0(i = MH, MR)

implementation considerably. Moreover, if damage was 
driven by total strain, spurious stress effects would occur in 
cyclic loading. The components of the damage model result-
ing in exponential softening can be written as

The symbol meanings here are: At and Ac control the final 
value of the damage variables; βt and βc, controlling the initial 
slope and the amount of damage dissipation, are defined by 
the fracture energies GIc and GIIc; he is a characteristic length 
of a finite element; �vpeqvt is the equivalent viscoplastic strain 
in tension defined, in the rate form, as the trace of the visco-
plastic strain rate tensor, �̇vp , using the Macauley brackets so 
that tensile damage evolution occurs only if the volumetric 
viscoplastic principal strain is positive; �vpeqvc is the equivalent 
viscoplastic strain in compression, being defined with the 
deviatoric part,�̇vp , of �̇vp . Moreover, Eq. (8) is the Koiter’s 
rule for bi-surface plasticity. The colon in (7) denotes the 
double contraction operator for tensors, i.e. A ∶ A = AijAij . 
Finally, the plastic potential gMH in (9) proposed by Saksala 
et al. (2017) with ψ is the dilation angle of the rock.

At this point, it is informative to illustrate the bi-surface 
yield criterion in the principal stress space. As the MH cri-
terion does not depend on the intermediate stress space, the 
criteria are plotted in σ1–σ3 stress space in Fig. 2.

It can be observed in Fig. 2 that, in the present case, the 
MH criterion actually matches the tensile strength, 10 MPa, 
in uniaxial tension quite well but clearly overestimates the 
bi-axial tensile strength. Moreover, the flow direction of 
the MH criterion would be wrong in uniaxial tension, i.e. it 
would deviate from the Rankine flow direction (see Fig. 2b), 
which is the correct one. Still more, if the tensile strength 
was lower, say 7 MPa, the MH criterion would overpredict 
it by more than 40%. Therefore, the modified (rounded) 
Rankine criterion is needed as a tensile cutoff. Figure 2b 
also illustrates the corner plasticity direction at the intersec-
tion of the yield surfaces. In this case, the flow direction, 

(5)
�t

(
�
vp

eqvt

)
= At

(
1 − exp

(
−�t�

vp

eqvt

))
,�c(�

vp
eqvc

)

= Ac

(
1 − exp
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(6)�t =
�t0he

GIc

, �c = �c0he∕GIIc

(7)
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eqvt =
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3
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2

3
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3
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n
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upon stress return mapping, is calculated by the Koiter’s 
rule in Eq. (8), while the return mapping is performed by the 
standard cutting plane algorithm (Wang et al. 1997; Simo 
and Hughes 1998). The return mapping scheme is further 
elaborated in Appendix 1.

The final model components are the nominal-effective 
stress relation, which specifies how damage variables oper-
ate on the stress, and the constitutive law (within the small 
deformation framework) between the effective stress and the 
elastic strain:

where � is the nominal stress, i.e. the one returned onto 
the failure surface when the trial stress violates the crite-
ria. Moreover, �e is the elasticity tensor, and �tot is the total 
strain. Finally, d is the third-order piezoelectric constants 
tensor (its 3 × 6 matrix form can be inferred from Fig. 1), 
and � = −∇�e is the electric field with �e being the scalar 
electric potential.

The present formulation combines the damage and vis-
coplasticity parts of the model in the effective stress space 
(Grassl and Jirásek 2006) allowing to separate the damage and 
viscoplasticity computations so that the stress return mapping 
is first performed in the effective principal stress space. Then, 
the damage variables are updated and, finally, the nominal 
stress is calculated by (11). This formulation requires that the 
damage variables are driven by the (visco)plastic strain.

(10)� =
(
1 − 𝜔t

)(
1 − 𝜔c

)
�̄

(11)� = �e ∶
(
�tot − �vp − � ⋅ �

)

2.2  Finite Element Form of Piezoelectro‑Mechanical 
Problem and Its Solution

The equations governing the HF-HV-AC pretreatment are 
the standard piezoelectro-mechanical equations, i.e. the 
balance of linear momentum and the piezoelectro-static 
balance, written in the finite element discretized form as 
(Allik and Hughes 1970)

with

In these equations, symbols are as follows: t is time; A 
is the finite element assembly operator; �e

ϕ
 ( � = �e

ϕ
�e ) is 

the gradient of the electric potential interpolation matrix 
�e

ϕ
 ; �e

u
 is the gradient of displacement interpolation matrix 

�e
u
 ; M is the (lumped) mass matrix; C is the damping 

matrix with a constant α; � is the electric charge; � int
t

 and 

(12)��̈t + ��̇t + � int
t
(�t, �̇t,�t,𝜔t ,𝜔c) = � ext

t

(13)�ϕu

(
�t ,�c

)
�t +�ϕ

(
�t ,�c

)
�
t
= �

ϕ
t ,

(14)� = �
Nel

e=1∫ Ωe

�e,T
u
�e

u
dΩ,� = ��,

(15)� int
t

= �
Nel

e=1∫ Ωe

�e,T
u
�dΩ, � ext

t
= �

Nel

e=1∫ Γσ

�e,T
u
�̂dΓ,

(16)�uϕ = �
Nel

e=1∫ Ωe

�e,T
u
�(�t ,�c)�

e
ϕ
dΩ,�ϕu = �T

uϕ
,

(17)

�ϕ = �
Nel

e=1∫ Ωe

�
e,T

ϕ
�(�t ,�c)�

e
ϕ
dΩ, �

ϕ

t = �
Nel

e=1∫ Ωe

��e,T

ϕ
dΩ

Fig. 2  a Yield criteria in 
the principal stress space 
(σt = 10 MPa, σc = 165 MPa); b 
a detail illustrating the corner 
plasticity case at the intersection 
of the criteria
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� ext
t

 are the internal and external force vectors; and �ϕt  is the 
electric loading vector. The piezoelectric coupling and 
(diagonal) dielectric constants matrices depend on the 
damage variables by

where I is the unit matrix and �0 and �r are, respectively, the 
permittivity of vacuum and the relative permittivity of the 
mineral phase in the rock. By these relations, the piezoelec-
tric coupling term approaches zero as quartz (being the only 
piezoelectric phase) phase undergoes damage while, by (19), 
the isotropic permittivity of all three minerals approaches to 
that of vacuum (Eqs. (18) and (19) are mineral phase spe-
cific). It is emphasized that all mineral phases in the numeri-
cal rock description have permittivity, i.e. nonzero matrix � 
while only quartz is piezoelectric, having nonzero matrix 
d. The physical meaning of these matrices can be readily 
understood from the constitutive equation of linear elastic 
piezoelectric material: Di = eikl�kl − �ijEj , where Di is the 
electric displacement (C/m2), �kl is the mechanical strain 
tensor, eikl is the piezoelectric coupling tensor (C/m2), Ek 
is the electric field (V/m), and �ij is the dielectric constants 
tensor (F/m = C/Vm).

The solution of this problem with an electric potential 
boundary condition (the HF-HV-AC actuation) is here per-
formed explicitly in time using a (globally) non-iterative 
staggered (partitioned) solution method (Ramegowda et al. 
2019; Saksala 2021):

where the Euler scheme is used here for time stepping. An 
implicit, globally iterative method would not be practical, 
as the high frequency of the AC voltage to be used in the 
simulations necessitates an extremely short time step.

3  Numerical Examples

The simulations testing the weakening effect of the HF-
HV-AC pretreatment are carried out in this section. First, 
the material and model properties are given. Second, the 
weakening effect on the compressive and tensile strength of 

(18)� =
(
1 − �t

)(
1 − �c

)
� ⋅ �e

(19)� = �0(1 +
(
1 − �t

)(
1 − �c

)
(�r − 1))�

(20)��̈t + �int,t = �ext,t → �̈t

(21)�̇t+Δt = �̇t + Δt�̈t

(22)�t+Δt = �t + Δt�̇t+Δt

(23)�ϕu�t+Δt +�ϕ�t+Δt → �t+Δt

a cylindrical specimen is tested. Third, weakening effect in 
a compression of a rock ball (sphere) is investigated. Moreo-
ver, a verification simulation is presented in Appendix 2, 
where a cantilever beam made of quartz is exposed to a tip 
point load. Comparison to the analytical solution by Gao and 
Li (2009) shows that the present model correctly predicts 
the surface charge density due to polarization via the direct 
piezoelectric effect.

3.1  Material Properties and Model Parameters

The material properties, representing a generic granite like 
rock, and the model parameters are given in Table 1. The 
elasticity constants (E, ν) are generated with the MTEX 
software (Mainprice et al. 2014), and the rest of the mate-
rial properties are by Hokka et al. 2016, Newnham 2005 
and Mahabadi 2012. The dielectric constants in Table 1 are 
given relative to the permittivity of vacuum �0 . Moreover, 
the MH criterion parameter values, B and n, match the quasi-
static experiments (Hokka et al. 2016) for Kuru granite. The 
viscosity moduli values are chosen so as, on one hand, not 
to cause significant strain rate hardening and, on the other 
hand, to stabilize the local stress integration. For more 
details, see Saksala (2021) and Saksala et al. (2017).

The piezoelectric constants and the form of matrix d are 
given in Fig. 1. These are values in the local crystal coor-
dinate system shown in Fig. 1, which in the present finite 
element context is the local element coordinate system. 
Therefore, when other orientations are tested, matrix d is 
rotated to the desired orientation using e.g. Euler angles 
(see Saksala (2021) for more details). In this case, the rota-
tion matrix � = �3(ψ)�2(θ)�1(φ) where the three rotation 

Table 1  Material properties for simulations ( �
0
 = 8.854E−12 F/m)

Property/mineral Quartz Feldspars Biotite

E [GPa] 100.9 74.4 102.8
ν 0.06 0.31 0.21
σt0 [MPa] 10 8 7
σc0 [MPa] 165 165 165
ψ [°] 5 5 5
GIc [J/m2] 40 40 28
GIc [J/m2] 1200 1200 840
�[F/m] 4.5�

0
6.3�

0
7.75�

0

ρ [kg/m3] 2650 2580 3250
B  [MPa1/n] 30.1 30.1 30.1
n 0.676 0.676 0.676
At 0.998 0.998 0.998
Ac 0.998 0.998 0.998
sMR [MPa·s] 0.01 0.01 0.01
sMH [MPa·s] 0.01 0.01 0.01
Fraction [%] 33 60 7
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matrices �i performs the Euler rotation indicated by their 
arguments as follows: The first rotation is about the z-axis; 
the second rotation is about the new x′-axis; and the third 
rotation is about the new z″-axis.

3.2  Compression and Tension of a Cylindrical Rock 
Sample

3.2.1  HF‑HV‑AC Treatment

Numerical piezoelectric treatments using sinusoidal AC 
excitation of the rock sample are carried out here. Fig-
ure 3 shows the boundary conditions for the HF-HV-AC 
pretreatment, the finite element mesh, and the numerical 
rock mineral textures. The medium surrounding the rock 
is ignored, i.e. perfect electric insulation is assumed at the 
boundaries of the model not covered with the electrodes.

The mineral textures are generated by randomly cluster-
ing finite elements with an assigned mineral number (cod-
ing in Fig. 3c). This can be achieved as follows: An array 
with a length of the number of finite elements in the mesh 
is first filled with integers from 1 to 3 coding the three 
mineral phases. Moreover, the number of each integer 
corresponds to the percentage of the constituent mineral 
in rock. Then, random permutation is performed to this 
array. Now, as each entry in the array implicitly codes the 
global element number in the mesh, a spatially mesoscopic 
description of heterogeneity results, when each mineral 
phase is assigned with the material properties in Table 1.

The element size in the mesh is ~ 1 mm, which should 
be small enough to capture the high frequency excitations 
here (see Saksala 2021). First, the local orientation of 
quartz crystals is set as in Fig. 3a, i.e. the c-axis and a-axis 
are, respectively, parallel to z-axis and x-axis (indicated 
by c↑↑z). Moreover, the loading amplitude is ϕ0 = 50 kV, 
and the frequency is set to f = 274.4  kHz, which is a 

natural frequency of the sample NumRock1 in Fig. 3c. 
This frequency was found altering, by trial and error, the 
resonance frequency 305 kHz of a similar sample with the 
same mineral contents, albeit with anisotropic elasticity, 
used by Saksala (2021).

The simulation results for 500 cycles of the excitation 
are shown in Fig. 4. Figure 4a and b shows the normal-
ized potential field and the magnitude of the electric field 
when ϕ = ϕ0, at the crest of the sinusoidal wave. The elec-
tric potential and the electric field vary between the two 
extremes cases (the crest and the through of a wave), the 
first of which is shown here. The second, with ϕ =  − ϕ0, is 
similar, albeit with negated colors since the voltage is nega-
tive at the through.

Figure 4c and d shows snapshots of the first principal 
stress distribution and the deformed mesh at t = 3.167E-4 s 
demonstrating one of the natural modes of the numerical 
specimen. These high principal stresses inflict damage, 
both tensile and compressive, on the specimen, as can be 
observed in Fig. 4e and f. The damage areas show some reg-
ularity reflecting the natural mode of deformation (Fig. 4d) 
related to this natural frequency. The maximum values of the 
damage variables are ωt,max = 0.76 and ωc,max = 0.64. How-
ever, the damaged areas are restricted close to the specimen 
surface, as demonstrated in Fig. 4g, which shows the ele-
ments on the mesh with ωt > 0.1. It should be mentioned 
that continuing simulation up to 5000 cycles did not result 
in more damage. Therefore, only 500 cycles of excitation are 
carried out henceforth.

Next, a simulation is carried out with the same setup 
except that the local quartz crystal coordinated is aligned 
so that c-axis is parallel to y-axis while a-axis is as before 
(denoted c↑↑y). In addition, a higher amplitude of 150 kV is 
also tested with this orientation. The simulation results for 
damage variable fields are shown in Fig. 5.

Fig. 3  a Boundary conditions (Hcyl = 50 mm, Hele = 30 mm, Dcyl = 25 mm); b the finite element mesh with 206,617 elements; c numerical rock 
mineral textures (3 = quartz, 2 = feldspar, 1 = biotite)
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With this orientation, the magnitude of damage is much 
smaller at ϕ0 = 50 kV (note the range of the colorbar), but 
the damage pattern orientation displays horizontal bands 
(Fig. 5a). Moreover, when the voltage is increased to 150 kV, 
the damage levels increase drastically resulting in what can 
be interpreted as fragments separating from the specimen.

Next, more natural orientations of quartz crystals (finite 
elements representing quartz in the mesh actually) are tested. 
The cases are as follows: (Case 1) random rotation with 
the Euler angle θ; (Case 2) random rotation with the Euler 
angles θ and φ; and (Case 3) random rotation with all Euler 
angles ψ, θ and φ. In each case, the rotation angles vary 

Fig. 4  Simulation results for AC piezoelectric actuation (c↑↑z, 
ϕ0 = 50  kV, f = 274.4  kHz): a normalized potential field (voltage) 
when ϕ = ϕ0; b magnitude of electric field when ϕ = ϕ0; c the first 
principal stress when t = 3.167E−4 s; d deformed mesh (2000 times 

magnification) when t = 3.167E−4  s; e tensile damage after 500 
cycles; f compressive damage after 500 cycles; g tensile damage plot-
ted in the elements where it exceeds 0.1 after 500 cycles

Fig. 5  Simulation results for AC 
piezoelectric actuation (c↑↑y, 
f = 274.4 kHz): a tensile and 
compressive damage fields after 
500 cycles with ϕ0 = 50 kV; b 
tensile and compressive damage 
fields after 500 cycles with 
ϕ0 = 150 kV
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uniformly between − π/2 to π/2, i.e. the uniform distribution 
was applied. The simulation results with ϕ0 = 150 kV and 
f = 274.4 kHz are plotted in Fig. 6.

With these random, and to a large extent more realistic, 
quartz crystal orientations, the damage levels are quite mod-
est even with such a high amplitude of voltage as 150 kV. 
Indeed, the magnitude of tensile damage variable barely 
reaches 0.05 in Case 3. The compressive damage was neg-
ligible in this case so that it is not shown in Fig. 6. Inter-
estingly however, the damage patterns exhibit characters 
similar to those when the crystal axes have clear orienta-
tion. This reflects the fact that, despite the different orienta-
tions of the quartz crystal axes, which have an effect only on 
the piezoelectric constants in the present isotropic material 
assumption, it is the natural mode of the numerical sample 
that is excited in each simulation here (since the frequency 
was the same).

3.2.2  Uniaxial Compression and Tension Tests

The standard uniaxial compression and tension tests are now 
performed first on the intact numerical rock in order to dem-
onstrate the model predictions and to provide the reference 
cases. Then, the same tests are carried out on the HF-HV-AC 
pretreated samples to test the weakening effect. A constant 
velocity boundary condition (BC) is applied at the top of the 
finite element mesh while the bottom is simply supported. 
For compression and tension, a velocity of 0.05 m/s down-
wards and 0.005 m/s upwards are, respectively, applied. The 
simulation results are shown in Fig. 7. The average stress 
curve (Fig. 7d) is calculated by dividing the reaction force 
by the cross-sectional area, while the average strain curve 
(Fig. 7e) is obtained after dividing the displacement at the 
top edge by the height of the sample.

The failure modes realized in the uniaxial compres-
sion simulations are, for both specimens, the experimen-
tally attested multiple (shear) fracturing mode (Fig. 7a, b) 

classified by Basu et al. (2013). The experimental transverse 
splitting mode with a single failure plane is predicted in ten-
sion (Fig. 7c). The corresponding compressive and tensile 
strengths, as attested in the average stress–strain curves in 
Fig. 7d and e, respectively, are 151 MPa and 8.4 MPa. How-
ever, while the details of the failure modes are different, the 
stress–strain curves are virtually identical in compression for 
the numerical rock samples in Fig. 3c. The situation did not 
change upon testing with additional mineral textures. The 
same finding applies for tension. Thereby, only NumRock1 
is considered in the compression and tension test simulations 
on pretreated rock.

Next, the tension and compression tests are repeated on 
HF-HV-AC pretreated samples. The simulation results in 
Fig. 8 for compression show that the weakening effect is 
quite mild except in the case c↑↑y of the quartz crystal ori-
entation, when ϕ0 = 150 kV, where the compressive strength 
(68 MPa) is 55% smaller than that of the intact rock. How-
ever, in this case, the numerical sample was already broken 
due to the pretreatment. In Case 1 of the random crystal 
orientations, the compressive strength is 136 MPa, i.e. 10% 
smaller than that of the intact rock. The failure modes for 
the pretreated samples differ both from each other and from 
the intact rock, which is a realistic result due to the different 
initial condition of the rock material in each case.

The results for tension test simulations in Fig. 9 reveal 
that the weakening effect of the pretreatments is weaker 
in tension that in compression. Even in the case with c↑↑y 
and ϕ0 = 150 kV, i.e. when sample failed already during the 
pretreatment, the tensile strength is 5.1 MPa, which is 39% 
smaller than the tensile strength of the intact rock. In other 
cases, and in the cases with the results not shown, the weak-
ening effect was insignificant.

Fig. 6  Simulation results for AC piezoelectric actuation (ϕ0 = 150 kV, 
f = 274.4  kHz): a tensile and compressive damage fields after 500 
cycles for Case 1 (rotation with θ); b tensile and compressive damage 

fields after 500 cycles for Case 2 (rotation with θ and φ); c tensile and 
compressive damage fields after 500 cycles for Case 3 (rotation with 
ψ, θ and φ)
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3.3  Compression of Rock Sphere

This test was originally developed for understanding the 
dynamic crushing of a rock ball (sphere) using the Hopkin-
son bar apparatus (Huang et al. 2014; Huang 2016). As the 
application in mind in the present paper is comminution by 
crushing, a lower impact velocity is applied here. The setup 
modelled here consists of two rigid platens between which 
the rock sample is compressed by moving the upper platen 
downwards with a constant velocity. The modelling principle 
is illustrated in Fig. 10.

The platen geometry is a virtual and its contact with the 
rock finite element mesh is modeled by imposing kinematic 
contact constraints between the rock nodes and the nodes 
representing the platens. These constraints are of form: 
ui,z − uRBn,z = bn, where ui,z and uRBn,z are, respectively, the 
platen node (i = 1,2) and rock ball contact node (n = 1 to 
number of contacts) displacements in z-direction, and bn is 
the initial distance between them. Moreover, contact forces 
P1 and P2 are solved along with the global solution with 
a method described in Saksala (2010). Dashpots, i.e. vis-
cous dampers, are required by the method to absorb possible 
stress waves generated when the velocity v0 is significant. 
The equations of motion of the platen nodes are

where m1 and m2 are computational, not real, masses of the 
platens and cb�bAb is the impedance of the platen defined by 
the bar velocity of a stress wave in slender rod, density, and 
the computational area of the platen of the Hopkinson bar 
device. In the following simulations, values of steel are used 
for density (7800 kg/m3) and the bar velocity cb = 5150 m/s, 
while m1 = m2 = 0.1 kg. Other material parameters and model 
parameters are as above. The interesting outcome of the sim-
ulations here are the contact (reaction) forces since they are 
the loading carried out by the consumable tools in comminu-
tion. Figure 11 presents simulation results for crushing the 
numerical rock balls in Fig. 10c when v0 = 0.5 m/s.

The failure modes for both numerical rock balls exhibit 
the experimentally observed (Huang 2016) split of the 
sample in three or four slices. Moreover, some secondary 
(meaning mild value of the damage variable) crack-like 
tensile damage patterns can be inferred from both sam-
ples. Substantial compressive damaging can be observed 
(Fig. 11a) at the poles of the sphere (i.e. in the contact 
areas). The contact reaction forces, reaching a magnitude 
of 18 kN, show some fluctuations (Fig. 11d) due to the 

(24)m1ü1,z + cb𝜌bAbu̇1,z = P1

(25)m2ü2,z + cb𝜌bAbu̇2,z = −P2

Fig. 7  Simulation results for uniaxial compression and tension test: 
a tensile and compressive damage fields for NumRock1 in compres-
sion; b tensile and compressive damage fields for NumRock2 in com-

pression; c tensile damage field for NumRock1 in tension; d average 
stress–strain curves in compression; e average stress–strain curve for 
NumRock1 in tension
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transient component of the loading (v0 = 0.5 m/s at t = 0). 
Finally, Fig. 11e shows the average of the contact forces 
for both rock samples, and as can be observed, they are 
almost identical.

3.3.1  HF‑HV‑AC Treatment

The HF-HV-AC pretreatment was carried out on the numeri-
cal rock ball (NumRock1) in Fig. 10c. The electrode con-
figuration is shown in Fig. 12 along with the simulation 
results for cases c↑↑z and c↑↑y. Again, 500 cycles were 
simulated with the loading amplitude of ϕ0 = 100 kV, and 
the frequency was set to f = 279 kHz.

Fig. 8  Simulation results for uniaxial compression test on HF-HV-AC 
pretreated samples (NumRock1): a tensile and compressive damage 
fields for c↑↑z with ϕ0 = 50  kV; b tensile and compressive damage 
fields for c↑↑y with ϕ0 = 50  kV; c tensile and compressive damage 

fields for c↑↑y with ϕ0 = 150 kV; d tensile and compressive damage 
fields for Case1 with ϕ0 = 150 kV; e tensile and compressive damage 
fields for Case2 with ϕ0 = 150 kV; f average stress–strain curves

Fig. 9  Simulation results for uniaxial tension test on HF-HV-AC pretreated samples (NumRock1): a tensile damage field for c↑↑z with 
ϕ0 = 50 kV; b tensile damage field for c↑↑y with ϕ0 = 50 kV; c tensile damage field for c↑↑y with ϕ0 = 150 kV; d average stress–strain curves
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Fig. 10  a Boundary conditions 
(Rball = 20 mm); b the finite 
element mesh with 271,381 
linear tetrahedral elements; c 
numerical rock mineral tex-
tures (3 = quartz, 2 = feldspar, 
1 = biotite)

Fig. 11  Simulation results for compression of rock ball: a tensile and 
compressive damage fields for NumRock1; b tensile damage fields for 
NumRock1 from another perspective; c tensile damage field for Num-

Rock2; d contact forces as a function of time for NumRock1; e aver-
age contact force for NumRock1 and NumRock2 as a function of time
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Fig. 12  Simulation results for AC piezoelectric actuation of numeri-
cal rock ball (NumRock1): a boundary conditions (Dball = 40  mm, 
Hele = 16 mm, Eele = 10 mm, ϕ0 = 100 kV, f = 279 kHz); b normalized 
potential field (voltage) and magnitude of electric field when ϕ = ϕ0; 

c the first principal stress when t = 2.114E−4  s (with quartz crys-
tal orientation c↑↑z); d tensile and compressive damage fields with 
quartz crystal orientation c↑↑z; e tensile and compressive damage 
fields when with quartz crystal orientation c↑↑y 

Fig. 13  Simulation results for AC piezoelectric actuation 
(ϕ0 = 150  kV, f = 279  kHz, NumRock2): a Tensile and compressive 
damage fields for Case 1 (rotation with θ); b tensile and compressive 
damage fields for Case 2 (rotation with θ and φ); c tensile and com-

pressive damage fields for Case 3 (rotation with ψ, θ and φ); d tensile 
and compressive damage fields Case 4 (rotation with θ and φ) with 
electrodes in y-direction
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As can be observed in Fig. 12c and d, higher values (note 
the different ranges of colorbars) of damage variables are, 
again, generated when the c-axis of crystals are aligned with 
global z-axis. In this case, there is an interesting crack-like 
tensile damage formation on the equator of the rock sphere. 
When the c-axis is aligned with the global y-axis, the dam-
aging is strongest at the pole area of the sphere where the 
electric field strength (Fig. 12b) has its maximum due to 
the edge effect in the voltage BC, i.e. the ground electrode.

Next, the same cases with random rotation of the quartz 
crystal c-axis as above are tested here as well. Moreover, 
one additional simulation for Case 2 is carried out with the 
electrodes aligned, instead of z-axis, with y-axis (designated 
as Case 4). The results are shown in Fig. 13.

In each case shown in Fig. 13, except Case 3, the ten-
sile damage variable reaches almost 1 at some locations. 
However, Case 3 (Fig. 13c) is the most unfavourable to 
damaging due to the total randomness of the quartz crystal 
orientations.

3.3.2  Compression of the HF‑HV‑AC Pretreated Rock Balls

The compression test detailed above is now performed on 
the pretreated rock samples. The results are shown in Fig. 14 

for failure modes, as represented by the tensile damage field, 
and for the corresponding average contact forces. The view-
point, with respect to the global coordinates, is the same for 
each tensile damage plot as the one shown in Fig. 14a.

The failure modes for the HF-HV-AC pretreated samples 
display axial splitting of the sample into two or three parts. 
The average contact forces for the pretreated cases vary from 
16.4 to 17.6 kN while the intact samples withstand 17.7 kN 
of average compressive force. Therefore, the weakening 
effect in these cases is quite low.

3.3.3  Effect of Quartz Content

The simulations above were carried out with the same min-
eral composition of the numerical rock. It is instructive to 
test the effect of quartz content, as it varies from granite to 
granite. Moreover, it was already demonstrated by Saksala 
(2021) that the quartz content influences the frequency at 
which the maximum damage occurs. For this reason, a set 
of simulations are performed here with the mineral com-
position 45% of quartz, 47% of feldspars and 7% of biotite. 
Changing the mineral composition, changes also the mineral 
texture, denoted as NumRock3. In this case, the frequency 
at which (local) maximum damage was caused is 285 kHz. 

Fig. 14  Simulation results for compression of the HF-HV-AC pre-
treated rock balls (f = 279 kHz): a tensile damage field for NumRock1 
with c↑↑z and ϕ0 = 100  kV; b tensile damage field for NumRock1 
with c↑↑y and ϕ0 = 100  kV; c tensile damage field for NumRock2 
with Case 1 and ϕ0 = 150 kV; d tensile damage field for NumRock2 

with Case 2 and ϕ0 = 150 kV; e tensile damage field for NumRock2 
with Case 3 and ϕ0 = 150 kV; f tensile damage field for NumRock2 
with Case 4, ϕ0 = 150  kV, and electrodes in y-direction; g average 
contact force as a function of time
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Some representative simulation results for this numerical 
rock, with other parameters unaltered from the previous 
simulations, are shown in Fig. 15.

Changing the quartz content has an insignificant effect, 
at least within the present modelling approach, as can be 
observed in Fig.  15e. More specifically, the maximum 

contact force is 17.8 kN for the intact rock while the strong-
est weakening occurs in Case1with 16.4 kN of maximum 
contact force. These figures are almost the same as the ones 
above when the quartz content was 33%.

Fig. 15  Simulation results with NumRock3 (45% quartz, 48% feld-
spar, 7% biotite; f = 285  kHz, ϕ0 = 150  kV); a numerical rock min-
eral texture (3 = quartz, 2 = feldspar, 1 = biotite); b tensile and com-
pressive damage fields for compression of intact rock ball; c tensile 

damage field for compression of HF-HV-AC-treated rock ball when 
c↑↑z; d tensile damage field for compression of HF-HV-AC treated 
rock ball in Case 1; e average contact force as a function of time for 
each case

Table 2  Predicted contact 
forces in diametral compression 
of rock ball

Case Info ϕ0 [kV] f [kHz] Pavrg [kN] Weak. eff. [%]

Intact NR1, NR2 – – 17.7 –
c↑↑z NR1 100 279 16.9 4.5
c↑↑y NR1 100 279 17.4 1.7
Case 1 NR2, θ ∈ [− π/2, π/2] 150 279 16.4 7.3
Case 2 NR2, θ, φ ∈ [− π/2, π/2] 150 279 16.6 6.2
Case 3 NR2, θ, φ, ψ ∈ [− π/2, π/2] 150 279 17.6 0.5
Case 4 Case 2, Electr. y-axis 150 279 16.4 7.3
Intact NR3 – – 17.8 –
c↑↑z NR3 150 285 17.3 2.8
c↑↑y NR3 150 285 17.4 2.2
Case 1 NR3, θ ∈ [− π/2, π/2] 150 285 16.4 7.9
Case 2 NR3, θ, φ ∈ [− π/2, π/2] 150 285 17.5 1.7
Case 3 NR3, θ, φ, ψ ∈ [− π/2, π/2] 150 285 17.6 1.1
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4  Discussion

First, the weakening predicted in uniaxial compression and 
tension tests are addressed. A 10% weakening is predicted 
for compressive strength in Case 1 with 150 kV of voltage. 
It should be noted that this case is a more realistic one (com-
pared to the case with c↑↑z, for example), as piezoelectric 
effect in rocks may arise when the optical axes of quartz 
grains (c-axis) are randomly distributed in a common plane, 
while the electrical axis (a-axis) coincides with the normal 
of this plane (Parkhomenko 1971). The highest weakening 
in these simulations was predicted in the case with c↑↑y at 
150 kV of voltage resulting in a partial fragmentation of the 
sample. However, this case, as having perfect alignment of 
quartz crystals, is not expected to be found in natural rocks.

Second, the predicted weakening effects in the more 
practically oriented problem of crushing the rock ball by 
diametral compression are quantified in Table 2 to facilitate 
discussion. Despite the high voltage, the predicted weaken-
ing effects are somewhat mild, i.e. barely 8% (NR3) in the 
most optimistic case tested. In addition to Case 1, notable 
weakening (6.2% in Case 2 and 7.3% in Case 4 for NR2) 
was predicted also in Case 2, which further randomize the 
local quartz crystal axes. However, if there is no texture or 
preferred orientation of the quartz crystal axes at all (Case 
3), the weakening effect is insignificant, ~ 1%.

As to the mineral composition, it has an effect, as was 
already shown in Saksala (2021). More precisely, changing 
the quartz content, the resonance frequency changes. Indeed, 
as demonstrated in the numerical simulations above, when 
the quartz content was increased, the resonance frequency 
increased from 279 to 285 kHz. Moreover, it was found that 
lowering the quartz content to 20%, decreased the resonance 
frequency to 272 kHz. However, the results for this case 
were not presented because the weakening effect was similar 
to those in other cases of quartz content.

The most notable weakness of the present modelling 
approach should also be addressed. Namely, the present 
continuum approach based on a damage-viscoplasticity 
model and standard finite elements describes the fractures 
and cracking in the smeared sense, which may not always be 
realistic for brittle materials such as granite rock. This draw-
back can be highlighted by comparing the study by Saksala 
et al (2022) to the present one with respect to uniaxial ten-
sion. Saksala et al (2022) predicted 12% weakening effect in 
tension for a similar cylindrical sample as here, while only 
2.4% weakening is predicted above (Fig. 9) in the same case 
of the quartz crystal orientation and at the same voltage of 
50 kV. However, Saksala et al. modelled the rock as aniso-
tropic, and described the cracking rock with the embedded 
discontinuity finite element method, which is superior to the 
present approach in fracture description.

5  Concluding Remarks

This paper presented a numerical study to quantify the weak-
ening effects by piezoelectric actuation of quartz mineral 
phase in granite rock using high-voltage and high-frequency 
alternating current. The developed numerical method con-
sists of a damage-viscoplasticity model and a globally non-
iterative staggered scheme to solve the coupled piezoelec-
tro-mechanical problem explicitly in time. This method was 
applied in standard uniaxial tension and compression test 
simulations as well as in simulation of diametral compres-
sion of rock balls. Considering these applications, following 
closing remarks are delivered.

In uniaxial tension and compression tests: Actuating a 
cylindrical numerical granite specimen at one of its natural 
frequencies, 274.4 kHz in the present case, with the volt-
age of 50–150 kN, considerable damage can be induced. 
However, the weakening effect of the pretreatment-induced 
damage fields on the tensile and compressive strengths of the 
sample were quite modest. Moreover, the amount of damage 
inflicted, and hence, the weakening effect depends strongly 
on the orientation of the local quartz crystal coordinates so 
that more randomness in orientation results in less damage 
and weakening. In a realistic case, where the optical axes of 
quartz grains (c-axis) are randomly distributed in a common 
plane, while the electrical axis (a-axis) coincides with the 
normal of this plane, a weakening effect of 10% in compres-
sive strength was predicted after treating the sample 500 
cycles with 150 kV of amplitude.

In diametral compression of a rock ball: In this important 
problem with respect to comminution practice, the predicted 
weakening effect due to the piezoelectric pretreatment was 
similar to that in the uniaxial compression. Namely, 7.9% 
weakening in the average contact (reaction) forces was pre-
dicted in a realistic case of the quartz crystal orientations. 
Moreover, the weakening effect was insensitive to differ-
ent quartz contents of the numerical rock. Altering quartz 
content also changes the natural frequency of the specimen 
at which the (local) maximum damaging occurs so that the 
higher the quartz content, the higher the frequency.

It should finally be mentioned that the present continuum 
damage-viscoplasticity model describes cracking in brittle 
materials in a smeared sense ignoring, to a large extent, the 
crack tip effects. Therefore, the present simulations provide 
a lower limit or conservative estimates for the weakening 
effect of the HF-HV-AC pretreatment. Advanced rock frac-
ture models, taking more properly into account the crack 
tip geometry effects, could probably make these predictions 
more optimistic. In any case, experiments are sorely needed 
to ultimately decide whether this kind of pretreatment is a 
feasible one for comminution.
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Appendix 1

The return mapping scheme related to the corner (visco)
plasticity situation is elaborated in detail here. The general-
ized cutting plane algorithm is chosen (Simo and Hughes 
1998). It is based on the standard elastic predictor-plastic 
corrector split. That is, trial state is first calculated by:

where �t+Δt = ��e
t+Δt

 is the new total strain and �̄pr

trial
 is 

the trial principal stress. With the rate independent plas-
ticity models, the consistency condition, ḟ = 0 , is usually 
exploited for solving the viscoplastic multiplier �̇� . However, 
with the viscoplastic consistency approach, this is not feasi-
ble, since the consistency condition has the following form 
in the general case (Wang et al. 1997)

The consistency condition thus becomes a first order 
differential equation for �̇� . However, an alternative, algo-
rithmic avenue opens upon considering that, at the end of 
the time step, condition fi

(
�t+Δt, �̇�t+Δt,i

)
= 0 (i = MH,MR) 

must be satisfied. Now, the rates of the internal vari-
ables can be replaced by �̇�t+Δt,i = Δ𝜆t+Δt,i∕Δt (Winnicki 
et al. 2001), yielding the vector form of the criteria as 
�(�,Δ�) =

[
fMH

(
�,Δ�MH

)
fMR

(
�,Δ�MR

)]T . Then, expand-
ing this with the first term of the vector valued Taylor 
series gives:

with

where �� signifies gradient with respect to � . Now, it is 
assumed that a potential corner (visco)plasticity case is 
realized, i.e. the trial state violates both of the criteria. The 
return mapping proceeds now as follows.

(26)
�̄trial = �� ∶

(
�t+Δt − �

vp
t − � ⋅ �t

)
→ �̄

pr

trial
=
[
�̄�trial
1

�̄�trial
2

�̄�trial
3

]

(27)f trial
MH

= fMH

(
�̄
pr

trial
, �̇�t

MH

)
, f trial

MR
= fMR

(
�̄
pr

trial
, �̇�t

MR

)

(28)ḟ
(
�, 𝜆, �̇�

)
=

𝜕f

𝜕�
�̇ +

𝜕f

𝜕𝜆
�̇� +

𝜕f

𝜕�̇�
�̈� = 0

(29)
� (Δ�) + �Δ�� (Δ�)�� = 0 ⟺ ��

= −�Δ�� (Δ�)
−1� (Δ�) = �−1� (Δ�)

(30)� =
[
fMH fMR

]T

(31)

� =
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�
�
fMH

)T
����gMH +

sMH

Δt

(
�
�
fMH

)T
���� fMR(

�
�
fMR

)T
����gMH

(
�
�
fMR

)T
���� fMR +

sMR

Δt

]

S e t :  Δ𝜆
(0)

MH
= 0,Δ𝜆

(0)

MR
= 0,�

(0)
cor = �trial, �̇�

(0)

MH
= 0,

�̇�
(0)

MR
= 0,Δ�vp,(0) = 0 and go to 1.

Local iteration:

1. Compute G and f using (29) and (30) and solve for 
��MH, ��MR by �� = �−1�

2. Δ�(i+1)
MH

= Δ�
(i)

MH
+ ��MH, Δ�

(i+1)

MR
= Δ�

(i)

MR
+ ��MR

3. IfΔ𝜆(i+1)
MH

> 0&Δ𝜆
(i+1)

MR
> 0 go to 4. Else restart itera-

tion with the surface for which the plastic increment 
Δ�(i+1) is positive.
4. �̇�(i+1)

MH
= Δ𝜆

(i+1)

MH
∕Δt, �̇�

(i+1)

MR
= Δ𝜆

(i+1)

MR
∕Δt

5. ��vp = ��MH��gMH + ��MR�� fMR

6. Δ�vp,(i+1) = Δ�vp,(i) + ��vp

7. �(i+1)
cor = �trial − �eΔ�

vp,(i+1)

8. f (i+1)
MH

= fMH

(
�
(i+1)
cor , �̇�

(i+1)

MH,t

)
, f

(i+1)

MR
= fMR

(
�
(i+1)
cor , �̇�

(i+1)

MR,t

)
 

If f (i+1)
MH

< TOL & f
(i+1)

MR
< TOL then go to Update.

Else set i ← i + 1 and go to 1.

Update: �t+Δt = �
(i+1)
cor , �

vp

t+Δt
= �

vp
t + Δ�vp,(i+1) and exit.

It is implicitly understood that the steps above are per-
formed in the principal stress space so that, as the final step not 
shown, the corrected stress and strain are transformed to the 
xyz-coordinates. In addition, the algorithm outlined includes 
the procedure for the case in which a genuine corner plasticity 
situation does not realize, i.e. the return is not to the intersec-
tion of the yield surfaces but to either fMH or fMR . A need to 
return to a single surface is signalled by a negative value of 
the cumulative viscoplastic increment, i.e. either Δ𝜆(i+1)

MH
< 0 

or Δ𝜆(i+1)
MR

< 0 . When such a situation occurs, the algorithm 
is restarted with a single surface (Step 3). This trial-and-error 
procedure is required since, according to Simo and Hughes 
(1998), the set of active criteria cannot be known in advance. 
This is because the positivity of failure criteria in the trial step 
does not guarantee that a genuine corner (visco)plasticity case 
has been realized.

Appendix 2

A problem of a cantilever beam made of quartz under a point 
load is solved here in order to verify the piezoelectro-mechan-
ical part of the numerical method presented in Sect. 2. The 
beam with the finite element mesh consisting of 6930 tetrahe-
drons is shown in Fig. 16a. In the simulation, the point load 
is applied slowly by increasing it to a unity during 1000 time 
steps. The analytical solution of the problem is by Gao and Li 
(2009), which for the surface charge density reads:
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where P is the magnitude of the external force, while d31 and 
d36 are the piezoelectric coefficients (see Fig. 1).

Figure 16b–c shows the simulation results for the bend-
ing stress, potential (voltage), and the surface charge den-
sity. The distribution of voltage in Fig. 16c is similar to that 
reported by Gao and Li (2009). Unfortunately, they don’t 
show the values of the potential so that quantitative com-
parison is impossible. However, the surface charge density 
in Fig. 16d is in a fair agreement with the theory (Eq. (31)).
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