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The strengthening of regional habitat quality is crucial to protect biodiversity and fully utilize ecosystem 
services such as those provided by forestry and aquatic ecosystems. However, the long-term patterns of 
change in the habitat quality of the Luoxiao Mountains area, which is both an important ecological barrier 
area and a concentrated poverty-stricken area, and the driving mechanism remain unclear. In this study, 
the InVEST model was used to assess the habitat quality of the Luoxiao Mountains area in 1995 to 2020, and 
the spatial autocorrelation model was used to explore the spatial and temporal variation and distribution 
characteristics of habitat quality. Further, ordinary least squares (OLS) model, geographically weighted 
regression (GWR) model, and random forest (RF) algorithm were combined with multidimensional datasets 
to explore the underlying mechanisms driving changes in habitat quality. According to the results, the 
habitat quality indices of the Luoxiao Mountains area in 1995, 2005, 2015, and 2020 were 0.822, 0.818, 
0.817, and 0.813, respectively, with an overall decreasing trend. The RF model was the best fit for habitat 
quality, better than the GWR and OLS models. Physical geographic factors such as slope and precipitation, 
as well as socioeconomic factors such as gross domestic product, were key drivers of habitat quality 
in the Luoxiao Mountains. Precise implementation of ecological protection and restoration measures, 
improvements in the efficiency of spatial utilization, and exploration of the value of ecological products 
are key factors in maintaining a balance between habitat quality and economic growth into the future.

Introduction

Habitat quality is a representation of an ecosystem's ability to 
provide living conditions for the sustainable development of 
individuals and populations [1–4]. It can reflect the state of 
regional biodiversity to a certain extent. Studies have shown 
that a series of ecological chain reactions, such as habitat frag-
mentation [5,6], invasion of exotic species [7,8], and loss of 
biodiversity [9,10] due to land use changes as a result of inten-
sified human activities, have led to degradation of regional 
habitat quality, increased vulnerability, and reduced suitability, 
which have, in turn, affected ecosystem productivity and ser-
vice capacity [11,12]. This poses a threat to human well-being 
and the sustainable development of ecosystems utilized by 
humans, including mountains, water, forests, fields, lakes, and 
grasses [13]. The strengthening of regional habitat quality is 
crucial for the full utilization of ecosystem services, the pro-
tection of biodiversity, and the maintenance of regional eco-
logical security. Research on the spatial and temporal changes 
in habitat quality and the driving mechanisms has become a 

focus in the international field of ecology and geography 
[8,14–16].

To date, studies of habitat quality have been conducted on 
different scales and different contents and using different 
methods. The research scales include the micro scale [8,17] 
and macro scale [18], and the research contents involve the 
response of habitat quality to land use changes [19], the rela-
tionship between habitat quality changes and factors such as 
socioeconomic conditions and landscape patterns [20–23], 
habitat quality and ecological security patterns [24], and the 
simulation prediction of habitat quality under different future 
scenarios and land use structures [25,26]. The above studies 
have generally shown that habitat quality decline is closely 
related to land use, and the rapid expansion of construction 
land is the main reason underlying the yearly decline in hab-
itat quality. There are 2 main types of habitat quality evalua-
tion methods. First, the sample field measurement method, 
which can obtain accurate data and allows for objective eval-
uation of the spatial and temporal dynamics of habitat quality. 
However, data collection for this method is difficult, labor 
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and material intensive, and spatially discontinuous. Thus, this 
method is commonly used for habitat quality assessments in 
small areas and nature reserves [27,28]; it is difficult to apply 
this method to large-scale habitat quality studies [19]. Second, 
the model evaluation method, which involves rapid real-time 
and large-scale habitat quality evaluations using models such 
as the SolVES model [29], MIMES model [30], HSI model, 
and InVEST model [31]. Among them, the InVEST model 
was developed based on biodiversity threat factors. It uses 
land use data as input variables to assess habitat quality based 
on the distance, weight, and habitat sensitivity of ecological 
threat factors (arable land, roads, construction land, and 
other types of land use that are highly influenced by human 
activities) [32]. It has the advantages of a small amount of 
input data, a large amount of derived data, and the ability to 
quantitatively analyze abstract ecosystem service functions. 
Thus, it is widely used in studies related to habitat quality and 
ecosystem service function assessment [8,33,34]. For exam-
ple, Leh et al. [35] used the InVEST model to investigate the 
evolution of habitat quality in different phases of land use 
change and to provide an overall assessment of habitat quality 
levels in 2 West African countries. Sallustio et al. [5] assessed 
habitat quality in Italy and found that habitat quality degra-
dation depended on the anthropogenic impact location and 
intensity; the authors also identified priority areas for national-
scale biodiversity conservation strategies. Gao et al. [36] dis-
cussed the impact of land use change on habitat quality in 
the mountainous areas of Dali Prefecture and found that 
habitat degradation was inextricably linked to urban expan-
sion in low-slope areas and that the development of reforest-
ation, the fruit industry, and tourism improved the habitat 
quality in the area. Overall, the use of the InVEST model to 
assess habitat quality is scientifically valid and has important 
implications for the development of management strategies 
for land use and biodiversity conservation.

Socioeconomic factors reflected by land use change are 
known to be the main factors influencing habitat quality [37]. 
The distribution pattern of habitat quality is also influenced 
by physical geographic factors such as elevation, slope, rain-
fall, and population density, as well as anthropogenic factors. 
Many studies have focused on the spatial and temporal dy 
namics of habitat quality [13,16,25], but there are few studies 
on the mechanisms underlying changes in habitat quality, and 
the relationships between habitat quality and influencing fac-
tors such as physical geography and socioeconomic factors 
still require further investigation. In revealing the drivers of 
habitat quality, ordinary least squares (OLS) and geographi-
cally weighted regression (GWR) models are useful for detect-
ing subtle changes in the process mechanism of habitat quality 
over time and space and are important research methods for 
exploring the drivers of objective objects [38,39]. Each of 
these approaches has a different focus. OLS models provide 
"average" and "global" estimates of influences through least 
squares, which makes it difficult to reveal the spatial varia-
bility of each influence [40]. In contrast, GWR is unique for 
exploring the drivers of habitat quality change because it 
allows for spatial variation in local parameters with spatial 
location [41,42]. In addition, with improvements in computer 
power and data acquisition techniques, machine learning is 
becoming an accurate and effective means to model nonlinear 
complex systems. The random forest (RF) algorithm is a 
widely used machine learning method for fitting statistical 

models; it expresses the nonlinear characteristics of the data, 
is not prone to overfitting, and performs well in impact factor 
analysis [43,44], making it a suitable method for modeling 
and analyzing the mechanisms driving spatial and temporal 
changes in habitat quality. However, to date, few studies have 
applied this method. Therefore, this study used OLS, GWR, 
and RF models to simulate habitat quality changes. The opti-
mal model was selected by comparing the fit of each model. 
This not only effectively identified the main driving factors 
underlying habitat quality changes but also provides a basis 
for model selection in future similar studies.

The Luoxiao Mountains area is an important ecological bar-
rier in the southern red-soil ecologically fragile area; it is also 
a concentrated area of extreme poverty and has been desig-
nated as a concentrated poverty-stricken area by the Chinse 
government. In recent decades, to achieve economic growth 
and eradicate poverty, large areas of forest, grassland, and other 
ecological lands in the region have been overtaken by human 
activities, resulting in habitat fragmentation. Thus, there is an 
urgent need to explore the long-term patterns in habitat quality 
change in the region and the driving mechanism. This would 
provide a reference for future approaches to ecological poverty 
alleviation, the formulation of ecological protection and res-
toration measures, and the optimization of the ecological secu-
rity barrier network. To this end, this paper assessed habitat 
quality in the Luoxiao Mountains area and explored the driving 
mechanisms in 4 years: 1995, 2005, 2015, and 2020. The 
research objectives were to (a) clarify the characteristics of land 
use changes in the Luoxiao Mountains area, (b) apply the 
InVEST model to assess and map habitat quality from 1995 to 
2020 and analyze its spatial and temporal patterns, and (c) use 
OLS, GWR, and RF to analyze the factors influencing habitat 
quality. This study not only offers a scientific baseline for 
exploring the dynamic change characteristics and driving 
mechanisms of habitat quality in concentrated poverty-stricken 
areas but also provides a scientific reference for ecological res-
toration practices and land use planning in other concentrated 
poverty-stricken areas.

Materials and Methods

Study site
The Luoxiao Mountains area is located at 112°37′ to 116°38′E, 
24°30′ to 27°45′N (Fig. 1) and includes the middle and southern 
sections of the Luoxiao Mountain Range and the area connect-
ing with the Nanling and Wuyi Mountains. The Luoxio Moun 
tains area spans the Jiangxi and Hunan provinces, with a total 
area of about 53,000 km2. The Luoxiao Mountains area is also 
an old revolutionary area with a large population of low-income 
regional farmers (in 2010, the per capita net income of farmers 
was equivalent to 53.6% of the national average, and the inci-
dence of poverty was 10.2%). In 2011, the Luoxiao Mountains 
area was identified as one of 11 “concentrated contiguous spe-
cial hardship areas” to be supported by the state. According to 
the "Luoxiao Mountain Area Regional Development and Po 
verty Alleviation Plan (2011-2020)", the area covers 24 counties 
in Jiangxi and Hunan. In 2020, the Luoxiao Mountains area 
achieved full poverty eradication, but it still faces problems 
such as relative poverty and the risk of returning to poverty 
[45]. The region has a subtropical humid monsoon climate, 
with an altitude of 30 to 2,108 m and an annual precipitation 
of 1,414 to 1,866 mm. The topography is characterized by 
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mountains and hills, with extensive distribution of red soil, rich 
biodiversity, and a forest coverage rate of 75%.

The Luoxiao Mountains area, dominated by forest land 
(72%) and arable land (18%), is an important ecological secu-
rity barrier for the Ganjiang, Dongjiang, and Xiangjiang river 
basins. It is also an ecologically fragile area in the southern 
red-soil hills and mountains. It faces many ecological prob-
lems such as overcultivation of land, forest irrigation and 
woodcutting, obvious vegetation degradation, and severe soil 
erosion. With intensive agriculture and animal husbandry, 
industrial activities, and urban expansion, the regional eco-
system and biodiversity are under threat. In recent years, the 
level of anthropogenic disturbance in the Luoxiao Mountains 
has increased, the vegetation area has continued to decrease, 
the ecological functions in some areas have been degraded, 
and the habitat quality of the region is under severe threat.

Data source
This study used land use data (accuracy: 100 m × 100 m), digital 
elevation model (DEM) data (30 m × 30 m), slope data (Slope), 
temperature data (Tem), precipitation data (Pre), road data, 
county-level administrative district maps, gross domestic prod-
uct (GDP), population distribution maps (POP), and nighttime 
lighting data. The dataset was provided by the Data Center for 
Resources and Environmental Sciences at the Chinese Academy 
of Sciences (RESDC) (http://www.resdc.cn). The land use data 
included 4 periods, 1995, 2005, 2015, and 2020, and the land 
use types were divided into 6 categories: grassland, cropland, 
forest land, construction land, water, and bare land. The accu-
racy of these data and classifications met the needs of this study 
[46]. Slope parameters were extracted or computed based on 
the DEM (10 × 10 resolution), using the Geographic Info 
rmation System (ArcGIS 10.0). The annual night light dataset 
was based on the DMSP/OLS from 1992 to 2013 and the Suomi 
National Polar-Orbiting Partnership-Visible Infrared Imaging 
Radiometer Suite satellite night light remote sensing image data 
from 2012 to the present. The annual night light brightness data 
for the whole country since 1992 were processed and generated. 
Since this dataset was obtained from different satellite sensors 

(DMSP/OLS and Suomi National Polar-Orbiting Partnership-
Visible Infrared Imaging Radiometer Suite), the 2 datasets were 
aligned. In addition, the data resolution affects the accuracy of 
the study results and facilitates spatial calculations and analysis. 
Therefore, using land use data as the standard, the resampling 
tool of ArcGIS was used to resample the resolution of the other 
data to 100 m × 100 m. The unified coordinate system for all 
data was WGS_1984_UTM_Zone_50N.

Research methodology
The research framework for this paper can be roughly divided 
into 3 parts (Fig. 2). Firstly, land use dynamics were analyzed 
using the land use transfer matrix. Secondly, habitat quality 
was assessed using the InVEST model, and its spatial and tem-
poral change characteristics were analyzed. Thirdly, the rela-
tionships between habitat quality and physical–geographical 
and socioeconomic factors were simulated using 3 methods: 
OLS, GWR, and RF. The optimal model was selected by com-
paring and analyzing the simulation effects. Then, the driving 
mechanism of habitat quality was analyzed.

Land use change transfer matrix
A land use transfer matrix provides a quantitative description 
of land class state and state transfer. It provides information 
on the dynamic process of mutual transformation between 
the beginning and end of a period of time for each type of area 
in a study area [19,47,48]. The dynamic process of land use 
change was quantitatively analyzed using the ArcGIS vector-
ization calculation and EXCEL pivot table function to obtain 
a land use transfer matrix of the Luoxiao Mountains area over 
4 periods, from 1995 to 2020. The calculation formula is as 
follows:

(1)Sij =

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 S12 ⋯ S1n

S21 S22 ⋯ S2n

⋮ ⋮ ⋱ ⋮

Sn1 Sn2 ⋯ Snn

⎤⎥⎥⎥⎥⎥⎥⎦

Fig. 1. Location of the Luoxiao Mountains area.
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where S is the area, Sij is the area of land class i transformed 
into land class j during the study period, and n is the number 
of land classes.

InVEST habitat quality model and parameterization
The habitat quality module of the InVEST 3.7.0 model [32] was 
used to quantitatively assess the level of habitat quality in the 
Luoxiao Mountains area. The better the habitat quality, the 
higher the regional biodiversity and the more stable the eco-
system [49,50]. The calculation formula is as follows:

where Qxj is the habitat quality of raster x in land use type j, Hj 
is the habitat suitability of land use type j, Qxj is the habitat 

degradation of raster cell x in land use type j, k is the half-
saturation coefficient (the default value of the model is 0.5), z 
is the normalization constant (the model is set to 2.5), R is the 
number of threat factors, Wr is the weight of threat factor r, y 
is the number of raster cells of threat factor type r, Yr is the total 
number of raster cells of threat factor r, irxyl、irxye is the stress 
value of raster y obtained by linear or exponential decay, respec-
tively, and the stress degree of raster x, βx is the accessibility of 
various threat factors to raster x, Sjr is the sensitivity of land use 
type j to threat factor r,and dxy is the maximum threat distance 
of threat factor r.

Based on the actual situation of land use in the Luoxiao 
Mountains area, land use types with intensive human activi-
ties and great impacts, such as paddy fields, drylands, urban 
land, rural settlements, other construction land, and traffic 
land (national roads, provincial roads, highways, and rail-
roads) were selected as habitat threat factors. In this study, 
the habitat quality module parameters were determined based 
on the InVEST model manual [32] and related studies [33,39].

Spatial statistical analysis
Exploratory spatial data analysis is used to describe the spatial 
clustering and anomalies in the spatial distribution patterns of 
visualized things or phenomena by calculating spatial autocor-
relation coefficients. It is widely used in socioeconomic and 
ecological analyses. In this study, Moran's I index was used to 
describe the global autocorrelation characteristics of habitat 
quality change. The Getis-Ord G∗

i
 index was used to explore the 

aggregation and divergence characteristics of habitat quality 
change, i.e., the distribution patterns of "hot spots" and "cold 

(2)Qxj = Hj

(
1 −

(
Dz
xj

Dz
xj
+ kz

))

(3)Dxj =
∑R

r=1

∑Yr

y=1

(
Wr ∕

∑R

r=1
Wr

)
ryirxy�xSjr

(4)irxy l = 1 −

(
dxy

dr max

)

(5)irxy e = exp

(
−

(
2.99

dr max

)
× dxy

)

Fig. 2. Research framework of this paper Tem, temperature; Pre, precipitation; DEM, digital elevation model; POP, population distribution maps; GDP, gross domestic product; 
Light, night lighting index; OLS, ordinary least squares; GWR, geographically weighted regression; RF, random forest.
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spots". The values of Moran's I index range from [−1,1]. Values 
greater than 0 indicate a positive spatial correlation; the larger 
the value, the more significant the positive correlation and the 
stronger the spatial agglomeration; values less than 0 indicate 
a negative spatial correlation; values equal to 0 indicate no spa-
tial correlation, i.e., the spatial units are randomly distributed. 
The P value of the Getis-Ord G∗

i
 index indicates the typical 

probability; 0.01 and 0.05 correspond to the typical confidence 
interval of 99% and 95%, respectively. These values reflect the 
degree of aggregation and divergence of hot spots (or cold spots) 
in spatial units. The calculation equations are as follows:

where:n is the number of spatial grid cells, xi and xj denote the 
observations of units and cells, respectively, 

(
xi − x

)
 is the devi-

ation of the observation on the ith spatial cell from the mean, (
xj − x

)
 is the deviation of the observation on the jth spatial 

cell from the mean, and wij is the spatial weight matrix based 
on spatial adjacency relationships [51].

In order to ensure that the spatial unit habitat quality has 
certain regional characteristics and sufficient accuracy to 
reflect the spatial heterogeneity of drivers, such as physical 
geographic factors and socioeconomic factors, the study area 
was divided into 2 km × 2 km square grid cells using the fish-
ing net tool in ArcGIS 10.3 software. Then, the raster map of 
habitat quality change at different stages was partitioned into 
numerical statistics using the neighborhood statistics tool. 
These were then assigned to the grid cells for spatial statistical 
analysis of habitat quality changes to obtain the hot-spot map 
of habitat quality changes in the Luoxiao Mountains area dur-
ing different periods.

Global spatial autocorrelations can only reflect whether there 
are cohesive features in a study area as a whole; they cannot 
clarify the location distribution of cohesive features. Using the 
ArcGIS 10.6 platform, hot-spot analysis was conducted based 
on the grid, and hot and cold spots with confidence levels above 
90% were selected to reflect the distribution of high- and low-
value habitat quality clusters in the Luoxiao Mountains area.

GWR model
The GWR technique integrates Tobler's first law of geography 
[52] with the local spatial statistics method. It obtains the spatial 

regression coefficients corresponding to spatial locations, one by 
one, by solving the regression analysis model for independently 
sampled analysis points separately. Then, it quantitatively charac 
terizes the heterogeneity of spatial relationships by parameter 
estimates that vary with spatial locations. The basic GWR model 
is calculated as follows.

where yi is the value of the dependent variable at position i, 
xik (k = 1, 2...m) is the value of the independent variable at 
position i, (ui, vi) is the coordinate of the regression analysis 
point i,  β0(ui, vi) is the intercept term, βk(ui, vi) (k = 1, 2...m) 
is the regression analysis coefficient, and εi is the residual at 
position i.

RF
RF is based on classification and regression trees [53]. It pro-
duces numerous independent trees to reach a final decision 
through 2 randomization approaches to the selection of train-
ing samples and the selection of variables at each node of a tree. 
This randomness alleviates the typical drawbacks of classifica-
tion and regression trees, such as overfitting and sensitivity to 
the training sample configuration [53]. Using out-of-bag data 
from random selection, RF provides internal cross-validation 
and the relative importance of a variable when samples are held 
in out of bag [43,54,55]. RF was implemented by MATLAB 
2018.

Results

Land use change characteristics
The land use types in the Luoxiao Mountains area are diverse 
and structurally complex. The land use types in the study area 
were classified as cropland, woodland, grassland, water, con-
struction land, and bare land. The 5-phase land use type dis-
tribution map (Fig. 3) showed that the land use types in the 
study area were mainly woodland, cropland, and grassland, 
among which, the area of woodland was the largest, accounting 
for more than 72% of the total study area, followed by cropland 
and grassland, accounting for about 18% and more than 6% 
of the total area of the region, respectively. Overall, the areas 
of forest land, grassland, and arable land accounted for more 
than 97% of the total study area and had a greater impact on 
the overall landscape, while the proportions of construction 
land, water, and bare land were smaller, accounting for less 
than 3% of the total study area. From 1995 to 2020, the area 
of construction land in the Luoxiao Mountains area increased 
the most, reaching 436.19 km2, followed by water, with an area 
increase of 39.03 km2. The area of forest land decreased the 
most, amounting to 338.59 km2, followed by arable land and 
grassland, with these areas decreasing by 74.31 and 60.69 km2, 
respectively; the area of unused land decreased by 1.63 km2.

To fully understand the structural characteristics of land use 
type changes in the Luoxiao Mountains area, a land use shift 
matrix was constructed to calculate the number of mutual land 
use shifts (Table 1). As shown in the table, from 2000 to 2005, 
land use transfer mainly occurred among cropland, forest land, 
grassland, and construction land, with a large amount of forest 
land and grassland shifting to cropland; the area of cropland 
increased by 79.09 km2. From 2005 to 2015, construction land 

(6)Moran I =
n
∑n

i=1

∑n
j=1wij

�
xi − x

��
xj − x

�

∑n
i=1

�
xi−x

�2�∑
i

∑
jwij

�

(7)
G∗
i =

∑n
j=1wi,jxj − X

∑n
j=1wi,j

S

��
n
∑n

j=1w
2
i,j
−
�∑n

j=1wi,j

�2�

(n−1)

(8)X =
1

n

∑n

j=1
xi

(9)S =

√
1

n

∑n

j=1
x2
j
−
(
X
)2

(10)yi = �0
(
ui, vi

)
+
∑m

k=1
�k
(
ui, vi

)
xik + �i
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increased significantly (177.61 km2), with the main sources of 
inflow being cropland and forest land. The area of grassland 
also increased (44.43 km2), with the main source of inflow 
being forest land. From 2015 to 2020, arable land, forest land, 
and grassland were substantially transformed into construction 
land, and the area of construction land continued to increase 
significantly (239.43 km2).

Habitat quality variability characteristics
Spatial and temporal variation in habitat quality
The habitat quality index (HQI) is a continuous value between 
0 and 1; the closer to 1, the stronger the ability of the regional 
ecological environment to resist threat factors and the better 

the habitat quality. The average HQI of the Luoxiao Mountains 
region in 1995, 2005, 2015, and 2020 was 0.822, 0.818, 0.817, 
and 0.813, respectively, indicating that the overall habitat 
quality of the Luoxiao Mountains region decreased over time. 
The declines during 1995 to 2005 and 2015 to 2020 were the 
largest.

To accurately describe the dynamic trend in habitat quality, 
the HQI in the Luoxiao Mountains area was divided into 5 
grades using the equal spacing classification method; the 5 
classes and range of values were as follows: very low (0 to 0.2), 
low (0.2 to 0.4), medium (0.4 to 0.6), high (0.6 to 0.8), and 
very high (0.8 to 1.0) [56]. Overall, the habitat quality of con-
centrated areas of forest land, grassland, and water was high, 
while the habitat quality of arable land, construction land, 

Fig. 3. Sankey diagram of land use transfer.
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and bare land were low (Fig. 4). As shown in Table 2, from 
1995 to 2020, the total area of very high-grade habitat quality 
areas accounted for the largest proportion, with all greater 
than 55%, indicating that the overall habitat quality of the 
Luoxiao Mountains area was good. However, the area of very 
high-grade habitat quality first decreased and then increased, 
from 29,871.87 km2 in 1995 to 29,228.15 km2 in 2015, and 
then increased to 29,300.11 km2 in 2020; the proportion also 
decreased from 56.91% to 55.69% and then increased to 
55.82%. The area of very low-grade habitat quality area first 
decreased and then increased, from 664.95 km2 in 1995 to 
648.31 km2 in 2005, and then continuously increased to 
1196.78 km2 in 2020; the proportion also decreased from 
1.27% to 1.24% and then continuously increased to 2.28%. 
The areas of the other habitat quality grades remained con-
sistent (Table 2). This indicates that there was spatial hetero-
geneity in the habitat quality of the Luoxiao Mountains over 
time, with both a trend of deterioration followed by gradual 
improvement and a trend of improvement followed by con-
tinuous deterioration.

Global spatial autocorrelation analysis of habitat quality
The Moran's I calculations for the 4 periods of 1995, 2005, 2015, 
and 2020 showed that the Z scores of the 4 periods were all greater 
than 2.58, and all P = 0.0000 < 0.01. This indicates that the spatial 

distribution of habitat quality in the Luoxiao Mountains area was 
not random but had a strong spatial correlation.

The Moran's I values for all 5 periods from 1995 to 2020 
were above 0.6, indicating a significant clustering pattern, i.e., 
high values of habitat quality clustered spatially and low values 
tended to be adjacent to each other. In addition, the values from 
1995 to 2020 first decreased and then gradually increased 
(Table 3), indicating that the spatial correlation of habitat qual-
ity in the region first decreased (1995 to 2005) and then grad-
ually increased (2005 to 2020). This is primarily because the 
areas with high habitat quality were affected by the expansion 
of urban land, which eroded the original woodland, grassland, 
and other ecological landscapes and caused habitat fragmen-
tation. The development of large amounts of urban land has 
resulted in the increasingly widespread distribution of areas 
with low habitat quality.

Analysis of cold spots and hot spots of habitat quality 
changes
From 1995 to 2020, the hot-spot areas of habitat quality in the 
Luoxiao Mountains area were mainly concentrated in the areas 
where the national key ecological function areas are located, 
especially Jinggangshan City, Yanling County, and Anyuan 
County, where the habitat quality is high. The cold-spot areas 
were mainly located in provincial key development areas 

Table 1. Land use transfer matrix for the Luoxiao Mountains area (km2).

Years Type Cropland Forestland Grassland Water Construction Bare land

1995–2005 Cropland — 712.69 85.72 40.13 66.73 0.16

Forestland 782.03 — 180.24 24.94 19.11 0.51

Grassland 122.24 183.72 — 4.25 3.27 0.11

Water 25.80 21.29 3.08 — 1.70 0.00

Construction 54.14 13.57 2.20 1.37 — 0.05

Bare land 0.31 0.65 0.86 0.04 0.07 —

2005–2015 Cropland — 75.63 7.37 5.75 82.11 0.02

Forestland 90.47 — 164.35 13.34 86.47 0.16

Grassland 9.12 103.00 — 0.42 15.33 0.01

Water 2.24 3.34 0.38 — 0.65 0.00

Construction 4.70 1.80 0.20 0.25 — 0.00

Bare land 0.02 0.02 0.01 0.01 0.00 —

2015–2020 Cropland — 1101.72 131.46 42.26 220.43 0.33

Forestland 1146.57 — 280.61 40.38 124.25 1.01

Grassland 134.05 322.59 — 5.62 23.51 0.03

Water 37.74 38.76 4.63 — 3.52 0.04

Construction 88.82 36.32 4.41 3.35 — 0.07

Bare land 0.34 0.79 0.30 0.01 0.69 —

1995–2020 Cropland — 774.21 89.36 50.57 275.19 0.26

Forestland 901.47 — 366.61 42.96 199.61 1.23

Grassland 127.78 351.36 — 5.35 38.26 0.05

Water 28.65 27.14 3.22 — 3.17 0.00

Construction 56.94 19.49 1.99 2.32 — 0.02

Bare land 0.44 1.09 0.93 0.01 0.72 —
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(Nankang District, Ganxian District, and Ganzhou District) 
and national agricultural main production areas (Xingguo 
County, Yudu County, Ningdu County, and Anren County) 
(Fig. 5). The above areas are flat, densely populated, and subject 
to strong interference from human activities, such as agricul-
tural production and rapid urban expansion, resulting in low 
regional habitat quality.

Analysis of factors influencing the changes in 
habitat quality
Fitting effects of the OLS, GWR, and RF models
The spatial pattern of habitats reflects that human activities and 
natural factors have important influences on the spatial and 
temporal changes in habitat quality. In this paper, natural geo-
graphic factors such as the average annual rainfall, average 

annual temperature, altitude, and slope, and socioeconomic 
factors such as the spatial distribution of the population, GDP, 
and luminosity index were selected as independent variables to 
compare and verify the fitting effects of the OLS, GWR, and RF 
models.

First, the variance-inflated factor (VIF) diagnostic method 
was used to test the multicollinearity among the independent 
variables in order to exclude the factors with significant mul-
ticollinearity. Usually, VIF = 10 is used as the criterion; when 
VIF < 10, there is no multicollinearity, when 10 ≤ VIF < 100, 
there is strong multicollinearity, and when VIF ≥ 100, there is 
serious multicollinearity [39,41]. The test results indicated that 
the VIF values of the respective variables were less than 10, and 
thus, it can be concluded that there was no multicollinearity 
between the respective variables. This satisfies the requirements 
of the explanatory variables.

Fig. 4. Spatial distribution of habitat quality in the Luoxiao Mountains area, 1995 to 2020.
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The explanatory power of the OLS model was less than 50% 
for habitat quality, and the GWR model had a significantly 
better fit than the OLS model for all 5 time periods, with an 
explanatory power of more than 65%. Meanwhile, both the 
Sigma and Akaike's Information Corrected criterion of the 
GWR model were lower than those in the OLS model, indi-
cating that the GWR model had better explanatory power for 
factors affecting habitat quality and its model accuracy was 
better.

When simulated using the RF algorithm, the mean square 
error (MSE) reached a minimum once the number of categor-
ical regression trees increased to 100 and the number of leaf 
nodes was 5. Therefore, in the subsequent analysis, the number 
of categorical regression trees was set to 100 and the number 
of leaf nodes was set to 5. The simulation accuracy R2 of the RF 
algorithm in 1995, 2005, 2015, and 2020 was 0.845, 0.861, 0.864, 
and 0.865, and the MSE was 0.073, 0.070, 0.070, and 0.074, 
respectively. This indicates that the RF algorithm was the best 
fit and outperformed the OLS and GWR models.

Habitat quality change influencing factors
According to the GWR results (Fig. 6), the correlation coeffi-
cients between each influencing factor and habitat quality 
during the 5 periods from 1995 to 2020 showed more dispersed 
regional distribution characteristics. Among the natural geo-
graphic factors, temperature and elevation were negatively cor 
related with habitat quality, and the regression coefficients were 
negatively correlated in the eastern region and positively cor-
related in the central and western regions. Precipitation and 
slope were positively correlated with habitat quality, and the 

regression coefficients were positively correlated in the central 
and eastern regions and negatively correlated in the western 
region. Socioeconomic factors such as the population density 
and nighttime light index showed more significant negative 
correlations with habitat quality, and the correlations increased 
over time (Fig. 6), indicating that the spatial heterogeneity in 
the effect of socioeconomic factors on habitat quality became 
more significant with increases in the urbanization rate.

The RF results revealed that the ranking of the importance 
values of the influencing factors during the 5 periods from 
1995 to 2020 exhibited relative consistency, with the highest 
importance values for slope and precipitation among the nat-
ural factors, and the highest importance value for GDP among 
the socioeconomic factors. In addition, the importance values 
of the different influencing factors varied across the different 
years. In particular, the nighttime lighting factor showed the 
most obvious performance, and its importance value increased 
over time (Fig. 7).

Discussion

Spatial and temporal changes in land use and 
habitat quality in the Luoxiao Mountains
In this study, the InVEST model was used to assess the habitat 
quality of the Luoxiao Mountains area during 4 periods from 
1995 to 2020. In terms of the spatial distribution, the overall 
habitat quality of the Luoxiao Mountains area showed a spatial 
distribution pattern of low in the central urban area and high 
in the peripheral urban area, with an obvious hierarchical 
structure. This is highly compatible with the topographic 
characteristics of the Luoxiao Mountains area. In terms of 
temporal changes, the overall habitat quality in the Luoxiao 
Mountains showed a decreasing trend from 1995 to 2020; this 
trend was more obvious between 1995 to 2005 and 2015 to 
2020. There was an overall decrease of 0.5%, which was closely 
related to land use changes. The changes from 1995 to 2005 
were mainly driven by economic interests, such as grain com-
modities; this led to the reclaiming of a large amount of forest 
and grassland for cultivation. From 2005 to 2015 and 2015 to 
2020, construction land increased significantly. On the one 
hand, this is due to the implementation of the poverty erad-
ication policy, the vigorous development of regional specialty 
industries, and a large increase in the construction of agri-
cultural and forestry product bases. On the other hand, the 
accelerated urbanization process has led to the large-scale 
expansion and occupation of construction land. Land use 

Table 2. Habitat quality percentage statistics for the Luoxiao Mountains, 1995 to 2020.

Level
1995 2005 2015 2020

Area/km2 Percentage/% Area/km2 Percentage/% Area/km2 Percentage/% Area/km2 Percentage/%

Very low 664.95 1.27 648.31 1.24 873.28 1.66 1196.78 2.28

Low 3385.50 6.45 3320.02 6.33 3415.35 6.51 3357.08 6.40

Medium 6179.78 11.77 6216.73 11.84 6566.87 12.51 6342.19 12.08

High 12387.77 23.60 12758.13 24.31 12407.38 23.64 12294.92 23.42

Very high 29871.87 56.91 29543.51 56.29 29228.15 55.68 29300.11 55.82

Table 3. Global Moran’s I index table.

Year
Global autocorrelation index statistics

Moran’s I Z-score P value Result

1995 0.664 149.777 0.0000 Gather

2005 0.660 147.412 0.0000 Gather

2015 0.666 150.246 0.0000 Gather

2020 0.717 113.795 0.0000 Gather
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changes due to enhanced anthropogenic activities have 
resulted in the degradation of habitat quality levels at an accel-
erated rate with increased spatial autocorrelations. This is 
consistent with the gradual decline in habitat quality in the 
Poyang Lake basin in Jiangxi Province [57], Guangdong 
Province [19], and the Beijing-Tianjin-Hebei region [25], 
where the common cause is a rapid increase in construction 
land due to urbanization expansion. In addition, the habitat 

quality in the Luoxiao Mountains area showed spatial heter-
ogeneity over time, with the distribution of cold and hot spots 
being closely related to the regional functional zoning; there 
was a trend of deterioration followed by gradual improve-
ment, which is due to the implementation of ecological pro-
jects such as natural forest protection and the return of 
farmland to forest in the context of regional urbanization 
construction; these projects help to improve habitat quality.

Fig. 5. Habitat quality “hot-spot” analysis in the Luoxiao Mountains area, 1995 to 2020.
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Fig. 6. Spatial distribution patterns of GWR regression coefficients.

D
ow

nloaded from
 https://spj.science.org on February 06, 2024



Guo et al. 2023 | https://doi.org/10.34133/ehs.0039 12

Habitat quality driving mechanisms in the  
Luoxiao Mountains

In this study, OLS, GWR, and RF were used to quantify the 
effects of physical geographic and socioeconomic factors on 
habitat quality. The GWR model explained the factors influ-
encing the changes in the spatial patterns of habitat quality at 
the spatial location level better than the OLS model during 
different time periods. In addition, the machine learning RF 
algorithm had the highest simulation accuracy and showed 
good predictive performance. This indicates that RF model is 
robust, especially when a large number of samples are used 
[44,55,58].

Overall, natural geographic and socioeconomic factors jointly 
drove the spatial pattern changes in habitat quality in the Luoxiao 
Mountains. The spatial heterogeneity of the effects of socioeco-
nomic factors on habitat quality became more significant with 
increasing urbanization. Among the natural geographic factors, 
those with the greatest influences on habitat quality changes, 

from high to low, were slope, precipitation, temperature, and 
DEM. In general, habitat quality showed a tendency to increase 
with increasing DEM and slope [13,39]. This is because regions 
with larger DEM and slope generally have fewer socioeconomic 
activities and less ecosystem-disturbing factors, and thus, there 
is a relatively lower impact on habitat quality. It should be noted 
that previous studies have shown more significant effects of 
DEM on habitat quality [39]; however, in this study, the effect 
of DEM on regional habitat quality was lower. This may be due 
to the lower spatial heterogeneity of DEM in the Luoxiao Moun 
tains area compared with other factors. Among the meteorolog-
ical elements, precipitation had a higher value of importance on 
habitat quality and temperature had a smaller value. This is likely 
because the Luoxiao Mountains area is located in a subtropical 
region and the temperature was relatively stable during the study 
period; thus, precipitation was a key factor affecting vegetation 
growth.

The aggregation of various socioeconomic factors in the 
urbanization process is an important driver of regional habitat 

Fig. 7. The importance values of different factors influencing on habitat quality.
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quality changes. Sun et al. showed that the distribution of GDP 
was not related to habitat quality in a study of the spatial and 
temporal dynamics of habitat quality in the Nansi Lake water-
shed in Eastern China [13]. In contrast, the current study found 
that the GDP contributed the most to habitat quality changes 
among the various socioeconomic factors. This difference may 
be due to differences in the study areas. To a certain extent, 
GDP reflects the process of urbanization construction in the 
Luoxiao Mountains area; in general, the higher the GDP, the 
higher the degree of regional urbanization construction, and 
the greater the impact on habitat quality. Notably, socioeco-
nomic factors such as Pop and Light showed more significant 
negative correlations with habitat quality, and the correlations 
increased over time. POP and Light are representations of hu 
man activities and thus reflect indirect disturbance effects of 
urban socioeconomic development and the effects of high- 
intensity human activities on ecosystems. Together, these find-
ings suggest that intensive socioeconomic activities threaten 
habitat quality and cause habitat loss and degradation.

Ecological restoration strategy analysis
The Luoxiao Mountains area is both an ecological barrier area 
and an ecologically fragile area; it faces problems such as rel-
ative poverty and the risk of returning to poverty [45]. 
Therefore, it is necessary to fully balance ecological protection 
and economic growth to achieve sustainable regional devel-
opment in this specific region. Given that the hot-spot areas 
of habitat quality in the Luoxiao Mountains were mainly con-
centrated in national key ecological function areas such as 
Jinggangshan City, Yanling County, and Anyuan County, these 
areas should focus strongly on the realization of the ecological 
product value of the rich forest resources (e.g., ecological pro-
tection compensation, carbon trading, forest economy, and 
ecotourism) and should explore effective paths to transform 
typical ecological product endowments into economies for 
indigenous populations, with the aim of curbing the expan-
sion of agricultural land to maintain better habitat quality and 
ecosystem service supply [59]. For habitat quality cold-spot 
areas such as the provincial key development areas (Nankang 
District, Ganxian District, and Ganzhou District) and national 
agricultural main production areas (Xingguo County, Yudu 
County, Ningdu County, and Anren County), spatial utiliza-
tion efficiency should be improved, expansion of construction 
land should be mitigated, and ecological restoration measures 
should be implemented to improve habitat quality. Moreover, 
low-carbon green industries should be developed, and advan-
tageous agricultural product bases created. In addition, the 
Luoxiao Mountains area should fully utilize the value of 
unused land to provide available space for the implementation 
of fallowing and reforestation project.

Research limitations
The application of the InVEST model for habitat quality studies 
mainly relies on expert knowledge to define model parameters 
[60], and the process of parameter selection is inevitably influ-
enced by expert subjectivity. Thus, there is a need to enhance 
model parameter localization studies through field and long-
term observational studies in order to optimize habitat suitability, 
threat impact characteristics, and threat sensitivity parameters 
for different land use types [8,61]. In terms of habitat quality 
driving mechanisms, this study explored the effects of physical 
geographic and socioeconomic factors on habitat quality, which 

provides a limited view of the driving mechanisms. Due to the 
complexity of regional ecosystems, other factors such as the spa-
tial distribution of vegetation, culture, and policy can all influ-
ence habitat quality to some extent. Therefore, it is necessary for 
future studies to investigate other relevant factors in order to 
more comprehensively study the habitat quality driving mecha-
nisms and their scale effects.

Conclusion
In this study, ArcGIS and InVEST models were used to quan-
titatively analyze the spatial and temporal change characteris-
tics of land use and habitat quality in the Luoxiao Mountains 
area. Moreover, OLS, GWR, and RF were used to analyze the 
driving mechanisms of the spatial and temporal change char-
acteristics of habitat quality in the Luoxiao Mountains area. 
The main results are as follows:

1. The land use type of the Luoxiao Mountains area is mainly 
forest land, accounting for more than 70% of the total area. 
From 1995 to 2020, the largest increase was in the area of con-
struction land, amounting to more than 170 km2; this was 
mainly due to the transformation of arable land to forest land.

2. During 2000 to 2020, the overall habitat quality of the 
Luoxiao Mountains area exhibited a decreasing trend, and its 
spatial distribution showed strong autocorrelations and signif-
icant aggregation. The spatial distribution of habitat quality 
was closely related to land use, and the hot spots were mainly 
concentrated in the areas where national key ecological func-
tion areas are located, while the cold spots were mainly distrib-
uted in provincial key development areas and national main 
agricultural products production areas.

3. OLS, GWR, and RF were used to analyze the habitat qual-
ity driving mechanism in the Luoxiao Mountains area, and RF 
was found to be superior to the other methods.

4. The physical geographic factors of slope and precipitation, 
and the socioeconomic factor GDP were the key drivers of 
habitat quality in the Luoxiao Mountains. The spatial hetero-
geneity in the influence of socioeconomic factors on habitat 
quality became more significant with the acceleration of the 
urbanization rate.

This study offers a comprehensive understanding of the 
long-term habitat quality change patterns and their driving 
mechanism in the Luoxiao Mountains and provides a basis for 
decision-making to maintain and enhance habitat quality. This 
can be achieved through the precise implementation of eco-
logical protection and restoration measures, the improvement 
of spatial utilization efficiency, and the exploration of ecological 
product value realization. In addition, this study not only pro-
vides a scientific baseline for exploring the dynamic change 
mechanisms of habitat quality in concentrated poverty-stricken 
areas but also offers a scientific reference for ecological protec-
tion, restoration, and land use planning in other concentrated 
poverty-stricken areas.
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