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Abstract—Customer baseline load (CBL) prediction plays an
important role in calculating the volume and value of the
flexibility provided by end-users. In this paper, two different CBL
methods are applied to investigate their prediction accuracy for
a given load with high resolution metered data. One of the CBL
methods makes use of historical data, named CBLXofY , while
the other makes use of the load pattern before/after the CBL-
prediction, denoted as CBLB/A. A real office with high resolution
load data is used to investigate CBL prediction accuracy at
multiple measuring points, for the different CBL methods. The
results show that CBLB/A has a high level of accuracy at
the office-building level, due to an internal 200-kW threshold
for import that made the load profile flat during the midday.
As the load increases throughout the morning, both methods
undershoot the accuracy, where CBLB/A undershoots by 13%,
while CBLXofY undershoots by 4-5%. In the electric vehicle
(EV) parking lot, there is a noticeable offset for both CBL-
methods, as the lot is the internal throttling mechanism for
maintaining the 200-kW threshold at the building level. This
analysis has captured the importance of measuring points for
calculating CBL when an internal demand response is available
within the building, which can cause noise and inaccuracy.

Index Terms—Demand profile, Distribution networks, Electric
vehicles, Flexibility baseline.

I. INTRODUCTION

Power system operation is becoming challenging due to an
increasing share of variable renewable resources [1]. The non-
dispatchable renewable resources require flexibility from other
resources, namely demand and storage. In Norway, where over
90% of the generation is dispatchable hydroelectric, flexibility
is important for maximising the network’s capacity utilisation
and avoiding new high capital investments. For example,
short-term demand peaks and mismatch between distributed
photovoltaic (PV) generation and local demand causes net-
work congestion and voltage problems in transmission and
distribution networks, which could be avoided with flexibility
at demand side [2]. Historically, both implicit and explicit
flexibility have been used, but explicit flexibility has mainly
focused on larger customers. Explicit flexibility enables the
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network operator or a third party to activate flexibility directly
by accessing the customers’ flexibility resource [3]. However,
to pay the customer accordingly, a load baseline is needed [4].
Customer baseline load (CBL) is a means of calculating the
expected load for a consumer when they have performed a
flexible action. The deviation between the CBL and measured
energy usage is equal to the amount of flexibility delivered.

Multiple CBL estimation methods have been described in
literature, with their own merits and demerits [5]–[17]. As
the demand pattern is not same for all types of customers,
these methods must be quantitatively evaluated. Some of the
CBL estimations are simple and transparent, while others are
mathematically complex. When a CBL estimation method is
used, the level of the customer’s technical expertise matters in
order to avoid any dispute while financial settlements are made
between the parties providing flexibility, the flexibility user,
and the aggregator transacting the flexibility between them.

In this paper, different CBL methods provided in the litera-
ture [5], [6] are quantitatively evaluated for commercial con-
sumer segment in Norway. Additionally, some of the different
methods discussed in the literature are shortly described and
are evaluated using high resolution smart grid data recorded
from an office building in Norway with a parking lot for
EVs. Methods using measurements before/after activation of
flexibility, and through use of historical data, are carried out
in this analysis. The analysis investigates the performance of
these CBL-methods over a given workday in October 2022.
Due to access to detailed consumption data, both in the EV
parking lot and at the office building level, accuracy at different
measurement levels were investigated. The analysis was also
applied to each hour during a workday, to capture the accuracy
in prediction based on time of day.

Our main contributions are the following:

• Two different CBL methods are applied to investigate the
accuracy of their prediction for a given load.

• Real-life office load data at different measuring points
with high resolution is used to investigate the accuracy
of CBL prediction at 5-minute resolution.

• The accuracy of CBL prediction is analyzed at different
measurement levels, capturing the influence from active
in-house demand response.
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The structure of the paper is as follows: First, a literature
study on different CBL methods will be presented in Section
II. The chosen CBL methods are described in Section III,
with the case study in Section IV. The results and general
discussion surrounding the results will be provided in Section
V, followed by the conclusion and future work in Section VI.

II. LITERATURE STUDY

The International Energy Agency (IEA) states that ”Power
system flexibility is the ability of a power system to reliably
and cost-effectively manage the variability and uncertainty of
demand and supply across all relevant timescales” [18]. The
deviation from unaltered demand or generation profile is the
actual flexibility provided. Once the flexibility is activated, the
unaltered profile is not available for calculation of flexibility.
Fig. 1 shows an example of flexibility activation, consequent
demand adjusted, and resulting flexibility provided. Different
methods for calculating flexibility in the absence of unaltered
profile are proposed in literature [5]–[17].
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Fig. 1. Baseline demand and flexibility activation.

A. Window before

The ’window before’ method considers the last measured
power before flexibility activation as reference for calculating
the baseline [5], [8]. The baseline profile is assumed to
be a straight line with a value corresponding to the last
consumption before flexibility activation. This method is very
simple and transparent. The main disadvantage is its lack of
immunity to manipulation. The flexibility resource owner can
artificially alter their consumption if the hour of activation is
known well before the activation.
B. Window before and after

The ’window before and after’ method considers the mea-
surements before and after the flexibility activation. Like
the ’window before’ method, the baseline power profile is
assumed to be a straight line with a value that is the average
of the last measurement before flexibility activation and the
measured value after flexibility activation is removed [7]. It is
also a simple and transparent method, but with the same dis-
advantage of manipulation of measurements before and after.
In addition, the flexibility resources like electric water heaters
and space heater, which have a rebound effect, will affect the
’after’ measurement, while not a forced manipulation.

C. Historical or averaging (also called XofY)

In the historical or averaging method, an average value from
the past is taken as the baseline. It is also called XofY, which
means an ’X’ number of days from the past ’Y’ number of

days are considered [5]. As flexibility activation hides the true
consumption and potential, the ’X’ number of days taken for
averaging are the days without flexibility activation in the last
’Y’ number of days [9]. As loads can vary depending on the
days being weekdays or -ends, filtering the ’Y’ days to only
include similar days can be performed. In the case discussed in
this paper, the assumption is that there has been no flexibility
activation in the past. Therefore, only the recent 10 days are
the reference.
D. Calculated

The baseline can be calculated in two simple ways. One
transparent way is a linear interpolation between the two
measurements before flexibility activation and after flexibility
activation removal [10]. Another way is to use a regression
technique with measured data before and after the flexibility
period [11]. For a common customer, regression could be
complex method and not a transparent method.
E. Machine learning

Machine learning (ML) follows a similar approach to re-
gression by using data set for baseline calculation. Reference
[6] describes an ML-based approach for a residential demand
baseline calculation, which uses a neural networks-based ap-
proach. A clustering-based approach for baseline calculation
is detailed in [12]. ML could use data from multiple days, find
the similarity in the data set, and produce baseline data for the
flexibility activation period. Unlike regression, ML does not
necessarily need to fit the data into one mathematical function.
For the common customer, ML is a black box and the method
is not transparent. Multiple methods could be combined to
calculate the baseline. For example, reference [13] uses mul-
tiple regression methods, which could be combined to find
the coefficients of the equation that represents the baseline,
or a deep learning and quantile regression on a pool of data
where there has been no flexibility activation to extract the
coefficients to calculate a baseline.
F. Control group

The control group uses other customers’ demand during
flexibility activation as a reference for baseline. In a population
of consumers, a segment for which flexibility is not activated
forms a reference group. The group for which the flexibility is
activated is called control group [14]. The control group may
be selected randomly or be well defined and non-experimental
[15]. The delivered flexibility is the difference between the
reference and control group. For this study, it is assumed
the control group and reference group is the same or has a
negligible difference during the period of flexibility activation.
In reality, the method is not simple nor transparent, as the data
of the reference group is not available to everyone.
G. Prognosis

The prognosis provides the expected behaviour of the flex-
ible consumer, which is taken as the baseline for reference.
There could be many forecasting methods that could be used
for prognosis. The main difference between the prognosis
and the other method is that the baseline is estimated before
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flexibility activation [16], [17]. It is like the balance re-
sponsible parties (BRPs) commitment to transmission system
operator (TSO). The BRPs are obligated to provide their
hourly generation plan to the TSO, so that any deviations can
be calculated as imbalance. Other methods estimate baseline
during settlement phase and prognosis is useful for bidding
phase.

III. METHODOLOGY

As described in Section II, multiple CBL methodologies
can be applied that account for behaviour around the activation
window, make use of historical data to predict the load pattern,
and utilise machine learning or control groups. The methods
vary in both their complexity and need for data.

This work investigates two different CBL methodologies
based on the existing methods described in Section II. First,
the ”window before and after” method, which looks at the
measurement data before and after activation is used. This
analysis only considers the average data before/after activation,
named CBLB/A. This method only relies on measurement
point before and after the activation period.

The second method is the ”historical or averaging” method,
denoted as CBLXofY in this work. By using historical
data points, the method creates an expectation of the load
pattern, finding the historical average load. A key strength
of this method is that it limits manipulation of data points by
limiting influence from extreme load data, unless the flexibility
provider frequently manipulates load. One weakness is that
the data used can be sensitive to seasonal, daily and hourly
variations, meaning that the reference data should be chosen
carefully. Therefore, the data points collected can be filtered
to exclude extreme data points. The filtering process used
in this work is based on the interquartile range technique,
using percentiles to define outliers [19]. The percentile range
should be balanced with the data used, to avoid extreme data
points being included. The analysis performed in this work
uses measurements without flexibility activation to evaluate
the accuracy of the CBL prediction methods.

The two CBL methodologies were chosen due their sim-
plicity and transparency, and ability to predict CBL without
extensive amounts of metered data. These considerations are
the basic requirement by the regulatory authority to avoid
disputes in settlement between the parties involved in the
flexibility value chain [5].

IV. CASE STUDY

The case study for this analysis is a modern office building
located in south-eastern Norway, part of the ”Strømfleks”
project [20]. The office building has multiple flexible loads
available, and detailed monitoring of their electricity consump-
tion during operation, including cooling/heating, PV-system,
and an EV parking lot with 50 charging points. During summer
2022, the parking lot was subject to several manual throttling
cases, where the charging level was throttled down to 20 kW.
Therefore, this case study assumes the EV parking lot to be
the source of flexibility activation, which would prompt the
need for calculating the CBL.

Several metering points for measuring the electricity con-
sumption are placed within the office building. For this case
study, two of these metering points are of interest: the whole
office building, and the EV parking lot. The data is given at
5-minute resolution, providing detailed characteristics of the
load profiles and their variation within an hour.

The office building has incorporated some internal demand
responses using the EV parking lot. The following internal
demand responses are known:

• The EV parking lot has a dynamic throttling system
throughout the day, where it is throttled down to 40
kWh/h during the busiest morning hours (6-9 AM).

• The office building has a 200-kW threshold measured at
building-level during winter months, when the EV park-
ing lot is actively throttled to stay below this threshold.

• PV production at the building level increases the throt-
tling level for the EV parking lot.

Internal demand response originating from the EV parking
lot can interrupt the accuracy of the CBL-calculation. Since the
200-kW threshold measured at building-level is maintained by
actively throttling the EV parking lot, this external influence
on charging capacity makes it valuable to investigate for
comparing the CBL accuracy at both measurement points.
A. Case runs

To test the effectiveness of the two CBL-methodologies,
the office building is analysed for Tuesday October 4th 2022.
During this period, heating demand increases and the load
pattern more frequently experiences a 200-kW cap throughout
the day. The analysis is conducted for each hour from 7 AM
to 5 PM, to capture the time-dependent variations. For all
cases, 5-minute resolutions are used within the CBL analysis.
Each CBL activation lasts for 1 hour. For CBLXofY , 5-
minute resolutions are gathered for the last 10 weekdays, and
the filtering process assume percentile range of 25th-75th.
CBLB/A assume hourly average (60 minutes). Additionally,
two measurement points within the office building will be
subject for the CBL analysis; the building-level and the EV
parking lot. Overall, this will provide a detailed analysis of
how the temporal variance of each CBL behaves, at both
measurement levels.

V. RESULTS & DISCUSSIONS

The different CBL methodologies estimate what the load
would be if a flexible action is not performed. Comparing
the accuracy of the CBL methodologies is done by analysing
the variance of CBL and the actual load. This is done by
simulating a flexible action for different time steps, enabling
us to compare to the actual baseline load. Since we analyse
different CBL methodologies, as well as different measure-
ment points of CBL calculation, it is relevant to compare the
accuracy of both the methodologies and measurement points.
The CBL accuracy of both methods, measured at the building
level, are presented in Section V-A. The accuracy of CBL
calculation for the EV parking lot will be shown in Section
V-B, followed by a discussion and comparison of accuracy at
the given measurement levels in Section V-C.
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Fig. 2. Load profile measured at building-level for 11-2 PM, with CBL-
calculation CBLB/A between 12-1 PM.

A. CBL accuracy at building-level

The upper part of table I showcases the temporal perfor-
mance of both the CBLB/A and CBLXofY methods at the
building level from 7 AM to 5 PM. In general, the load for
the office building increases during the morning, reaching the
200-kW threshold from 9 AM. This load is maintained until
4 PM, when it decreases.

During the morning, the accuracy of each method varies,
and undershoots in most cases. For CBLB/A, it undershoots
the most at 7 AM, with a 13% offset compared to the actual
load during this hour. CBLXofY also undershoots during this
period, but with a more stable quantity and less offset, at about
5-7 kWh (about 4-5% offset).

During the midday, the overall load is flat at around 200
kW, which makes the CBLB/A very accurate. With this flat
load profile, the average of previous and next hour provides
high accuracy for load prediction. For the CBLXofY , there
is a noticeable trend that it undershoots the expected load
during this period. Here, some variation for the different
number of used data points is showcased, where the case with
outliers performs worse than when the outliers are filtered out.
Within the last ten workdays, there has been some behavior
that has assisted in undershooting the expected CBL volume,
which the filtering process has managed to remove, providing
better accuracy. This demonstrates that there is some value in
filtering the input data, since there are occurrences that would
create noise or unwanted trends in the load pattern.

Figs. 2 and 3 showcase the accuracy of both CBL method-
ologies for 12-1 PM. Due to the flat consumption profile
before and after this period, the CBLB/A is very accurate
during this period on an hourly average, but is not able to
capture the variations within the hour. In Fig. 3, the CBLXofY

noticeably undershoots the estimated electricity consumption,
with a total offset by 14 kWh (7%). For the last two intervals,
the estimation is off by up to 40 kWh/h, indicating that the
historical data points are struggling to accurately predict the
load pattern at this hour.

From 4 PM and onward, there is a noticeable inaccuracy
from both CBL methodologies. For CBLB/A, the decrease
in load at the end of the day has a detrimental effect on
its accuracy. The same trend is seen for the historical data
points in CBLXofY , but the load decrease starts much earlier,
from around 1-2 PM. The inaccuracy of the CBL prediction
increases until the last hour of the analysis, which suggests that

Fig. 3. Load profile measured at building-level for 11-2 PM, with CBL-
calculation CBLXofY between 12-1 PM.

the high load during these hours are not normally captured by
the historical data points.

The historical offset for CBLXofY at the building level
suggests that the electricity consumption has increased more
than expected. The offset during the midday indicates that
the recent historical occurrences did not experience 200-kW
levels. This load increase is most likely due to increasing
heating load in response to colder temperatures. The increase
in load at the end of the day implies that there might be a
rebound effect in the system or load increase, which might
origin from the EV parking lot, as it throttles more actively to
keep the 200-kW level.

B. CBL accuracy for the EV parking lot

The lower part of table I presents the temporal performance
of CBL measured for the EV parking lot. The load pattern
for the EV parking lot increases throughout the day as more
EVs arrive, with load between 70-90 kWh/h during midday.
The variation in load indicates the EV charging capacity is
continuously throttled to keep the overall building-level load
at 200 kW. Throughout the entire day, the performance of the
CBLB/A varies to a larger degree than it does at the building
level. During the morning, it does not manage to capture the 40
kW limit between 7-9 AM, but both under- and overshoots the
estimate. The accuracy increases at midday, with some offset
at certain hours. Since the EV load fluctuates during the day,
this method is not able to accurately portray the changes in
load. The accuracy of the historical data in CBLXofY also
fluctuates at certain times of the day. During the morning, the
40 kW limit is captured well, with accurate predictions of the
limit regardless of filtering. During midday, the trend for the
historical data points overshoot by about 10 kWh, predicting
the load to be around 90 kWh from 11 AM to 2 PM when
filtering data points.

In the evening, the historical data points dramatically un-
dershoot the CBL. The CBLXofY estimates load of 48 kWh
at 3 PM, and 14-15 kWh at 4 PM, but the actual load is 74
kWh and 35 kWh, respectively. This change in volumetric
accuracy indicates that there has been an active internal
demand response for EV charging during midday, leading to
a rebound effect of EV load at the end of the workday. This is
not captured in the historical data, causing a significant error
during both periods. This mismatch indicates that the throttling
is more actively used now than before, resulting in changes at
the end of the workday.
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TABLE I
OVERVIEW OVER CBL-PERFORMANCE AT BUILDING-LEVEL AND EV PARKING LOT [IN KWH], FOR BEFORE/AFTER, AND XOFY WITH 10 DATA POINTS.

Case\Time [h] 7 8 9 10 11 12 13 14 15 16 17

PBuilding
Load 167 175 199 199 201 200 200 200 194 137 98

CBLBuilding
B/A

144.96 183.17 187.00 200.17 199.79 200.54 200.29 196.67 168.79 145.75 109.25

CBLBuilding
x=y=10 159.63 170.7 194.66 185.36 188.48 180.35 174.93 161.66 141.62 102.85 93.51

CBLBuilding
x=7,y=10 161.82 169.02 194.54 184.94 195.08 186.17 178.32 161.66 141.07 101.31 92.18

PEV
Load 38.48 42.28 76.44 71.36 80.49 91.65 83.9 74.29 74.31 34.68 7.93

CBLEV
B/A 28.06 57.46 56.82 78.47 81.50 82.20 82.97 79.10 54.48 41.12 19.53

CBLEV
x=y=10 38.57 41.19 71.81 71.67 84.56 83.84 84.67 70.95 48.66 15.75 4.97

CBLEV
x=7,y=10 40.55 41.90 72.80 74.26 90.0 89.77 93.15 73.43 48.66 14.43 3.80

Fig. 4. Load profile measured for the EV parking lot for 11-2 PM, with CBL
calculation CBLB/A between 12-1 PM.

Fig. 5. Load profile measured for EV parking lot for 11-2 PM, with CBL
calculation CBLXofY between 12-1 PM.

Figs. 4 and 5 showcase the accuracy of the CBL calculation
from 12-1 PM for the EV parking lot. Fig. 4 illustrates that the
load fluctuates at midday, which causes the CBLB/A to have
some mismatch during this hour. Looking at each 5-minute
resolution, the load shifts between 70-100 kWh/h frequently
during the 3 hours included, making it difficult to accurately
predict the CBL using only trends before and after activation.
Similar patterns are seen using historical data in Fig. 5, as the
5-minute resolution is off most of the time between 12-1 PM.
The variation indicates that the load pattern is not accurately
predictable, and that load changes during the hour do not
necessarily follow any specific trend.

The variation in load data used as basis for the CBLXofY at
the EV-level is showcased in Fig. 6, without filtering. For each
5-minute resolution, the data points for the last 10 workdays
before October 4th show a large variation in consumption.
There is at least one day where the consumption was extremely
low, at around 20 kWh/h for the period, which is flagged as
an outlier for almost all cases. The percentiles limit range
between 25-75 does not filter every single outlier during this
period in Fig. 6. Tuning the filtering process could have im-
proved the accuracy by ignoring the extreme data points for all
time steps. The 20 kWh/h outliers explains why filtering leads

Fig. 6. Boxplot of historical data points at the EV parking lot used in
CBLXofY for each 5-minute resolution between 12-1 PM.

to higher average load for this hour. Most of the data points
operate between 60-120 kWh/h as indicated by the whiskers,
which is a significant variation for these 10 workdays. The
data points on the upper part of the whisker, indicate that the
load has been much higher previously, but other factors make
it decrease in amplitude. Since the whiskers also have a large
span, this also indicates that the load fluctuates to some degree
for all historical events, and the mean and median values just
capture an ”expected trend”.
C. Comparison of accuracy at the measurement levels

The performance of the two CBL methodologies change
depending on the measurement level. For the CBLB/A in
Table I, it is apparent that the building has the best perfor-
mance due to a flat consumption profile during the midday.
The EV parking lot has higher variation in load, making this
CBL method inaccurate from hour to hour. There are some
inaccuracies for the morning and evening hours due to the
increasing load in the building and EV parking lot. The 200-
kW cap at the building level works as a good guidance for
CBLB/A, causing some predictability in the load pattern.

For the CBLXofY , both measurement levels experience
inaccuracies throughout the day. During the morning, the EV
parking lot accurately captures the load, due to its 40-kW cap.
During the midday, this method undershoots the expected load
at the building level. For the EV parking lot, this trend is the
opposite; the historical data predicts a higher EV load during
this period, causing the CBL method to overshoot the expected
load. The offset at both levels imply a change in load for the
building; the 200-kW cap initiates with increasing loads in
other sectors of the building, causing a throttling of the EV
parking lot. This causes a rebound effect in the evening, where
the load at both measurement levels is higher than expected.

The inaccuracies from the historical data points are a
result of noise and change in load behavior for the building

Author Accepted Manuscript version of the paper by Kasper Emil Thorvaldsen, Venkatachalam Laksmanan and Hanne Sæle 
in 2023 International Conference on Smart Energy Systems and Technologies - SEST (2023)  

http://dx.doi.org/10.1109/SEST57387.2023.10257550 
Distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) 



overall. The building level has more noise affecting historical
prediction due to increasing load from other sources. The
inaccuracy could have been larger if not for the 200-kW
cap. If CBLXofY is used to predict the load in winter in
the future, this offset can be expected to decrease, and the
200-kW cap would be reflected within the prediction shortly.
Thus, the offset is generally the result of a seasonal transition
in the load within the building, which has not stabilised for
the historical pattern. Other noise, such as EV load and PV
production, would also cause inaccuracies, but the 200-kW cap
dominates more during the midday. For the EV parking lot,
noise from the internal demand response is the main factor
behind the inaccuracies. Since the demand response is an
external factor, it is difficult to accurately account for this
within the predictions, especially when a seasonal transition
can lead to a higher external influence on the charging
capacity. During the morning, the 40-kW cap is accurately
portrayed, but the midday and the evening can experience
more variation, depending on the stability of the external noise.
Since a decrease in the midday load can lead to an increase in
the evening period, there are longer periods at the EV parking
lot where it is difficult to accurately predict the load.

VI. CONCLUSION

CBL is highly relevant for flexibility settlement between
the parties involved in flexibility procurement and activation.
This paper has quantitatively evaluated two different methods
for calculating CBL, namely CBLB/A and CBLXofY , using
smart meter data from an office building. The data show-
cases the delicacy and difficulty of predicting the customer
load in order to produce a baseline consumption pattern for
flexibility purposes. The accuracy of calculating the CBL was
investigated using two methods: one surrounding load patterns
around activation, and another using historical data. The results
indicate that internal demand response actions influence the
accuracy both positively and negatively. At the building level,
the CBLB/A method performed the best during midday. With
the historical data, the building level load undershot most
of the time, as the measurement history did not capture the
demand cap. For the EV parking lot, both methods experienced
variation in accuracy. The use of historical data points overshot
the prediction due to an expected higher load during the
midday. During the morning, when the demand started to
increase in the office building, the CBLB/A method undershot
the actual level by 13%. In comparison, the CBLXofY

method demonstrated a better accuracy, undershooting at 4-
5%. CBLB/A is suitable for aggregated level, with low load
variations. CBLB/A and CBLXofY are not suitable for
random, fast varying and rebounding loads like EV parking
lots when actively throttled. This paper only evaluated two
CBL methods for one type of consumer. The flexibility market
value chain features many stakeholders, such as the flexibility
provider, aggregator, and end-user. It is not necessary to use
the same methodology for all stakeholders as long as the
method is accurate enough. Therefore, the authors propose
that the other CBL methodologies be evaluated for different
consumer types as well as other stakeholders in the future.
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