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Abstract: The recent growth and development in salmon farming in Norway has led to a
need for more robust and larger smolt/post-smolts. New and larger smolt production plants
have been constructed to serve this need. However, these plants are still mainly run through
manual labor, meaning that operations and management efficiency strongly depends on the
experience of the farmers. This may effectually restrict the desired production growth. To enable
the future sustainable growth of the industry, it is necessary to move from the experience-based
production regime to knowledge-based and more objective methods. One way of achieving this is
to implement solutions based on Industry 4.0 concepts. This paper outlines how Industry 4.0 can
be adapted to smolt production through the Smolt 4.0 concept by targeting and analyzing the
state-of-the-art within production methods in the smolt industry and evaluating how operations
can be improved using Industry 4.0 principles. Three case studies demonstrating how this can be
achieved are presented. The study concludes by discussing how more automation and autonomy
in smolt facilities can counter challenges related to fish welfare, personnel risks, productivity,
and profit.
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1. INTRODUCTION

The aquaculture industry is an important actor in global
food production Food and Agriculture Organization of the
United Nations (2016). With a growing global population
and an increasing demand for farmed fish Naylor et al.
(2021), the industry needs to increase production Food and
Agriculture Organization of the United Nations (2016).
While this general trend will contribute to reaching the
UN goal of ending world hunger United Nations (2022),
it also stimulates the development of new technological
methods for intensive production forms that target high
value products. The most prominent example of the latter
is the salmon (Atlantic salmon, Salmo Salar) farming
industry that has grown from humble beginnings around
50 years ago into a highly successful and profitable global
industry. In 2020, the Norwegian salmon industry alone
produced about 1.1 million tons of salmon of a gross value
of around EUR6.1 billion The Norwegian Directorate of
Fisheries (2022c). While much of this production increase
has been realized in the sea-based ongrowing phase of
salmon farming, there are also trends in land-based aqua-
culture towards developing and utilizing larger facilities
and tanks Summerfelt et al. (2016). This has largely been
stimulated by an increased need for smolt due to the
growth in sea-based production and a desire to make the

fish more robust before transfer to sea. In addition, the
Norwegian farming industry is facing challenges with the
production looses. The official statistics for production
losses in salmon farming show that 113 million smolts The
Norwegian Directorate of Fisheries (2022b) and 59 mil-
lion adult salmon The Norwegian Directorate of Fisheries
(2022a) were reported as lost in 2020, with similar numbers
for the preceding years.

Since most of the volumetric production and hence most of
the value gain occurs during the sea-based phase, the mo-
tivation to adapt new solutions for improved efficiency has
been high for cage-based aquaculture Føre et al. (2018).
This has stimulated a rapid rate of technological innova-
tion and adaptation of new technology to reach production
demands and address specific industrial challenges (e.g.,
lice treatment, escapes, feeding). The industry has invested
large resources to solve these challenges, resulting in a shift
in how industry actors use modern technology and techno-
logical competence. Some of the technological innovations
already adapted in Norway include automated feeders AK-
VAgroup (2022); Abdallah and Elmessery (2014); Adeg-
boye et al. (2020), advanced camera systems Kelasidi et al.
(2020b), decision support tools Zhai et al. (2020) to assess
fish welfare Noble et al. (2018), behavior and appetite
Mohn Technology (2022), and biomass estimation tools
AKVAgroup (2022); Li et al. (2020a). The industry is also



making increased use of robotic solutions in applications
such as net cleaning (e.g., by companies such as Sperre
AS, Remora Robotics AS, Watbots AS) Bloecher (2022);
Ohrem et al. (2020) and the use of remotely operated
vehicles for inspection and light intervention operations
AkvaGroup (2022); Bjelland et al. (2015); Amundsen et al.
(2022). In addition, there are research efforts aimed at
developing completely new fish production concepts in-
cluding closed and semi-closed cages Chu et al. (2020),
submersible sea cages Sievers et al. (2022), and ocean
based farming concepts Chu et al. (2020). Since most
of these concepts include increased use of tools such as
advanced machines and systems, automation, and digital
solutions, it is thus clear that sea-based aquaculture is
evolving towards Industry 4.0.

The land-based production segment of aquaculture in Nor-
way mostly consists of smolt/post-smolt producers, with
a few exceptions where fully grown salmon are produced.
Smolt production facilities are still largely based on the
same management principles and methods as the first
generation plants established in the 1980’s but in larger
scales. Several day-to-day labor intensive operations are
manually executed, although with some exceptions such as
automated systems for vaccination Ma et al. (2019) and
feeding Skøien et al. (2018). Moreover, most monitoring
tasks and decision making are based on manual observa-
tions and subjective analyses, rendering the assessments
of, e.g., fish condition and welfare more dependent on the
experience of the farmer.

The land-based phase of fish production in general and
smolt production in particular is thus considerably less ad-
vanced than sea-based fish farming in terms of technology
use and automation or autonomy. To harvest similar ben-
efits from technology as those enjoyed by sea-based farm-
ing, smolt production needs to adapt a holistic approach
to incorporating technology in operations. This can con-
tribute to both more ethically sustainable fish production,
increased productivity and profit, and a better working
environment for employees. An additional effect to such
high level improvements is that the resulting increased
control can enable the production of more robust fish
better suited for transfer to sea Øvrebø (2020); Ytrestøyl
et al. (2015), and better health, safety, and environment
(HSE) conditions leading to easier worker recruitment
Engle (2021).

Introducing autonomous production facilities would result
in a transformation similar to that experienced when
Industry 4.0 was introduced in other industrial segments
(e.g., oil and gas Elijah et al. (2021), automotive Ebrahimi
et al. (2019), agriculture Liu et al. (2021)). The scope
of this paper is to give a general overview of how land-
based salmon production units can be further developed
by adapting elements from the Industry 4.0 paradigm in
the Smolt 4.0 concept. The paper focuses on the current
situation in Norway, but is expected to be highly relevant
to land-based fish farming companies and institutions
internationally in general.

Section 2 describes the principles of Industry 4.0, and
its potential application to livestock production, and the
practices in smolt production in more detail, thereby out-
lining the knowledge background. Following this, Section

3 breaks down common operations in smolt production
into specific challenges that can potentially be managed
through technology. Section 4 then outlines three concrete
case studies describing how fulfilling the research needs can
lead to potential industrial applications and innovations.
Finally, Section 6 summarizes the study and discusses the
findings.

2. BACKGROUND

2.1 Industry 4.0 and smolt production

The Industry 4.0 paradigm Industry 4.0 (I4.0) refers
to the fourth industrial revolution where the focus re-
volves around cyber-physical systems (CPS) and their
introduction into the workplace Vaidya et al. (2018). The
introduction of such systems entails an increased focus on
different aspects such as digitalization, big data, Internet
of Things (IoT), digital twins, blockchain technology, arti-
ficial intelligence, objectivity, robotics and increased levels
of automation into all aspects of production, business and
customer experience and acquisitions Ibarra et al. (2018);
Sharma et al. (2022). Many industries such as the oil and
gas Elijah et al. (2021), automotive Ebrahimi et al. (2019)
and agriculture sectors Liu et al. (2021) are motivated
by the benefits of I4.0 and are consequentially striving to
adapt an I4.0 model.

This has resulted in the application of fully unmanned,
remote controlled oil and gas platforms osH (2019), and
that the automotive industry is now exclusively using
highly automated production lines and has started to
adapt big data analysis to, e.g., identify customer needs
Deloitte (2015). The agriculture industry has also started
integrating components of I4.0, such as automated systems
for sowing Brown (2018), inspection and harvesting of
crops Tian et al. (2019), planning crop layout FAO (2017),
and making predictions regarding yields based on previous
historical data Leavitt (2022).

Industry 4.0 and aquaculture Some aspects of I4.0 are
already partly being implemented for some operations in
sea-based aquaculture. Prominent examples include feed-
ing cameras that help track fish appetite during feeding Li
et al. (2020b), automatic net cleaner robots Ohrem et al.
(2020, 2021), and methods for autonomous inspection of
nets in sea cages Kelasidi et al. (2020a); Schellewald et al.
(2021); Amundsen et al. (2022); Su et al. (2021).

Although this adaptation has not come as far for smolt
production as it has for sea-based fish farming, recent
trends where the size of the production units has increased
Summerfelt et al. (2016), as well as the number and size
of fish in each tank, underline that this is a necessary
next step for the industry. So far, the development of
technologies in smolt production has been aimed at specific
challenges, such as automation of sorting, counting and
vaccination of fish, some degree of light and water temper-
ature control Noble et al. (2018), and using Recirculating
Aquaculture System (RAS) to recycle and reuse the water
Bregnballe (2015). To fully exploit the benefits of an I4.0
approach, the industry will need to transcend from this
case-by-case practice to an approach where technology and
automation are assimilated into every step of the produc-



Fig. 1. Industry 4.0 and smolt production units (Illustra-
tion by Mats Aarsland Mulelid).

Fig. 2. The life stages of Atlantic Salmon (Illustration by
Mats Aarsland Mulelid).

tion chain (Fig. 1), as has been the recipe for previous
successful transitions to I4.0 in other segments.

2.2 Status and Operations in smolt facilities

The salmon life cycle Salmon go through a set of life
stages, as illustrated in Fig. 2 Jobling et al. (2010). The
first four stages (egg, alevin, fry, parr) are conducted in
fresh-water and ends with the smoltification process during
which the fish metamorphose into tolerating saline water,
followed by the two sea-water stages (smolt, adult). This
is also reflected in the practices of modern aquaculture,
as the production chain is similarly split between corre-
sponding freshwater and seawater phases that are tailored
to serve the needs of the fish.

Although the roe phase is sometimes conducted in special-
ized hatcheries, the land-based phase is often conducted in
its entirety in smolt facilities. To successfully introduce
I4.0 principles to smolt production, it is important to
understand the different stages in this phase and how these

can be improved through I4.0. In the following, the differ-
ent stages of the land-based phase including smoltification
will be briefly described, highlighting the most common
operations for each stage.

Life stages and common operations in aquaculture Roe:
The salmon life cycle starts with fertilized eggs (roe) that
are first placed in small and shallow hatching tanks and
spread out onto a substrate. The substrate separates and
fixes the eggs in place, and ensures a continuous water flow
that mimics the situation in a river. Incubation time before
hatching depends on water temperature and typically
lasts around 60 days for salmon. Once the fish hatch,
the substrate provides the emerging alevin with shelter.
Operations: Roe inspection and removal of damaged or
dead roe, monitoring, and control of water parameters.

Alevin: Newly hatched alevin have yolk-sacks containing
enough nourishment for the first 4-6 weeks of their lives.
At this stage, the fish seek shelter in the substrate in
the hatching tanks, mimicking the behavior in the wild
where alevin seek shelter among rocks in sections of the
river with low current speeds. Operations: Removing
remains of hatched roe, inspecting the fish, removal of
deformed and abnormal fish, monitoring and control of
water parameters.

Fry: When the alevin has consumed their yolk-sacks they
enter the fry stage, where they start swimming towards the
surface and filling the swim bladder for the first time. This
increases their stability and swimming abilities. At this
point the fish starts to swim freely in the water masses
consuming food, and are therefore moved to small start
feeding tanks where they are given their first formulated
feed. Feed regulation and pellet size determination is
of great importance at this stage. Operations: Rapid
movement from the hatchery to feed tanks, sorting fry
from alevin, monitoring of fish behavior and growth,
control of water parameters, control of feed size and
distribution.

Parr:When the fry have successfully started actively feed-
ing and gained weight, they transform into the parr stage
where they develop stripes on the sides and camouflage
colors. In nature, these will often be dark stripes and a
dark green and brown color, but in aquaculture they may
assume different colors (e.g., white if the tanks are white).
The parr stage is the longest stage in the freshwater phase
and may last for several years in nature, but is usually
shorter in aquaculture (i.e., less than a year).Operations:
Monitoring of behavior and fish condition, splitting and
sorting, vaccination, removal of deformed and dead fish,
monitoring and control of environment and water param-
eters, feeding.

Smolt: Parr transform into smolt through a metamorpho-
sis called smoltification Solomon et al. (2013); Svendsen
et al. (2021). The fish undergo a series of physical, morpho-
logical, and behavioral changes. The osmosis regulation
through the gills are changed Solomon et al. (2013), adapt-
ing them to an environment with higher salt concentration
Noble et al. (2018) and altering their condition factor and
colors. Smoltification is necessary for the fish to survive
in salt water, but can be reversed if the fish are kept
in freshwater Fjelldal et al. (2018). Operations: Identify



when the fish have fully smoltified, monitoring and control
of environment and water parameters, sorting and splitting
parr and smolt, feeding.

Summary of daily Operations in smolt Facilities Table 1
summarizes the most common operations in smolt produc-
tion identified above, and considerations on their current
level of automation Parasuraman et al. (2000). Note that
some of the stage-specific operations are covered by more
generic terms in the table (e.g., ”population monitoring”
includes inspection and monitoring of eggs, fry, parr and
smolt, while ”dead fish and waste removal” includes also
the removal of dead eggs/egg remains).

3. RESEARCH AND INNOVATION CHALLENGES IN
SMOLT OPERATIONS

Table 1 represents the day-to-day operations and are peri-
odic, repetitive and typically well-defined. Thus, these op-
erations are strong candidates for targeted increased objec-
tivity and level of autonomy, and serve as a starting point
for identifying the research and innovation challenges that
need to be solved to improve objectivity and automation
in smolt production. In the following, the current status
and main challenges with the operations in Table 1 are
presented, serving as a basis for establishing research needs
and defining challenges towards improved objectivity and
automation.

3.1 Water quality monitoring

Status Some of the most common water quality param-
eters are temperature, dissolved oxygen (DO), CO2, Am-
monia, Nitrate, NO2-N, Nitrogen, H2S, total suspended
solids, chlorine, and pH Lucas et al. (2019). Temperature
and DO are identified by fish farmers as the most im-
portant water quality parameters Noble et al. (2018) and
are often measured using sensors placed in the tank on a
continuous basis. It is also recommended that salinity (in
addition to water flow velocity) Ytrestøyl et al. (2020), pH,
and CO2 Fivelstad et al. (2003) are measured periodically
Noble et al. (2018). Most other parameters are estimated
by taking water samples and analyzing these using labora-
tory equipment. Although there are examples of facilities
that measure only in reference tanks, water quality is often
measured in each tank in modern RAS facilities.

Challenges Sensors used in land-based fish farms are
typically deployed underwater for extended periods and
may suffer from fouling and long term drift, leading to low
reliability and hence maintenance and calibration Noble
et al. (2018). Moreover, laboratory measurements can only
give answers after the analysis is performed and cannot
provide information in-situ.

3.2 Sensor and equipment maintenance

Status Sensor and equipment maintenance mainly in-
volves cleaning, removing biofouling, equipment disinfec-
tion, changing wear parts, and periodic sensor calibration.
This is done to secure correct measurements and fully
operable equipment and sensors, leads to proper control
over the tank conditions, and helps avoid lowered accuracy,
stationary offsets and/or drift over time. Almost all such
operations are executed manually today.

Challenges Proper calibration of a sensor may be chal-
lenging in smolt tanks as the sensors are often submerged,
and since the work requires knowledge about the given
sensor system and advised calibration procedures. Further-
more, calibration and maintenance of sensors and other
equipment is time-consuming, and may lead to production
downtime. Properly cleaned, disinfected, and calibrated
sensors and equipment are critical for ensuring accurate
measurements of the conditions of and operations involv-
ing the fish.

3.3 Light and temperature control

Status In several modern smolt facilities, light and tem-
perature are controlled by automated systems. Artificial
light is used to simulate circadian and seasonal variations,
and thus affect social interactions, resting behavior, ex-
ploration and feeding. Light control can also be used to
stimulate smoltification, improving control over the pro-
duction Noble et al. (2018). Thermal control is important
because temperature largely controls the metabolic rates
in fish, and can hence be important when seeking to steer
fish growth and feed intake.

Challenges Since available commercial solutions can be
adapted to have full control of light and temperature in
land-based production units, future research efforts could
be targeted to identify how temperature and light can be
used as inputs for decision support systems related to fish
behavior and health.

3.4 Fish population monitoring

Status Daily inspection of the fish in smolt facilities
is most often done by employees reviewing sensor data
and inspecting the fish visually either through cameras
or by direct observation Noble et al. (2018). This typ-
ically entails observing fish behavior and other visually
detectable indicators of reduced welfare such as wounds,
deformities, potential disease indicators and dead fish, and
may also include fish health service personnel Noble et al.
(2018). Some companies deliver camera systems with or
without integrated computer vision techniques for real-
time monitoring and inspection of fish status (e.g., Scale
Aquaculture AS).

Challenges Subjective evaluations and decision making
on fish conditions and states rely heavily on employee
experience and competence. Moreover, purely manual in-
spections may not provide a complete picture of all indi-
viduals within the population, which may ultimately result
in sub-optimal decisions and even mistakes. This is further
complicated by that the increase in tank sizes seen in
the industry renders obtaining a full population overview
through manual means even more difficult.

3.5 Dead fish and waste removal

Status Some fish die during smolt production due to var-
ious reasons such as deformities, disease, inter-individual
aggression / hierarchy formation limiting access to food
causing starvation or malnutrition, or potential rough han-
dling during an operation. Moreover, waste materials such



Table 1. Daily operations

Task Level of automation

Initial inspection Manual

Water flow control Control system

Water quality monitoring Sensors manually inserted into tank

Sensor maintenance Manual cleaning and calibration

Equipment maintenance Manual

Light and temperature control Control system

Population monitoring Manual

Dead fish and waste removal Manual with some level of automation

Splitting and sorting biomass Personnel-operated machines

Feeding Automated feeders, manual refill

Feed size regulation Manual, tables and experience

Biomass estimation Manual techniques or weight-cells

Tank cleaning Manual

Vaccination Automated machines

Smoltification tracking Manual testing

as uneaten feed particles and feces will accumulate in the
tanks during production. Both these elements need to be
removed from the tank to avoid detrimental water quality.
Dead fish are typically removed manually or using an
installed dead fish collection system that removes the fish
from the bottom of the tank Timmons et al. (1998) or from
the surface, after which they are removed manually from
the system. Waste materials are often removed using filters
on in- and out-flux water Timmons et al. (1998), surface
treatments applied to the tank wall, or by controlling the
current to passively transport particles to waste collection
areas Gorle, J. and Summerfelt, S. T. and Terjesen, B. F.
and Mota, V. C. and Marchenko, Y. and Reiten, B. K. M
(2016); Timmons et al. (1998); Gorle et al. (2020).

Challenges The removal of both dead fish and waste
materials from the system is still mainly done manually.
Existing systems for automated waste collection are diffi-
cult to install after a facility has been built and most often
leave the dead fish or waste material within the tank until
they sink to the collection point. In addition, the manage-
ment of the collected waste and dead fish also introduces
challenges related to deposition or recycling/reuse of these
in further value chains.

3.6 Tank cleaning

Status Algae and other fouling species will over time
colonize the tank walls and together with suspended waste
materials that settle on the wall accumulate into an
unwanted film on all tank surfaces. Since this will reduce
water quality and increase risk for diseases, it is thus
necessary to conduct periodic cleaning of the tanks, a
process that is usually done manually using high pressure
hoses and other cleaning equipment between production
cycles. This may increase the downtime of the tanks,
leading to reduced productivity. Cleaning tanks while in
use would thus be an attractive prospect as this could
both improve productivity and increase cleaning frequency
such that the risk of waste build-up along the tank walls
that may negatively impact the water quality is reduced.
In addition to the tank itself, pipes and other overall
equipment in the facility need to be cleaned to avoid the
buildup of toxic levels of H2S gas.

Challenges High-quality cleaning with minimal physical
stress on human personnel and minimal downtime of the
tanks is challenging to achieve. Existing solutions for
cleaning, such as lowering the water level and cleaning
exposed parts of the tank, are generally not desirable as
waste particles from the tank walls may then detach and
enter the tank before being removed by the flow. The same
applies to solutions where the population is moved to a
temporary holding tank while cleaning takes place, as this
is labor intensive and can be stressful for the fish.

3.7 Biomass estimation

Status Efforts have been made on biomass estimation
of individual counting in land-based facilities using, e.g.,
computer vision de Ávila et al. (2021), but precise biomass
estimation remains one of the main challenges of the in-
dustry. Biomass estimation in land-based facilities is today
performed either by sampling the population (e.g., direct
measurement) Li et al. (2020a), using predictive models,
or a combination of these. Biomass estimates can also
be corrected when more precise calculations are available,
e.g., after vaccination and fish counting during operations
Aunsmo et al. (2013). The most common method for
biomass estimation involves crowding the fish, catching a
representative number of individuals, weighing them, and
then extrapolating the weight of the entire population from
these measurements. However, the industry is also starting
to use camera-based biomass estimation systems that use
computer vision to estimate the weight of free swimming
individuals Li et al. (2020a), some of which are already
in the market for sea-based aquaculture, including those
produced by Optoscale (BioScope), CreateView (CView
360) and Scale Aquaculture.

Challenges Handling fish for manual sampling demands
a high degree of manual labor, will stress the fish, and
does not guarantee a good result unless the individual
variability is very low. It is also challenging to gauge the
biomass based on the mean weight without knowing the
number of individuals in total within the population.

3.8 Splitting and sorting biomass

Status Size grading and sorting machines (e.g., Vaki
Ltd.) that grade and sort fish by size to keep the size of



the tank population as uniform as possible are commonly
used Gabriel et al. (2016). This entails using specialized
equipment where the fish are transported onto a horizontal
surface grid and then fall into differently sized holes
depending on their size, thereby enabling splitting and
sorting the biomass based on individual size. Sorting
may also be done automatically during vaccination using
machines.

Challenges While some aspects of splitting and sorting
is automated, manual labor is still needed to set up
the equipment, determine when to start (often part of
the production plan), and start the process. Sorting also
involves handling the fish and may impact welfare.

3.9 Biomass transport

Status Unlike many other operations, transportation of
fish between tanks has been automated by utilizing fish
pumps (e.g., Skala Maskon AS). Such pumps are also often
used in operations such as vaccination or grading that
reduce the need for manually moving the fish to and from
tanks during different operations.

Challenges Pump-based transportation can be very
stressful for the fish and may lead to physical trauma due
to sharp bends or sharp edges inside the pipes or rapid
pressure changes.

3.10 Vaccination

Status Vaccination is today mostly done using vacci-
nation machines (e.g., Skala Maskon AS) that can both
dose and deliver vaccines autonomously. These units use
computer vision to detect the fish and decide where to
place the syringe Schat (2014), and provide highly accurate
biomass results and population numbers because all fish
are handled individually.

Challenges While most of the vaccination process is
automated, the fish still need some handling to be trans-
ported into the vaccination machine.

3.11 Feeding

Status Feeding is arguably the most important operation
in the land-based phase. The amount of feed needed for
each individual fish depends on factors such as fish size,
feed composition, and water quality parameters Sun et al.
(2016), and the suitable pellet size will increase as the fish
grow larger Bureau et al. (2003). While feed is usually
distributed to the population by automated dispensers
Bureau et al. (2003), the amount of feed delivered to each
tank is usually a subjective decision based on observations
and farmer experience, and the dispensers also often need
to be filled manually. There are products for cage-based
(e.g., UMITRON, Aquabyte AS, and CageEye) farming
exploiting machine learning to estimate the required feed
amount in a more objective and automatic fashion Chen
et al. (2020), but these are not yet adapted to tanks.
Furthermore, fully automated feeding systems (e.g., Vard
Aqua AS, VAKI, and Laksesystemer AS) that can hold
feed of various sizes and supply multiple tanks exist, but
have yet to see widespread adaptation by the industry.

Challenges Feed delivery is largely automated. Tasks
such as dispenser refilling and hand-feeding during initial
stages are still manual, being both time-consuming and
labor intensive Bureau et al. (2003). In addition, choosing
the right composition, size, and the amount of feed is often
based on production plans and experience-based insight.

3.12 Smoltification tracking

Status The industry employs two main strategies for
determining smoltification degrees in farmed fish. The
first method involves sampling gill tissue for subsequent
laboratory analysis to quantify fresh- and sea water AT-
Pase. In the second approach, a number of individuals are
exposed to saline water for 48-72 hours, after which blood
is sampled from the fish and the sodium chloride content
is analyzed. Since both these approaches are very invasive,
less invasive principles have been explored in research.
For instance, hyperspectral imaging coupled with machine
learning has been proven able to estimate smoltification in
salmon with 85-100% accuracy Svendsen et al. (2021).

Challenges The main strategies used in this area are sub-
optimal, as they are terminal and have negative impacts
on fish welfare in inducing handling stress, and exposing
potentially unsmoltified individuals to sea-water. They
also feature long waits between testing and results, and
operate on small sample sizes that may not be representa-
tive for the whole tank population Svendsen et al. (2021).
While new methods such as hyperspectral imaging systems
with machine learning are attractive they are not ready
for industrial application. Desmoltification is a general
challenge that can cause major mortality events and other
challenges, and hence implies an even stronger motivation
for accurately assessing when the metamorphosis has taken
place Svendsen et al. (2021).

4. CASE STUDIES AND CONCRETE SOLUTIONS

This section presents and discusses three case studies,
which suggest directions for research that can lead to
industrial applications and innovations.

Fig. 3 illustrates what a smolt production facility in the
I4.0 paradigm might look like. While no such holistic
concepts have been fully realized yet, solutions to several
of the previously described challenges can be partially or
fully implemented by adopting existing technology and
solutions.

The initial study towards this direction has been per-
formed as part of the research in the Autosmolt2025
project Eilertsen et al. (2021). In particular a questionnaire
was handed out to the project partners involved in land-
based aquaculture to share their practices and thoughts
around the topic of automation principles and optimized
smolt production.

This questionnaire contained a range of questions covering
several topics such as which tasks they considered most im-
portant, how they use technology and automation today,
and how they foresee these tools could serve to improve
future operations in such facilities. The outcomes of the
questionnaire implied that water quality monitoring, fish
population monitoring, dead fish and waste removal, tank



(a) Automation and robotics

(b) Smart-factory

Fig. 3. Illustration of a future land-based smolt production facility integrating several components of I4.0, such as
autonomous operations, robotic system, digital twins, artificial intelligence, decentralized control room, and high
quality data acquisition from sensors (Illustration by Mats Aarsland Mulelid).



cleaning and biomass estimation were among the areas in
which the industry would most like to have a stronger
degree of automation. To better illustrate how these aims
can be addressed by research and innovation processes,
three case studies were outlined:

(1) Self-monitoring rearing tanks
Aim: Autonomous data collection and analysis from
diverse sensors

(2) Autonomous tank operations
Aim: Autonomous physical operations

(3) Smolt 4.0: Optimized smolt production
Aim: Holistic system for high level operational plan-
ning and decision making for autonomous tank oper-
ations based on data from self-monitoring tanks

The case studies can be considered consecutive in the
sense that one needs case studies 1 (data collection) and
2 (automated physical operations) to realize case study
3 (high level process control), and may also serve as a
roadmap and starting point for how future research and
innovation processes can better target Smolt 4.0.

4.1 Self-monitoring rearing tanks

The core technologies needed to develop self-monitoring
tanks have existed for some time and have successfully
been applied in other industries. Base components would
be intelligent sensors able to quantify important variables
in the tanks, networks (cabled or wireless) for transferring
data from the tank, and a centralized hub responsible
for collecting, processing, and storing the collected data.
Furthermore, methods from sensor fusion could be used
to combine data from different systems to generate new
data types that could provide better insight into system
dynamics than each of the systems by themselves, and
that could complement other data sources. The collected
outputs from such systems could either be presented di-
rectly to the user for their perusal in decision making, or
combined with an alarm system to elicit alarms when sur-
passing critical limits in key variables. There are examples
of companies offering solutions (e.g., Blue Unit AS) that
measure 12 different water quality parameters throughout
a given facility and offer benchmarking software for the
results.

The transition from the current manual and experience-
based practices to a fully autonomous and optimized holis-
tic solution for self-monitoring tanks is illustrated in Fig.
4. Three concrete application areas have been identified
to be particularly important for self-monitoring tanks: 1)
population monitoring; 2) environment and water quality
monitoring; and 3) equipment monitoring. Consequently,
Internet of Things (IoT) and digitalization are expected
to be central. In addition to blockchain technology for
traceability, devices and system communicating and trans-
mitting information in an IoT framework will be crucial
in the these areas for securing flow of information, moni-
toring, decision making or decision support tools and both
manual and automatically performed actions related to the
farming processes. In the following, the aforementioned ap-
plication areas will be used to outline the key requirements
of a monitoring system, the use of data and the required
technology in greater detail.

(a) Manual monitoring

(b) Autonomous monitoring

Fig. 4. Illustration of self-monitoring rearing tanks concept
(Illustration by Mats Aarsland Mulelid).

Population monitoring The most important components
needed for autonomous population monitoring are sensors
or instrumentation for observing the fish. While novel cam-
era solutions and computer vision techniques are seeing
increased use in both the aquaculture industry and re-
search Zion (2012); Saberioon et al. (2017), other solutions
such as hydroacoustic instruments (e.g., echo sounders,
sonars) and biosensors/telemetry can also shed light on
the population in tanks Føre et al. (2018). Such solutions
can be used to observe both group-based and individual-
based operational welfare indicators (OWIs), representing
a practical approach to score the welfare of the fish at
the farm Noble et al. (2018), that can be combined into
common data types to provide insight into the dynam-
ics within the population. Moreover, combining the data
from such solutions with predictive fish models (e.g., Føre
et al. (2009); Stavrakidis-Zachou et al. (2019)) could be a
foundation for alarm or decision support systems able to
predict events in the future.

Autonomous population monitoring will be a tool for
improving farm management by enabling the farmer to
adjust feeding, lighting, and other management features
continuously according to the fish responses. Moreover, if



certain operations (e.g., when a certain population was
split, sorted or merged) are logged and registered during
production, population monitoring outputs can be used
to analyze how the fish respond to these. Continuous
monitoring would also enable logging the history of a pop-
ulation and identify how population properties changed
during production, improving product traceability from
egg to customer. The most relevant parameters related to
population monitoring are shown in Fig. 4

Environment and water quality monitoring The prin-
cipal components in a system for water monitoring are
sensors able to measure the values most critical during
production. A perfect system for objective and optimized
monitoring of the environment would include sensors ca-
pable of measuring every relevant parameter continuously
and reliably, at any point of interest within tanks (see Fig.
4).

Although some important factors such as Nitrite, Total
Ammonia Nitrogen (TAN) and H2S are possible to mea-
sure using lab equipment, to the authors’ knowledge, there
exist no commercially available sensor solutions capable of
measuring these on a continuous basis. However, systems
that perform continuous water quality analysis of some
parameters, that traditionally are done using lab equip-
ment, do exists and may serve as a platform for realiz-
ing such solutions that measure most or all parameters
continuously (e.g., Blue Unit (2022)). Moreover, there are
promising ongoing research efforts within wireless water
quality monitoring platforms that can predict changes in
water quality quite accurately Zhu et al. (2010); Peng et al.
(2020). Methods for automatic calibration of the included
sensors would be a reasonable feature for self-monitoring
solutions. There exist such methods, e.g., for temperature
Orzylowski et al. (2000) and camera or range estimator
sensors Geiger et al. (2012) that could be adapted and
potentially extended to other types of sensors.

If a holistic solution for environmental monitoring turns
out to be too expensive for deployment in all tanks, an
alternative approach could be to design a modular sen-
sor system possible to move between tanks, either au-
tonomously or by some auxiliary system. There are exam-
ples of robotic sensor carriers for water quality measure-
ment capable of autonomous navigation and measurement
of water quality parameters being researched for aquacul-
ture application Huang et al. (2020).

Similar to population monitoring, continuous water qual-
ity measurements could be useful for adjustments and
feedback control of, e.g., pumps and filters to dynam-
ically improve culture conditions. Such data could also
be compared with historical data and production logs,
thereby enabling predictions of trends and providing
guidelines/decision support on what to do in a given sit-
uation. Together, these impacts could increase the ability
to steer water quality to desired states and thereby enable
more predictable production conditions which is beneficial
to achieve similar fish qualities across production batches.

Equipment monitoring Just like for population and wa-
ter quality monitoring, sensors would be the core compo-
nents of equipment monitoring systems. The most common
equipment related to monitoring components are listed in

Fig. 4. However, unlike for the others, several of the sensors
required for this already exist and are being used by the
industry. Some of the more complex system components
such as pumps, valves, mechanical filters and bio-filters
are often equipped with sensors for gauging pressure, flow,
power consumption and other parameters describing their
condition and state. More inert components such as tanks,
pipes and other structures can be monitored using stan-
dardized sensors for e.g., strain, pressure and flow that are
designed for industrial applications.

By monitoring equipment, it is possible to optimize pro-
duction also in this aspect. For instance, optimizing power
consumption would reduce the cost of production, while
the implementation of predictive maintenance systems Sel-
cuk (2017) would reduce downtime, and in turn increase
fish welfare and production. This would also enable the
streamlining of the process of ordering new parts or parts
that are soon to be worn out preemptively. New innova-
tions in technology will also allow for monitoring the bio-
filter in RAS facilities to a larger extent, and also monitor
for pathogens within the environment.

4.2 Autonomous tank operations

While there is a foundation for automatic or autonomous
tank cleaning systems in existing tank cleaning appli-
cations, other operations are not equally blessed with
similar examples from other sectors. However, most such
operations would require several key components that are
possible to find commercially today, foremost being robotic
vehicles able to navigate within a tank, and robot ma-
nipulators for underwater use. Such solutions should also
have a way of perceiving the situation through sensors and
instruments. This would be crucial both to ensure that the
operation is executed properly (e.g., by monitoring the
results), and to ensure that the operation is as gentle and
non-invasive as possible with respect to fish and structural
integrity.

Based on their importance and labor intensiveness as
perceived by the industry Eilertsen et al. (2021), three key
application areas of autonomous tank operations are 1)
feeding; 2) tank cleaning; and 3) dead fish removal. In the
following, these application areas will be used to describe
the core features, properties, and uses of autonomous tank
operations.

Feeding An illustration of a manual (semi-automatic)
and fully autonomous feeding operation is shown in Fig.
5. Fully autonomous feeding operations would require
systems with abilities to transport and dispense feed to the
fish, choose the proper feed dose, feed type and size, and
accurately estimate fish appetite. This would be a complex
system that requires a synthesis between technologies
for actuation and intervention and monitoring/sensing
systems. Some automatic feeding systems already exist
and could serve as a foundation for an autonomous feeding
system in combination with solutions for monitoring fish
and feed. Examples of such systems include the Exact
Feeding Robot that moves between all tanks in a facility
or Exact Mini Feeder and Belt Feeder that are installed
on each tank, produced by the company Vard Aqua AS.
Other relevant solutions such as a small feeding vehicle
that moves on the surface to distribute feed over a certain



area within a specific time period Deroy et al. (2017) could
also be relevant components in such systems.

Autonomous feeding operations could enable feedback
control for feeding where feed delivery is steered by fish
appetite and required feed size. Moreover, such systems
could also enable autonomous filling of feed containers,
which is a laborious task to do manually.

Tank cleaning An autonomous cleaning system should
identify when cleaning is necessary, initiate the cleaning
procedure, perform the cleaning, ensure that excess waste
is collected and get the cleaning approved before the tank
is used again. These systems would need to be created
by combining different components handling the different
necessary tasks. Adaptation and implementation of fully
autonomous tank cleaning operations requires novel re-
search methods and new innovative products, which may
be based on inspiration from other industries such as sea-
based aquaculture Ohrem et al. (2020), ship cleaning Le
et al. (2021) and more. Cameras with integrated computer
vision and machine learning methods could be used by
such systems to estimate amounts of cleaning waste, when
cleaning is necessary, and whether the cleaning system
performed satisfactory or not. The cleaning activity could
be executed by a continuously moving cleaning system,
a robotic manipulator mounted on a rail system, or by
a self-propelled robotic system equipped with a cleaning
tool Haugaløkken et al. (2021) (e.g., soft brushes or water
blasters Skeide (2020b); Nissen (2021)) such as the one
presented in Fig. 6. While there has been on-going research
on self-cleaning tanks for several years Timmons et al.
(1998); Gorle et al. (2020), most recent research efforts
seem to move towards robotic solutions for regular cleaning
Koyama and Yonekura (2018); Skeide (2020a). There are
also commercial solutions that may be useful components
in such systems. Some examples are units mounted on the
tank that clean tank walls and floors (e.g., Oceans Designs
AS), autonomous underwater vehicles aiming to clean and
inspect the tank and collect dead fish in large production
units, and a moving cleaning vehicle developed by Mørenot
AS.

Autonomous tank cleaning operations would enable a
more continuous cleaning regime where the buildup of
biofouling and other substances is kept low, as is the
resulting waste material. This will improve water quality
and thus provide a more healthy environment for the fish
without being a labor intensive process. Regular cleaning
can also prevent the establishment of bacteria or microbes
on the tank walls, rendering a waste collector system
excessive.

Dead fish removal Autonomous dead fish removal could
be enabled through robotic solutions that are able to
detect fish, verify if the fish is dead and remove fish. An
illustration of how this operation can be done is given
in Fig. 7. The main components of such solutions would
be suitable robotic hardware, perception systems, and
software that would allow the desired operation to be
conducted in a safe and efficient manner.

Irrespective of whether the robotic platform is free-moving
inside, fixed to or outside the tank, it would need a ma-
nipulator with an appropriate gripper tool Pedersen et al.

(2020). To avoid damaging the fish while collecting them,
specific tools and components such as soft grippers and
complex planning and control systems would be needed.
Advanced camera and computer vision systems would be
necessary both to provide feedback control on the motion
of the manipulator, to do other tasks such as localizing the
fish, and running ”dead-or-alive” classification of the fish
before collection.

Autonomous systems that continuously search for and
remove dead fish would likely contribute to a better
production environment, as dead fish inside a tank will
be a potential reservoir for pathogens and other unwanted
substances. Moreover, since manual dead fish removal is
a laborious and dirty job, automating this task could
contribute to improved HSE conditions.

4.3 Smolt 4.0: Optimized smolt production

The final case study, Smolt 4.0: Optimized smolt produc-
tion, is an umbrella term representing the synthesis be-
tween self-monitoring tanks, autonomous tank operations
and high level decision support. The resulting combined
system would be capable of gathering data through the
sensors integrated in an IoT framework, analyses to pro-
vide reliable state estimates and predictions continuously,
application of these for environment and population con-
trol purposes, and perform autonomous tank operations.
This would enable optimization smolt production pro-
cesses such that it is possible to produce robust, high qual-
ity smolt while securing both fish and employee welfare.
Another aspect of such a solution would be traceability
and repeatability in the sense that the farmer through
feedback control can keep production conditions similar
across production batches. Since the production environ-
ment is important for the development of the fish, it is
possible to keep the smolt quality more similar between
production cycles. An illustration of what such a system
could look like can be seen in Fig. 3.

To become complete, Smolt 4.0 would also need to account
for other more practical aspects such as fish logistics and
how to streamline the acquisition of parts, feed and vac-
cines, as these are equally important factors in determining
production efficiency and precision. In this area, there
are examples of research into optimizing logistics in the
manufacturing industry with regards to procurement and
production Fang et al. (2015) that could be transferable
to the aquaculture industry as well. Improved logistics can
also reduce production costs by enabling the farmer to
purchase, e.g., parts and feed at times when prices are
low rather than when their need is immediate. Moreover,
efficient logistics can reduce the time personnel have to use
on such tasks, allowing them to focus their competence on
more complex tasks related to production.

5. SMOLT 4.0 - SPECIFICATIONS AND DESIGN
REQUIREMENTS

This section uses the Seatonomy method Grotli et al.
(2016) to analyze the application of Smolt 4.0 in greater
detail and specify the design requirements. The Seatonomy
method is a structured framework used to analyze chal-
lenges related to automation in marine environments that



(a) Manual (semi-autonomous) feeding operation (b) Autonomous feeding operation

Fig. 5. Illustration of feeding process in land-based production units (Illustration by Mats Aarsland Mulelid).

(a) Manual tank cleaning (b) Autonomous tank cleaning

Fig. 6. Illustration of tank cleaning process in land-based production units (Illustration by Mats Aarsland Mulelid).

was originally designed for autonomy and robotics but that
is also possible to generalize and apply to monitoring and
logistics optimization. In the following, a summary of the
Seatonomy method outcomes for the case studies of self-
monitoring rearing tanks and autonomous tank operations
will be presented. More exhaustive presentations of these
results can be found in Eilertsen et al. (2021).

5.1 Self-monitoring rearing tanks

Table 2 outlines the stages adapted on this analysis col-
lectively. The presented data in Table 2 are based on
the assumption that installation and design only takes
place once, sensor calibration and cleaning are executed
periodically and the rest of the listed stages are executed
continuously.

The study showed that the overall system should be
able to monitor all aspects of production (i.e., popula-
tion/individual, water quality, and equipment parameters)
on a continuous basis. Moreover, the system should au-
tomate sensor maintenance and calibration as this will
reduce personnel workload and secure high quality and
reliable data. The sensor and equipment used would also
need to be suited for long-term deployment in the given
conditions, and a degree of redundancy in sensors should
also be realized. All data gathered from the sensors need to
be time-synchronized and have sufficient coverage of the
tank volume to allow for comparisons and combinations
of parameters across time intervals and space. A control
station where the data is processed, analyzed and visu-
alized for personnel should also be a part of the overall
system design and implementation. Data should be stored
both locally near the control station and in a cloud-based



(a) Manual dead fish removal (b) Autonomous dead fish removal

Fig. 7. Illustration of dead fish removal process in land-based production units (Illustration by Mats Aarsland Mulelid).

Table 2. Stages that need to be completed in order to realize self-monitoring rearing tanks
system.

Stages Descriptions

Stage 1:
Design and install sensor system

Sensors needs to be chosen and installed for measuring all aspects of water quality at the optimal
position within the tank and the system as a whole. This includes, e.g., sensors to monitor the
usage of power and water quality (such as, e.g., temperature, pH), light levels within the facility,
etc. Cameras need to be installed both on the surface and submerged in the environment to monitor
the population. A system to monitor the equipment must also be implemented. Sensor fusion, sensor
data reliability and redundancy of the system should be guaranteed.

Stage 2:
Calibration

Sensor should be self-calibrated. The autonomous system will take into account each sensor types
specific calibration needs (e.g., calibration frequency). This includes the use of necessary auxiliary
sensors and reference mediums.

Stage 3:
Data capture

Capture high quality synchronized data from all sensors. The sampling rate needs to be fast enough
to catch the fastest changing variable.

Stage 4:
Data transfer

Captured data is transferred to a control station for processing, and to a cloud solution for long term
storage. Accessibility of the obtained data should be guaranteed at all times.

Stage 5:
Data processing

Data should be processed using advanced algorithms such as machine learning techniques.

Stage 6:
Data visualization

Data need to be visualized for personnel review. This includes highlighting interesting aspects of the
raw and processed data.

Stage 7:
Data review

Data shall be reviewed by personnel who judge facility status, operation security, and progress. This
also includes a decision support system in order to assist personnel in any decision making.

Stage 8:
Sensor maintenance

Sensors should be cleaned and disinfected regularly to provide accurate information using an
autonomous system and secure potential disease spread. Trained personnel will at times be needed
in order to change worn sensors or parts.

solution to facilitate both flexibility of use and redundancy
in storage. The system should be able to analyze trends,
make predictions and estimates based on the collected
data, thereby increasing their utility in daily farm man-
agement. Furthermore, the system should visualize and
present data and information to the personnel in an intu-
itive manner, and personnel should be able to manually
access all data they desired. Based on the collected and
derived data, the system could ultimately provide decision
support for personnel based on situational and historical
data analysis, and provide advice on the optimal time to
execute operations related to production. This will lead to
24/7 objective and optimized monitoring and inspection of

the full facility and pioneer the realization of I4.0 principles
in land-based production units.

Although the most optimal design for such a system would
be one where all the relevant sensors are fully integrated,
this may be a costly solution that is not feasible for
facilities that are already built. An alternative solution
could be to combine integrated sensors and automated
laboratory stations from different providers and producers
in a common system. This could be realized as a single
unit deployed at single tanks, or a more modular system
that could be shared between rearing tanks. Moving the
modular system between rearing tanks could either be
done by some auxiliary system, or the package itself could



be designed with this in mind and be self-propelled and
capable of moving between rearing tanks on its own.

5.2 Autonomous Tanks Operations

Table 3 shows the outcome of the analysis of the au-
tonomous tank operations case study, the different stages
being generalized to account for all the key operations
expected at tanks.

Although an autonomous tank operation system would not
necessarily need to complete these operations simultane-
ously, it will need to be able to do so in quick succession
(i.e., move from tank cleaning to removing dead fish with-
out much delay) and in accordance with the production
plan. The system also needs to be able to decide in which
order the operations should be completed if they are all
deemed necessary at the same time. Irrespective of the
type of operation, the system would need components to
facilitate perception, interpretation of observations, and
manipulation/intervention.

To enable autonomous feeding operations, the perception
system should provide video or other sources of data
describing the behavior and size of the fish, and the
feed silo capacity and level must be self-monitoring. For
cleaning operations it is critical that the perception system
provides images of the tank wall/bottom, while dead fish
removal requires a system able to identify dead fish at the
surface, inside the tank, or at the bottom.

The system should further be able to infer higher level
information by interpreting these data. For instance, in
feeding scenarios, the system should be able to detect
when the fish are hungry based on behavioral observations
(appetite response), and autonomously decide the type
and size of the feed suitable for the tank population based
on fish size. The system should further identify where to
distribute the feed to ensure an optimal feeding session
once feeding is initiated, and adjust/terminate feeding
when the fish stop feeding (as observed through behavior
or buildup of uneaten pellets at the tank bottom). In
cleaning operations, the system would need to identify if
cleaning is necessary based on perception data, and should
be able to evaluate the outcome after completion. Finally,
in case of dead fish removal, the system should provide an
analysis of the potential cause of death, and keep track of
the number of dead individuals from each tank.

The main intervention tool required for feeding operations
would be a device for delivering feed to the tanks. If spe-
cialized feed is required, the system should also be able to
accommodate for this. The amount of feed distributed per
session should also be logged and stored to monitor growth
and feed conversion ratio. For tank cleaning, intervention
tools would be required to clean the tank wall and any
other surface of interest, and the process should also be
initiated autonomously (e.g., depending on the estimated
need for cleaning or as part of a periodic cleaning plan),
regardless of whether the tank is occupied or empty. The
system should further gather up any waste particles while
cleaning unless cleaning is done frequently enough to re-
duce the amount of waste to a level manageable by the
natural circulation within the tank. The cleaning system
should also be able to clean auxiliary aspects connected

to the tank, such as pipes, valves and filters. For the dead
fish removal case, the main tool for intervention could be
a manipulator able to grasp the dead fish once detected,
a process that should be done rapidly to prevent the dead
fish from affecting the tank environment negatively.

All these operations need to be possible to initialize and
supervise from a central control room from which per-
sonnel can initiate, monitor, and cancel operations. This
control room should also enable personnel to take manual
control over the operation in cases of emergency, and data
on the operation status and progress should be presented
to personnel at all times. All data, information, and logs
related to operations conducted using autonomous tank
operations should further be stored and used as historical
data for decision support systems and future production
planning, and to maintain operational histories in individ-
ual portfolios for each population.

Autonomous tank operations require mechanical moving
parts and, thus, the system for realizing these must also
take proper safety precautions into consideration. This
includes self-localization and situational awareness for
any robotic limbs or other moving parts, and collision
avoidance systems to avoid causing damages, as well as
emergency shutdown protocols.

While there exist feed spreaders that are already highly
mechanized and automated, these would have to be ex-
panded with capabilities for perceiving fish appetite and
refilling the dispenser to fulfill the aim of fully autonomous
feeding. Regarding tank cleaning, there exist several so-
lutions that could be useful as a basis, either for systems
integrated into each tank or self-propelled systems capable
of moving between tanks. Removing dead fish from the
tank environment would likely entail a water-proof robotic
gripper system able to gently but firmly remove the fish.
While there exist commercial robot manipulators suitable
for this, they are often relatively short, meaning that a
solution for this purpose would either depend on some sort
of self-propelled system either in the form of an underwater
vehicle or a rail-mounted robotic unit.

While the three operations described above have differing
goals they share some similarities, and it is possible to
imagine systems able to handle several different tank
operations. One approach to this could be a self-propelled
robotic caretaker with the ability to exchange its end
effector tool to suit the given operation. This could be
a cost efficient solution that is easy to integrate into
existing facilities, as well as newer facilities, and could
be set up to do both cleaning and dead fish removal.
Such a system would also be easily scalable, as one could
simply integrate multiple systems and give each a sector
of responsibility within the facility. On the other hand,
feeding occurs frequently during production and is less
dependent on movement within the facility. Thus, it is
possible that combining a separate system for feeding
with an autonomous system for the other tank operations.
This would provide a holistic solution that may provide
substantial relief on employee workload and move the
industry more towards an autonomous future.



Table 3. Stages that need to be completed in order to achieve autonomous tank operations

Stages Descriptions

Stage 1:
Identify operation necessity

The monitoring system should be developed to identify whether a certain operation must be
performed, and a signal should be sent to the mission planning system to plan and execute tasks
needed to achieve the given operation.

Stage 2:
Deploy system

The system should be deployed to the given tank autonomously and the operation is initiated.

Stage 3:
Execute task

The mission planning system plans the tasks to be executed autonomously. Mission planning requires
self-localization and situational awareness, and must incorporate a collision avoidance system to avoid
damaging humans, fish, the tank and other infrastructure. The robot must execute the planned task
and respect the requirements of the planning system. The system must run self-diagnostics in the
event of system errors and must respect properly defined safety margins. Personnel, as super-user,
has the option to intervene with the operation.

Stage 4:
Monitor and display progress

The progress of the operation should be displayed for personnel at a control center. Personnel can
also view video feed of ongoing the operation. Progress should be displayed from different operations
in control room and alarm systems should take into account information from the overall system
design of the whole facility and available sensor data.

Stage 5:
Store and communicate
operation variables

The system should store important variables and communicate with the monitoring system to help
track population numbers, movement and operational history. Accomplished, pauser, stopped or
postponed missions should be reported. Logs from missions should be stored and utilized for future
planning.

Stage 6:
Wait for confirmation and new
orders

Once the operation is finished the system stops and waits for confirmation from personnel or goes
back to stand-by mode. Depending on the specific operation, the personnel has the option of redoing
the operation if the results are not satisfactory.

Stage 7:
Necessary maintenance between
operations

After receiving new orders, (e.g., move to the next operation or enter standby mode), the system
should run a self-diagnostic to check if all part are functioning. The system then needs to report
on the self-diagnostics and require maintenance if necessary. Finally, the system must be disinfected
after every operation to prevent disease spread between tank populations.

6. CONCLUSIONS AND FUTURE RESEARCH

This article highlights some of the major challenges in
modern smolt production and outlines a path forward that
will move it into the Industry 4.0 (I4.0) paradigm and that
is aligned with the industrial needs. This has been achieved
by first studying the current state of the art of smolt pro-
duction and typical operations conducted at smolt produc-
tion facilities. The principles of I4.0 were then presented,
followed by evaluations on the potential of applying these
to the operations in smolt facilities. Some of the most
important operations at smolt facilities have been studied
in greater detail, with emphasis on challenges, research
needs, and potential solutions. Three case studies, i.e., self-
monitoring rearing tanks, autonomous tank operations,
and Smolt 4.0: Optimized smolt production, have been
used to demonstrate how research needs can be used as a
basis for deriving concrete industrial applications. Based
on the case studies, an extensive analysis was conducted
to determine specifications and requirements for realizing
the Smolt 4.0 concept.
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