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Abstract—Integrated local multi-energy systems are recognized
as a promising option to achieve the ambitious energy and climate
goals set by the European Commission for 2030. The nature
of integrated systems requires a sound combination of inter-
disciplinary methodologies and complementary tools. Creating
an efficient architecture capable of exploiting synergies between
tools is therefore crucial for designing, analysing and operating
integrated energy systems. The joint application of different tools
needed for analysing a local system can be very demanding
and time-consuming due to vastly different data structures and
functionalities. To address the need for complementary tools, the
aim of this paper is to establish and test an integrated modelling
architecture allowing the interaction of tools into a modular
toolbox for the optimal planning of integrated local multi-energy
systems, and also present key preliminary outcomes.

Index Terms—Integrated Local multi-energy systems, dis-
tributed energy resources, flexibility, demand response, optimal
planning

I. INTRODUCTION

A. Motivation and background

Meeting the ambitious energy and climate goals set by
the European Commission (EC) for 2030 and beyond re-
quires a commitment beyond the electricity sector. Provid-
ing decarbonization across different energy sectors through
an integrated approach appears to be a viable path for the
future energy supply as outlined in the ETIP-SNET’s Vision
2050 [1]. Integrated local multi-energy systems are recognized
as a promising alternative to centralized energy supply and
distribution systems to meet local energy needs since they can
promote efficient use of the available energy by exploiting
synergies between heat and power technologies, storage and
flexible demand. However, achieving the optimal configuration
and operation of integrated local multi-energy systems requires
a sound combination of interdisciplinary methodologies and
complementary tools from different domains.

B. Related literature

For the planning and operation of complex energy systems
at the local level, different models and tools need to collaborate
for better effectiveness and scalability. The authors of [2],
[3] provide an overview of models and tools relevant to this
context. The relevant models are the island energy-system
tools such as H2RES and the local community energy-system
tools such as Integrate, BCHP Screening Tool, COMPOSE,
MODEST, HOMER, TRNSYS.

In the past, to secure the optimal planning of multi-carrier
energy systems, various approaches have been employed to
couple different models with complementary features. Also, it
is necessary to consider the exchange of data among them for
further analysis beyond being used for tool integration.

These approaches can be categorized into three categories
as follows.

1) Chain the different models together through spe-
cialised code. This approach has flexibility and effi-
ciency for one specific pair of tools but expert users
are needed and it has low modularity. For instance, the
Renewable Energy Deployment System (ReEDS) is a
long-term expansion planning model developed in the
General Algebraic Modeling Language (GAMS) by the
National Renewable Energy Laboratory (NREL) [4] and
is using this approach to connect with other models.
Although it does not refer to multi-carrier energy sys-
tems, it covers a wide variety of different renewables
and storage systems such as pumped storage hydro
and compressed air energy storage. The authors of [5]
provide an interface based on Python for facilitating the
co-simulation of commercial software tools that foster
multi-carrier models simulation.

2) Monolithic program This approach means extending
one tool by directly including one or more others. For
the user, the resulting tool is easy to learn. However,
creating such a tool becomes increasingly difficult as
the complexity of the system increases. In the literature,
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examples of such approaches can be found in [6] where
the Calliope framework is presented. Calliope is used
to develop energy system models with high spatial and
temporal resolution for planning multi-carrier energy
systems. A Calliope model employs a collection of text
files that fully define a model, with details on technolo-
gies, locations, resource potentials, etc. In [7], a planning
tool for smart grids with storage and photovoltaics is
presented for an electricity grid. The setup is using
different models developed in commercially available
tools that connect to each other through delimited (.csv)
files. The authors have automated the process for better
handling. [8] provides a toolbox where different models
technical, business and societal are combined together
for the optimization of multi-carrier energy islands.
A combination of this and the previous approach is
followed by the AnyMOD framework [9]. AnyMOD
is a Julia programming framework for creating energy
system models. It fosters multi-carrier energy systems
and renewable integration. Individual models are defined
by delimited files and can be run with a few lines
of standard code. More advanced applications require
advanced users.

3) Workflow management. This approach focuses on cre-
ating an interaction framework where different tools
can communicate through a shared database by using
standardized data structures. Once established, usage is
relatively easy for regular users and offers flexibility
and scalability options as well. Scenarios can be run in
parallel modelling tasks whereas it is easy to develop
and apply for several users. SPINE Toolbox [10] is
a Python-based open-source energy system modelling
framework for multi-carrier energy systems planning
with high level of temporal, spatial and technological
adaptability that adopts workflow architecture and sup-
ports data exchange among different models. It enables
groups of users, that are developing local workflows,
to collaborate as a team on large-scale problems that
require data curation. It also facilitates multiple tools and
models through version control of workflow routines and
databases for data storage. One of the main advantages
of the Spine Toolbox is that it is problem agnostic and al-
lows for rapid development of new ad-hoc optimization
and simulation models in Python, GAMS, or Julia. It can
be used for modelling and simulating a wide range of
complex energy systems, integrating electrified transport
and variable renewable energy systems [11].

C. Contributions and organization

This paper has been developed within the framework of
the Horizon 2020 project eNeuron [12]. The project aims to
embrace the local multi-energy systems integrated approach
by offering an innovative toolbox with functionalities for
their planning and operational optimization. This ambition is
explicitly designed and applied to energy islands and confined
energy systems under the concept of Integrated Local Energy

Community (ILEC), which is defined in the eNeuron project
as a set of energy users deciding to make common choices
to satisfy their energy needs to maximize the benefits derived
from this collaborative approach based on the implementation
of a variety of electricity and heat technologies and energy
storage and the optimized management of energy flows.

The paper presents the preliminary key results from the
development of the eNeuron toolbox with a focus on the
optimal design and operational analysis phase of local multi-
energy systems. The integrated nature of local multi-energy
systems presumes a complex interaction of different aspects
from various energy sectors, rather than considering each sec-
tor individually. Therefore, the optimal configuration, develop-
ment, and operation of a local multi-energy system require an
interdisciplinary knowledge base. One principal challenge is
that existing analytical frameworks are fragmented in terms
of methodologies and functional tools making integration
between them very demanding.

Based on the literature review, numerous tools and models
exist to tackle the optimal operation and planning of inte-
grated energy systems. Such tools are having their distinct
advantages and limitations and can be categorised as per the
target energy network aggregation level such as international,
national, regional, and micro grid levels. Their specific spatial
and temporal resolutions are also important to consider. There
is no established best practice for implementing workflow
management approaches to foster collaboration of well-known
and widely used planning tools. Hence, the contribution of this
paper is to provide a toolbox concept through a workflow-
based architecture that is modular and expandable. The pro-
posed concept brings together a commercially available plan-
ning tool (Integrate) with other research tools to facilitate their
interaction in a joint framework.

II. METHODOLOGY

This paper focuses on the architecture of system planning
and operational analysis depicted as the upper part encapsu-
lated by the SPINE Toolbox in fig. 1. The planning phase
allows for the identification of the optimal configuration for a
new system through a multi-objective approach and a discrete
set of investment options as well as determining an optimal
expansion plan for the system in the future. After the system
planning phase, the operational analysis phase takes the given
system design as input from the system planning tools and
performs an in-depth analysis of the optimal dispatch of the
system based on a selection of potential scenarios (stochastic
approach), a day-ahead forecast, or using the raw historical
time series data directly. Although these phases entail separate
processes, they need to be consistently interlinked because
the planning phase determines one or more system designs
to be considered by the operational phase. There may also be
a feedback link as the operational analysis might detect system
designs that will be infeasible under some of the operational
situations considered, and therefore should be excluded from
the planning phase. Both phases involve multiple tools feeding
information to each other.
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Fig. 1. High-level representation of eNeuron toolbox architecture.

Since the toolbox includes several tools with software
legacies, restrictions based on intellectual property rights, and
multiple users at different locations, it is not feasible to
bundle them together to provide a single tool for all aspects
of the multi-energy system design and operation. Hence, an
architecture for tool interaction is warranted to coordinate and
unify the data handling between the tools.

This paper builds on a workflow management tool, devel-
oped by the Horizon 2020 project SPINE [10]. By using
SPINE it is possible to create repeatable workflows in a
consistent manner such that different tools can interact through
a common database.

A. Planning tool

One of the planning tools in the eNeuron toolbox is Integrate
[13] (formerly eTransport [14]), a software system for the
optimisation of integrated energy systems. The optimisation
objective is to minimize net present costs, considering both
investment and operational costs for the planning horizon.
It can be used to optimise the development of an energy
system while considering the projections in energy demand

and the different technological possibilities for energy supply,
conversion between energy carriers, distribution, storage, end-
use measures and restrictions on CO2 emissions.

Integrate requires spatial data (e.g., system borders, location
of system components), time aspects (planning horizon), en-
ergy needs, existing energy supply, energy prices and possible
investment options.

As output, Integrate provides one or more expansion plans
in ranked order along with the operation of the system for the
defined representative days. Integrate can thus optimize the
expansion planning of the local energy system by considering
an existing system configuration.

B. Operational analysis tool

Based on the system design, technologies, and their char-
acteristics derived from the planning phase, the operational
analysis tool allows for the dispatch of the multi-energy
system by pursuing economic and environmental objectives
when analyzing the various operational scenarios or day-
ahead dispatch. In detail, the “Operational analysis” tool is
based on a multi-objective optimization problem formulated
through mixed-integer linear programming (MILP), and aims
to obtain the optimal expected hourly operation strategies of
the technologies in the multi-energy systems by minimizing
the weighted sum of total daily costs and CO2 emissions.
Therefore, by adopting a multi-objective framework, the tool
determines the optimal operation scheduling of the multi-
energy system on the Pareto frontier in the two following
modes:

• Stochastic approach: in this case, the optimization prob-
lem is stochastic and allows determining the expected
daily operation strategies of the multi-energy system, by
considering uncertainties related to RES, users’ loads
and energy prices through a scenario-generation proce-
dure that defines a set of scenarios related to uncertain
parameters with their related probability of occurrence
that represent input data for the stochastic optimisation
problem [15], [16].

• Deterministic approach: in this case, the optimization
problem is deterministic and uses as input data for RES
generation, users’ loads, and energy prices from the day-
ahead forecasted data or historical time series.

The other input data that are common for both approaches are:
(1) Structure of the multi-energy system in terms of installed
technologies and energy flows among technologies within the
system; (2) Technical data of energy technologies in the multi-
energy system (average energy efficiency and installed sizes);
and (3) Carbon intensity of input energy carriers.

C. Tool interaction

The tool interactions are implemented according to fig. 2.
The implementation relies on separate but interlinked parts
that together create an interlinked framework for connecting
different tools. The framework is built utilizing the SPINE
toolbox functionality as a building block to provide a system
for data structures and workflow specifications. A local or
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remote database can be used for data interaction between tools.
In this case, a shared remote database is utilized, facilitated
through the SPINE toolbox, to exchange data between the
decentralized tools.

Using section II-A and section II-B as a reference, the
presented tools are located to the left in the figure. Each of the
tools then has its own data import and export routines that are
used by their individual workflows. The combination of these
workflows then enables the interaction between the tools.

Database

eNeuron 
SPINE 

workflow

Tools / 
models

Data import 
routines

Data export 
routines 

Existing 
functionality 
in the SPINE 

toolbox

Database 
backups

Fig. 2. Overview of the eNeuron workflow implementation architecture.

The git-based eNeuron toolbox repository hosts the SPINE
workflows for the interaction between each tool and the
database. Version control and collaborative development of the
workflow specifications are possible because the specification
of workflows is described using a text-based format (.json).
Since each tool has its distinct data structures and formats,
the eNeuron toolbox layer also includes data import and export
routines to translate these structures and formats to the SPINE
data structures. The tool-specific code for data import and
export can then be executed as a part of the SPINE workflow.

Using the planning and operational analysis tools as an
example, an energy system model is first specified in the
Integrate tool. After the calculation of the optimal investment
plans, the optimal system design and optimized representative
days are exported from the tool and imported to the database
through the workflow specification and specified data import
routines. Once this part is completed, the system design can
be specified for the operational analysis tool to conduct a more
in-depth operational analysis of the system. The purpose of the
operational analysis step is to investigate the feasibility of the
proposed system designs and can also be used to determine the
day-ahead optimal dispatch of a given system. If one or more
of the provided system designs is found to be infeasible based
on the outcome of the operational analysis, this information
can be transmitted to the system planning part to exclude such
system designs from the solution space.

III. CONCEPTUAL APPLICATION EXAMPLE

A conceptual example of an application of the models and
the information exchanged is described in this section.

A. System planning optimization

Figure 3 presents an example of a case study that is possible
to model in Integrate. In this example case, hydrogen is
considered as an investment option that can provide flexibility
to the electricity grid and heat to the residential loads.

The overall objective of the Integrate model is to identify
one or more investment plans that minimize the discounted
net present value of all operational and investment costs. The
results of the case would include the total costs (investment
and operation based on representative days) of the energy
system for the whole horizon for the cost-optimal solution
and for a user-specified number of additional near-optimal
solutions. In this simplified case, we can consider two alterna-
tives: system topologies with and without investments in the
hydrogen infrastructure, as well as the timing of the investment
in the hydrogen system. The result would then describe the
components in the system in each planning period and in each
alternative as well as the costs, and operation of the system in
each operating period. The operation of the resulting optimal
system designs can then be analysed and improved in the next
step.

B. Operational planning optimization

The optimal configuration obtained through the energy
planning phase along with energy flows among the installed
energy technologies to cover loads are used as the first input
for the operational analysis tool. As previously mentioned,
this tool is based on a multi-objective operation optimization
problem with two objectives; (1) the economic and (2) the
environmental objectives.

The economic objective is to minimize the expected total
daily energy cost, that in this case corresponds to the cost
of buying electricity from the distribution grid. The envi-
ronmental objective is to minimize the expected total daily
CO2 emissions, which in this case correspond to the total
CO2 emissions associated with the electricity taken from the
distribution grid that depends on the carbon intensity of the
external power grid supplying the modeled multi-energy sys-
tem. With the economic and environmental objectives defined
above, the operation optimization problem has two types of
objective functions to be minimized. To solve this multi-
objective optimization problem, the weighted-sum method is
used to have a single objective function formulated according
to eq. (1) where c is a constant scaling factor to keep the
two objectives at the same order of magnitude, and ω is the
weight for the total daily cost varying in the range of 0-1.
When the weight is 1, it is to find the solution that minimizes
the total daily energy cost of the system (CTOT ), and when
the weight is 0, it is to find the solution that minimizes the
total environmental impact of the system (EnvTOT ). When
varying the weight in the range of [0, 1], the Pareto front
between economic and environmental objectives is found.

Author Accepted Manuscript version of the paper by Magnus Askeland et al. 
in 2023 International Conference on Smart Energy Systems and Technologies - SEST (2023) 

http://dx.doi.org/10.1109/SEST57387.2023.10257503 
Distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) 



Fig. 3. Example of a case in the Integrate model. The local energy system of an area is modelled where the main energy carriers in the area are electricity
(dark blue) and heat (red), while hydrogen (light blue) is considered for future investments. The system drawn in full lines represents the state of the system
at the beginning of the planning horizon while the dashed line corresponds to the investment options.

Fobj = cωCTOT + (1− ω)EnvTOT (1)

The total expected daily cost in the case study is the cost
for buying electricity from the upstream grid, formulated in
eq. (2).

CTOT =
∑
ssup

∑
sdem

πsupπdem

∑
t

(Prgridssup,tP
grid
ssup,sdem,t)Dt

(2)
πsup is the probability of occurrence for scenario ssup in

the set of supply-side scenarios, obtained through combining
scenarios of solar irradiance and electricity prices; πdem is
the probability of occurrence for scenario sdem in the set
of demand side scenarios related to the electrical loads;
Prgridssup,t is the price of electricity at time t in scenario ssup;
P grid
ssup,sdem,t is the power bought from the grid at time t in

scenarios ssup and sdem; and Dt is the length of the time
interval (1 hour).

The total expected daily CO2 emissions in the case study
are the emissions associated with the electricity taken from
the distribution grid, formulated in eq. (3) where CIgrid is
the carbon intensity of the power grid, which the multi-carrier
system is connected to.

EnvTOT =
∑
ssup

∑
sdem

πsupπdem

∑
t

(P grid
ssup,sdem,tCIgrid)Dt

(3)

The Pareto frontier consists of the best possible trade-off
solutions between the economic and environmental objectives,
thereby leaving the choice to the decision-maker to select the
preferred solution according to economic and environmental
priorities.

The optimization problem is mainly composed of two types
of constraints that are operation constraints for the technolo-
gies in the planned configuration, such as capacity constraints,
and energy balance constraints (electricity and thermal energy
balances in this case) that ensure that loads are satisfied at each
time-step. The problem is based on linear energy models for
the technologies present in the planned configuration and the
optimization is carried out on an hourly basis. The problem can
be solved with a (1) stochastic or (2) deterministic approach,
the first considering uncertainties related to solar irradiance,
loads and electricity prices and the latter with day-ahead
forecast data on solar irradiance, loads and electricity prices.
Therefore, according to the approach (1) or (2) used, the output
will be (1) the expected daily operation strategies of the multi-
energy system; or (2) the day-ahead scheduling of the multi-
energy system, on the Pareto frontier.

The multi-objective optimization problem is implemented
by using IBM ILOG CPLEX Optimization Studio V.12.10 and
can be solved within 10 minutes with a zero mixed integer gap
using a computer with 2.60 GHz (2 multi-core processors)
Intel(R) Xeon(R) Silver 4214R CPU and 64GB RAM.
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C. Information exchange

Table I describes the main information exchanged by the
planning and operation tools described in this article.

The system planning phase defines one or more invest-
ment strategies. In each investment strategy, the corresponding
system topology is described, and the topology may evolve
through time as the investment timing is also considered. In
our simplified example described in section III-A one possible
strategy would include the hydrogen system, and the other
strategy would be to not invest in the hydrogen system. These
different system topologies can be represented in the workflow
management software by the use of available data structures
such as objects and relationships between objects.

TABLE I
EXAMPLE OF INFORMATION EXCHANGED THROUGH WORKFLOW PROCESS

Name Data structure Description
System de-
sign

Relationship classes for
connected object instances

Included network compo-
nents and the connections
between them for each in-
vestment strategy and plan-
ning period

Optimal
operation
strategies

Array (time series) for each
parameter for each object
instance in each investment
strategy, planning period
and representative periods

Operation of available en-
ergy assets

Loads,
prices and
availabili-
ties

Array (time series) for each
parameter for each object
instance in each planning
period and representative
period

Input data on loads to
satisfy, available market
prices, and resource avail-
abilities

In addition to information to describe the overall system
topology, data for each component in the system is also
exchanged. The optimal operation strategies represent the
optimal operation of the system for the representative days
considered by the system planning tool. Therefore, the oper-
ational strategies will depend on the input data specifications
provided, and also on the system design because components
that are not part of an investment strategy cannot be included
in the corresponding operational optimization. Hence, different
operational strategies will exist for the various investment
plans.

IV. CONCLUSIONS

This article describes the design and application of a
workflow-based architecture to connect multiple energy sys-
tem analysis tools in an integrated approach. The presented
architecture paves the way for the next steps in eNeuron
project while also providing a general architecture that can
be adapted to other situations with other sets of tools that
need to exchange information.

Based on the current findings, the main characteristics of
the proposed workflow architecture are:

• Modularity and flexibility to meet the needs of different
systems by employing the tools and functionalities that
are needed.

• Blueprints for how to implement tool interaction giving
scalability to include more tools, unlocking more func-
tionalities in the future.

• Enhanced interoperability for different tools integration
in the workflow.

• Builds on existing frameworks and is therefore relatively
easy to maintain.
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