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1 Background 
Viper (Vindpark energiproduksjon) is a set of Matlab1 scripts that can be used to calculate the annual 

energy production from a large offshore wind farm.  The results can be used in wind farm layout assessment, 
or to evaluate the influence on energy production of different wind farm control strategies. 

The method is based on a numerical solution of the two-dimensional boundary-layer equations, using 
an eddy viscosity/mixing length approach to account for the effects of turbulence.  This provides an estimate 
of hub-height velocity at each wind turbine, from which the power output is computed.  While two-
dimensional boundary layer theory is simplified with respect to the real flow conditions, Viper provides 
predictions which match data collected at existing offshore wind farms.  On the same theoretical basis, the 
method is applicable to non-standard cases, such as wind farms with variable turbine diameters, tower 
heights, rated powers, and spacings; or wind farms consisting of several blocks of turbines, with separation 
between the blocks. 

Local wake models, like that developed by Jensen [10], are commonly employed to compute the 
power output of turbines within a wind farm.2  Jensen's model assumes that the wake behind each turbine is 
axisymmetric, and that the diameter of the wake grows linearly with the downstream distance.  The wake 
velocity then follows from the conservation of momentum.  Individual turbine wakes are superposed.  The 
assumption of axisymmetry and superposition is reasonable for the wakes behind a couple rows of wind 
turbines, but it is not valid deep within a large wind farm, where the wind farm influences flow patterns in 
the atmospheric boundary layer well above the height of the turbines.  The Jensen model is also not valid for 
predicting the recovery of windspeed as a function of distance downstream of a wind farm. 

It has been recognized since the early days of commercial wind energy that a wind farm influences the 
atmospheric boundary layer, and that this in turn dictates the recovery of windspeed – the turbulent mixing 
of higher-velocity air from above – both within and downstream of the wind farm.3  The simplest way to 
account for the development of the boundary layer is by representing the wind farm as an equivalent surface 
roughness parameter.  An increased surface roughness exerts drag on the flow, progressively slowing and 
thickening the boundary layer.  Frandsen [7], Calaf et al. [2], and Meneveau [15] describe models of this 
type.  The accuracy is dependent on the empirical calibration of the surface roughness parameter.  

A more robust class of numerical methods has been developed by atmospheric scientists seeking to 
determine the influence on the atmospheric boundary layer of forests, buildings, and other obstructions.  
These are known as "canopy" methods; Viper can be placed in this category.  The body of literature on 
canopy methods is vast, and the scope is here limited to wind energy applications.  In particular, motivated 
by the development of large offshore wind farms, Frandsen et al. [8],[9] have developed a practical 
engineering method that considers simultaneously local and global wake effects.  The global model employs 
the canopy method described by Belcher et al. [1].  This differs from Viper in that the former linearizes the 
boundary layer equations and solves them in Fourier space, whereas Viper directly solves the nonlinear 
boundary layer equations. 

1.1 Coordinate Systems 
Three coordinate systems are relevant to the Viper analysis: farm, wind, and analysis coordinates.  

These are sketched in Figure 1.  When it is necessary to refer a variable to a particular coordinate system, 
this is done with a superscript "f", "w", or "a". 

                                                      
1 ... or its free equivalent Octave, which was used to develop the code ... 
2 Variations on Jensen's method are referred to in the literature as the Katic model or the Park wake model.  

Lackner and Elkinton [14], Kusiak and Song [13], Chowdhury et al. [3], and Turner et al. [21] are among recent studies 
that have employed this type of wake model.  

3 Templin [20] was the first to introduce the idea.  Milborrow [16] provides a survey of such studies conducted 
during the 1970's. 
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The farm coordinate system remains fixed throughout the analysis.  The locations of the turbines are 
defined relative to the farm coordinate system.  In the present code it is assumed that the yf axis points North, 
however this is not a requirement of the analysis method.  The zf axis points vertically upwards. 

The analysis is performed considering various directions of the remote wind V∞.  The wind coordinate 
system is defined such that the xw axis is aligned with the direction of the remote wind.  The associated 
compass direction is measured in the opposite sense, and points into the wind. 

The xa axis of the analysis coordinate system is also aligned with the wind direction, but the origin 
may be offset relative to the wind coordinate system.  The ya axis points vertically upwards, such that the xaya 
plane forms a 2D section along which the boundary layer flow is calculated.  For a given wind direction, 
there are in general several analysis lines, and there is an analysis coordinate system associated with each. 

Note that the analysis coordinate system is defined with the ya axis vertically upwards, which differs 
from the convention for the farm and wind coordinate systems, whose z axes point vertically upwards.  The 
analysis coordinate system was defined in this manner in order to make the derivation of the 2D boundary 
layer equations consistent with that of Schlichting [19].  To put it another way, the analysis coordinate 
system is most naturally viewed "from the side", while the farm and wind coordinate systems are most 
naturally viewed "from above". 

 
Figure 1: Coordinate systems, illustrated for a wind farm with a regular layout pattern, and for a 

given wind direction 

2 Boundary Layer Analysis 
Viper, as well as other engineering methods such as Frandsen et al., solve the boundary-layer 

equations in two dimensions.  The xa axis points downwind, and the ya axis is vertical.  (The derivation is 
performed in analysis coordinates, therefore the "a" superscript is henceforth omitted.)  The equations are 
written and solved in the xy plane.  There is theoretical and experimental justification for limiting the 
analysis to two dimensions.  A representative height of the atmospheric boundary layer is 1 km [2], while the 
lateral dimension of a large wind farm is at least several kilometers, and velocity recovery in the wake of a 
large wind farm is measured in tens of kilometres.  The lateral length scale is thus an order of magnitude 
larger than the vertical length scale.  This implies that the turbulent mixing of high-speed wind into the farm 
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and its wake occurs predominantly from above, and not from the sides.  Sattelite measurements by 
Christiansen and Hasager [4] on the Horns Rev wind farm, as well as 3D CFD analyses by Réthoré [18], 
support this view.  The wake of the wind farm does not change in width as a function of downstream 
distance, indicating little mixing from the sides. 

2.1 2D Boundary Layer Equations 
The two-dimensional, steady, turbulent boundary-layer equations are:4 

 momentum:   
2

2

1 ( )du du dp d u d u vv
dx dy dx dy dy

u µ
ρ ρ

′ ′
+ = − + −  (2.1)  

 continuity:   0du dv
dx dy

+ =  (2.2)  

subject to the boundary conditions: 
 0u v= =  at 0y = ;   eu u=  at ey h= . (2.3)  

Here the overbar denotes a time-average, and, as all quantities will be time-averaged through the remainder 
of the derivation, the overbars are henceforth omitted.  The variables u and v are the x and y components of 
the mean velocity, while u' and v' are turbulent fluctuations about the mean.  The fluid viscosity is μ, and the 
density is ρ.  The pressure gradient dp/dx is negligible in the present application, where the remote wind is 
assumed to be steady and the surface topography is flat. 

2.2 Eddy Viscosity and Mixing Length 
Equation 2.1 includes the product u'v', which is unknown.  Prandtl argued that: 

 
2

2 2' ' duu v y
dy

κ
 

= −  
 

, (2.4)  

with 0.4κ ≈ .  Equation 2.4 can be regarded as an empirical fact.5  The term d(u'v')/dy acts as a positive 
quantity on the right-hand side of Equation 2.1, and its effects can be considered as increasing the effective 
viscosity of the fluid – the "eddy viscosity" – in a nonlinear manner.  The terminology "mixing length" 
comes from Prandtl's reasoning as to why u'v' is proportional to y2; the details are not relevant here. 

With Equation 2.4, the momentum equation becomes: 

 
22 2

2 2 2
2 22 2du du d u du du d uu v y y

dx dy dy dy dy dy
µ κ κ
ρ

 
+ = + + 

 
. (2.5)  

2.3 Thrust Forces 
The thrust force of a given wind turbine on the air FT can be written in terms of a nondimensionalized 

thrust coefficient CT: 

 
2

21
2 4T h T

DF u Cπρ= . (2.6)  

                                                      
4 Unless stated otherwise, Schlichting [19] is the reference for all equations developed in this section. 
5 There is also theoretical justification in the case of simple wall-bounded shear flows, as a relationship such as 

Equation 2.4 is necessary in order for the velocity profiles of the inner viscous region and outer turbulent region to 
overlap.  [5] 
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Here D is the rotor diameter and uh is the hub-height windspeed, taken to be representative of the rotor-
average windspeed.6  For a given wind turbine design, the steady-state thrust coefficient can be tabulated as a 
function of mean windspeed; thus CT is a function of uh. 

The terms in Equation 2.5 each represent a force per unit volume, divided by the fluid density ρ.  The 
thrust force must be expressed in the same manner, in order that it may be incorporated into the momentum 
equation. 

In a given wind farm layout, let there be a surface area associated with each turbine.  For example, in a 
regular rectangular pattern with xa spacing sx and za spacing sz, (or equivalently xw and yw spacing, 
respectively), the surface area would be s x zA s s= . 

Now a crucial assumption is made: the thrust force from each wind turbine is distributed over a 
volume of air spanning the diameter of the turbine and the surface area As.  This assumption is consistent 
with canopy methods as employed by, for instance, Belcher et al. [1], or the equivalent roughness method of 
Meneveau [15].  If the volume of air associated with a given turbine is AsD, then a "turbine density", the 
number of turbines per unit volume, is: 

 
1/ ( ) for  / 2 / 2

( )
0 otherwise.

s
T

A D H D y H D
yρ

− < < +
= 


 (2.7)  

The thrust force per unit volume is: 

 
2

21
2 4T T T h Tf F D u Cρ πρρ== , (2.8)  

so that the term in the momentum equation is: 

 
2 2

8
h TT Df u Cπρ

ρ
= . (2.9)  

The thrust force opposes the motion of the fluid, thus the above expression enters the momentum equation 
with a negative sign: 

 
22 22 2

2 2 2
2 22

8
2 hT Tu Cdu du d u du du d uu v y y

dx dy dy d d
D

y dy y
πρµ κ κ

ρ
 

+ = + + − 
 

. (2.10)  

The value of ρT is set to zero for / 2y H D< −  and / 2y H D> + , where H is the hub height. 
For a given turbine layout, which in a large wind farm may consist of hundreds of turbines, it is not 

desirable to have to specify explicitly the surface area associated with each turbine.  Even in a regular 
rectangular pattern, when the wind is not exactly aligned with the rows or columns, it will seldom intersect 
precisely the location of a turbine rotor (Figure 2).  Therefore some approximation or interpolation is 
required in order to represent the effective thrust force along the line of analysis.7 

                                                      
6 Approximating the rotor-average windspeed with the single-point windspeed at hub height is reasonable for the 

on-average flow quantities of relevance here.  This is not a valid approximation when explicitly modelling a turbulent 
windfield. 

7 The "line of analysis" or "analysis line" refers to the orientation, relative to the pattern of turbines, of the xy 
plane in which a given two-dimensional boundary-layer analysis is performed.  This line is by definition parallel with 
the wind direction.  The x axis of the boundary-layer analysis corresponds to the analysis line. 
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Figure 2: A regular turbine layout pattern with off-axis wind direction 

Viper takes as input the effective turbine density ρT as a function of the x coordinate along the analysis 
line.  For a regular case like Figure 2 the effective turbine density is constant and straightforward to compute.  
For irregular cases some assumptions must be made.  It is outside the present scope to provide methods or 
guidance for the general case.  It can be said, though, that for configurations where determining an effective 
turbine density is challenging, the applicability of a two-dimensional boundary-layer analysis should be 
questioned. 

In the example of Figure 2 it is seen that the analysis line does not directly intersect many turbine 
locations.  If adjacent turbines do not produce exactly the same thrust, then it is not immediately evident 
what should be the thrust associated with the analysis line.  Explicit interpolation between turbines is 
problematic, since variations in the wind speed along the z direction (perpendicular to the plane of analysis) 
are not known upfront.  And as stated previously, it is not desired to burden the user with explicitly 
specifying surface areas – or area "elements" – associated with each turbine. 

The concept of turbine density is extended in order to provide a practical method for calculating the 
effective thrust force along the analysis line.  Rather than assuming that the thrust associated with a given 
turbine is applied over a discrete region of space, the relationship between CT and uh is applied as a 
continuous function of x, CT(uh(x)).  Then, at each coordinate x along the analysis line, the force term is 
evaluated with the value of CT corresponding to the local value of uh(x).  In Section 3, it is shown that this 
approach works well for regularly-spaced wind farms.  (There is no validation data for large, irregularly-
spaced wind farms.) 

  At present, to keep the input simple, only CT(uh(x)) is implemented in Viper; that is, all the turbines 
are assumed to be operating with the same thrust coefficient curve, a function of the local hub-height 
windspeed.  It is also assumed that the turbine diameter is constant.  In principle, though, the thrust force 
term could be: 

( ) ( ) ( ) ( )( )22 ,
8

T hh Tu xx D x x u xCπ ρ
 

where ρT(x), D(x), and CT(x,uh(x)) are provided as input.  Here ρT(x) represents the variation in turbine 
spacing, and D(x) and CT(x,uh(x)) could represent different turbine types or control strategies. 

2.4 Numerical Solution 
Equation 2.10 is solved by discretizing the domain (the xy plane) into rectangular elements, as shown 

in Figure 3.  The corners of each element are nodes at which the state variables are defined. 
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2.4.1 Keller Box Method 
The Keller Box method [12] is used to discretize the governing equations.8  First the higher-order 

momentum equation is transformed into a first-order differential equation by introducing an intermediate 
state variable: 

 
duq
dy

≡ , (2.11)  

such that: 

 2 2 2 22 2du dq dqu vq yq y
dx y

q
dy d

µ κ κ
ρ

+ = + +
2 2

8
h TT u CDπρ

− . (2.12)  

Then Equations 2.2 and 2.12 are written at the center of each element (such as point A in Figure 3), while 
Equation 2.11 is written at the center of the right-hand (positive x) edge of each element (point B). 

 
Figure 3: Discretization of the analysis domain into nodes and elements 

In writing the differential equations at A and B, the best estimates of the quantities at these locations 
are used.  This gives at point A: 

 ( )1, 1 1, , 1 ,
1
4 m n m n m n m nφ φ φ φ φ− − − −= + + +  (2.13)  

 ( )1, 1 1, , 1 ,
1

2 m n m n m n m n
d
dx x
φ φ φ φ φ− − − −− ++= −

∆
 (2.14)  

 ( )1, 1 1, , 1 ,
1

2 m n m n m n m n
d
dy y
φ φ φ φ φ− − − −= − + +−

∆
 (2.15)  

and: 

 ( )1
1
2 n ny y y−= + . (2.16)  

At point B: 

 ( ), 1 ,
1
2 m n m nφ φ φ−= +  (2.17)  

and: 

                                                      
8 The equations are discretized in their original form, with velocities as the state variables.  We do not introduce 

the stream function and transform the equations.  Although employing the stream function is common historically, as 
Keller [11] notes, "there is no great advantage in introducing a stream function when employing the Box scheme." (p 
422) 
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 ( ), 1 ,
1

m n m n
d
dy y
φ φ φ− += −

∆
. (2.18)  

Here ϕ can represent u, q, or v. 

2.4.2 Newton's Method 
Beginning with initial conditions for u, q, and v on the upwind boundary, together with the boundary 

conditions (Equation 2.3), the solution advances forward step-by-step.  Thus, during a given step, values in 
column m – 1 are known, while those in column m are unknown.  The discretized problem can be written in 
the form: 

 ( , , ) 0g u q v =    , (2.19)  
or, combining u , q , and v  into a single state vector z , simply: 

 ( ) 0g z =  . (2.20)  
If there are N nodes in a column, the vector g  contains 3( 1)N −  equations: Equations 2.2, 2.11, and 2.12 
written for each of the N – 1 elements.  There are also 3( 1)N −  unknowns: N values of each of u, q, and v at 
the nodes, minus the 3 boundary conditions. 

Equation 2.20 is a nonlinear system of equations; and a good initial guess is available by taking the 
values from the th( 1)m −  column.  Newton's method is well-suited to such a case.  The vector of functions is 
expanded in a Taylor series about some "current" state jz : 

 [ ] 2( ) ( ) ( )j jg z z g z J z O zδ δ δ+ = + +      , (2.21)  

with [J] the Jacobian matrix.  Only first-order terms are retained.  It is desired to find zδ   such that 
( ) 0jg z zδ+ =   .  This can be found, using the first-order approximation of Equation 2.21, by solving the 

system of linear equations: 
 [ ] ( )jJ z g zδ− =   . (2.22)  

In the basic implementation of Newton's method, after obtaining zδ  , the estimate for z  is updated as: 
 1j jz z zδ+ = +   , (2.23)  

where Equations 2.22 and 2.23 are iterated to convergence, and j is the iteration number.  However, this is 
not always stable.  Press et al. [17] suggest a means to stabilize Newton's method.  Instead of Equation 2.23, 
the update formula is: 

 1j jz z zλδ+ = +   , (2.24)  

with λ a scalar parameter, 0 1λ< ≤ .  As the method converges, jg  goes to zero.  (Here jg  is shorthand for 
( )jg z  .)  Thus 1 1( )j T jg g+ +   represents a positive scalar that decreases to zero upon convergence.  The vector 
zδ   is by definition a descent direction for 1 1( )j T jg g+ +  , for at least some infinitesimal step length.  The 

convergence strategy is therefore to try Equation 2.23 (equivalent to λ = 1); check whether 
1 1( ) ( )j T j j T jg g g g+ + <     ; and, if not, employ Equation 2.24, progressively halving λ until 
1 1( ) ( )j T j j T jg g g g+ + <    .  This does not guarantee convergence, however it greatly increases the robustness 

of Newton's method. 

2.4.3 Stabilizing Hourglass Modes 
It was observed that for initial conditions that did not perfectly satisfy the boundary layer equations, 

the Keller Box method had a tendency to "hourglass": successive values of nodal variables oscillated along 
the x and y directions, such that the averaged quantities at the calculation points (A and B in Figure 3) 
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nonetheless satisfied the governing equations.  To suppress hourglassing, the state variables mz  at column m 
are computed as: 

 ( )1 1 2
1 1 2

'1 1 '
2 2

m m m m
m m m m m

z z z zz z x z z z
x x

− − −
− − −

− − = + + ∆ = + − ∆ ∆ 

   
     , (2.25)  

where 'mz  denotes the converged output from Newton's method, which could potentially include 
hourglassing.  Equation 2.25 updates mz  by projecting from 1mz −

 , using the average of the "reliable" slope 
between m – 2 and m – 1, and the "unreliable" (possibly hourglassing) slope between m – 1 and m.  As 
hourglassing is characterized by adjacent slopes alternating between large, nearly identical positive and 
negative values, taking the average of adjacent slopes when projecting the updated values of mz  effectively 
cancels any tendency to hourglass. 

2.4.4 Discretized Governing Equations 
In order to arrive at Equation 2.22, all variables ,m nφ  and , 1m nφ −  in Equations 2.13 through 2.18 are 

written as , ,
j

m n m nφ δφ+  and , 1 , 1
j

m n m nφ δφ− −+ .  Then terms of orders 2δφ  and higher are dropped.  The δφ  
terms are collected on the left-hand side, while the remaining terms are collected on the right-hand side.  
After much algebra, the momentum equation for each element is: 

 1 , 1 , 1 3 , 1 , , ,2 6 ,4 5
j

m n m n m n m n m n m n h m hu q k v u q k v k uk k k gkδ δ δ δ δ δ δ− − −+ + + + =+ +  (2.26)  
 
where : 

 ( )1 4 , 1 ,
1

4
j j

m n m nk k u u
x −= = +

∆
 (2.27)  

 ( )
2 2

2
2 sum sum sum sum 1, 1 , 1

1
16 2 8 8

j
m n m nk v y q y q q

y y
µ κ κ
ρ − − −= + − + +
∆ ∆

 (2.28)  

 3 6 sum
1

16
k k q= =  (2.29)  

 ( )
2 2

2
5 sum sum sum sum 1, 1 , 1

1
16 2 8 8

j
m n m nk v y q y q q

y y
µ κ κ
ρ − − −= − − − +
∆ ∆

 (2.30)  

and: 

 ( )
2

1, ,16
jT T

h m h m h
D Ck u uπρ

−= + , (2.31)  

with: 
 sum 1, 1 1, , 1 ,

j j
m n m n m n m nq q q q q− − − −= + + +  (2.32)  

 sum 1, 1 1, , 1 ,
j j

m n m n m n m nv v v v v− − − −= + + +  (2.33)  

 sum 1n ny y y−= + . (2.34)  
In Equation 2.31, the "h" subscript refers to the node nearest the hub-height of the turbine.  The right-hand 
side of Equation 2.26 can be written: 

 
2

2
diff sum sum sum susum di mff

1
8 1

1
2 166

j q y qg u u
x

v q
y

µ κ
ρ

= −
∆

+−
∆

+  (2.35)  
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( )
2

2
sum sum di

2 2

1,ff ,1 26 3
jT T

m h m h
D C uy q uq

y
πκ ρ

− ++ +
∆

, 

where: 
 sum 1, 1 1, , 1 ,

j j
m n m n m n m nu u u u u− − − −= + + +  (2.36)  

 diff 1, 1 1, , 1 ,
j j

m n m n m n m nu u u u u− − − −= − − + +  (2.37)  

 diff 1, 1 1, , 1 ,
j j

m n m n m n m nq q q q q− − − −= − + − +  (2.38)  

For simplicity, the thrust coefficient CT is evaluated at the known value 1,m hu − , rather than the unknown 

value ,
j

m hu . 
The continuity equation for each element is: 

 , 1 , 1 , , diff diff
1 1 1 1 1 1

2 2 2 2 2 2m n m n m n m nu v u v u v
x y x y x y
δ δ δ δ− −− + + = − −

∆ ∆ ∆ ∆ ∆ ∆
, (2.39)  

where: 
 1, 1d 1i , , 1 ,ff

j j
m n m n m n m nv v vv v− − − −− + − += . (2.40)  

The equation for q is: 

 , 1 , 1 , , , , 1 , 1 ,
1 1 1 1 1 1( ) ( )

2 2 2m n m n m n m n m n m n m n
j j j j

m nu q u q u u q q
y y y
δ δ δ δ− − − −+ + = − − +

∆ ∆
−

∆
. (2.41)  

Equations 2.26, 2.39, and 2.41, when written for each element, form the vector Equation 2.22. 

2.5 Normalization 
Given the very different x and y scales of boundary layer flow, the governing equations are normalized 

to improve the numerical conditioning of the solution.  Lengths in x are normalized by L, the length of the 
computational domain; lengths in y are normalized by he, the height of the atmospheric boundary layer; and 
time is normalized by ue/L.  This results in the following normalized variables: 

 ˆ yy
h

= ,  ˆ xx
L

= ,  ˆ
e

uu
u

= ,  ˆ
e

Lv v
hu

= . (2.42)  

Substituting into Equation 2.10 gives: 
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h
e

Cdu du L d u yL du y du d uu v u
dx dy u h dy h dy dy dy

D LL
h

πµ κ κ
ρ

ρ 
+ = + + − 

 
. (2.43)  

Defining modified constants: 

 ˆ L
h

κ κ= ,   2
ˆ

e

L
u h
µµ = ,   D̂ D L= , (2.44)  

Equation 2.43 can be written: 
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h
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D
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µ κ κ
ρ

πρ 
+ = + + − 

 
 (2.45)  

which is the same form as Equation 2.10, to be solved by the procedures described in Section 2.4.  The 
continuity equation and the definition of q also apply, without modification, for the nondimensional variables 
in Equation 2.42. 
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3 Validation 
When the thrust coefficient CT is set to zero, the methods of Section 2 are applicable to the case of a 

simple boundary layer over a flat plate.  For laminar flow, this has an analytical solution, while for turbulent 
flow, there exists the log law, calibrated to experimental data.  For full-scale validation including turbine 
thrust forces, windspeed data has been published for the Horns Rev and Nysted offshore wind farms. 

3.1 Laminar Flow over a Flat Plate 
Blausius obtained an analytical solution of Equations 2.1-2.3, for the case of laminar flow.  (Laminar 

flow is obtained by setting κ to zero.)  Schlichting [19] tabulates the solution in a form suitable for a 
spreadsheet calculation.   

Figure 4 compares numerical (Viper) and analytical results for the development of a laminar boundary 
layer over a smooth, flat plate, beginning at 0.05 m from the leading edge.  The remote flow velocity ue is 1 
m/s, and the fluid is air, with typical properties 1.225ρ =  kg/m3 and 51.789 10µ −= ×  kg/ms.  100 steps were 
taken between x locations of 0.05 m and 1.05 m.  50 elements spanned the y direction of the computational 
domain, from the wall to a height he of 0.05 m.  The elements were more densely packed near the wall, and 
more sparse towards the outer edge of the domain.  Locations of the nodes are seen as black symbols in 
Figure 4. 

The results demonstrate that the basic method of calculation is implemented correctly. 
 

 
Figure 4: Development of a laminar boundary-layer over a flat plate 

3.2 Turbulent Flow over a Flat Plate 
The experimental measurements of a turbulent boundary layer over a flat plate are less precise than the 

theoretical solution for a laminar boundary layer.  Theory indicates that a turbulent boundary layer should 
follow a logarithmic velocity profile for at least some fraction of the boundary layer height, deviating from 
this profile close to the wall, where the fluid viscosity becomes important.  The shape and evolution of the 
logarithmic profile is calibrated to measurements.  Schlichting [19] gives a summary of the data and 
recommends a set of parameters.  Specifically, one computes the Reynolds number based upon the position x 
along the plate: 
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 Re e
x

u xρ
µ

= , (3.1)  

the skin friction coefficient, here Schlichting's curve-fit to analytical results obtained by Prandtl: 

 ( ) 2.32 log Re 0.65f xc −′ = −  (3.2)  

the shear stress at the wall: 

 21
2w e fu cτ ρ ′=  (3.3)  

the friction velocity: 

 * wv τ
ρ

=  (3.4)  

a nondimensional height: 

 
*v yρη
µ

=  (3.5)  

and the fluid velocity u according to: 

 1 1* logu A D
v

η= +  (3.6)  

where A1 = 5.85 and D1 = 5.56 are empirical constants. 
As an alternative to a logarithmic profile, it is reasonable to assume a power law.  The velocity profile 

is then computed as: 

 
1/7

e
yu u
δ
 =  
 

, (3.7)  

where the exponent 1/7 is empirical, as is an expression for the boundary-layer thickness δ: 
 1/50.37 Rexxδ −= . (3.8)  

Figure 5 shows results for the development of a turbulent boundary layer along a smooth, flat plate.  
The profiles were calibrated at a distance from the leading-edge x = 1 m.  The profile was computed through 
x = 10 m, using a step size Δx of 0.1 m.  The remote fluid velocity was 10 m/s, and the physical properties 
were those given in Section 3.1, typical of air.  100 elements spanned the height of the computational 
domain, which was set to 0.3 m. 

The agreement between analytical and empirical results is not perfect, especially very near the wall, 
where the empirical formulas are not valid.  The numerical and empirical velocity profiles agree closely over 
most of the height of the boundary layer (say, 0.02 0.2y≤ ≤  m). 
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Figure 5: Development of a turbulent boundary layer over a flat plate 

3.3 Flow at Atmospheric Scale 
Figure 6 shows a fully-developed boundary layer at an atmospheric scale.  The boundary layer is 1 km 

thick.  It was initialized to a logarithmic velocity profile such that ue = 10 m/s.  The height of the first node, 
which to some extent represents the surface roughness length, was 1 mm.  101 nodes were evenly spaced on 
a logarithmic scale, between the wall and y = 1 km.  The analysis was run from x = 0 to x = 10 km, with 
increments Δx of 100 m.  As expected, the fully-developed profile did not change, except immediately 
adjacent to the wall, where the given initial conditions were not precise.  The results indicate that the 
calculation is stable, with a negligible accumulation of numerical error over the computational domain. 

 
Figure 6: A fully-developed atmospheric boundary layer initialized to a logarithmic profile 
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3.4 Flow Through a Wind Farm 
Frandsen et al. [8] summarize velocity deficit data collected in the wakes of the Horns Rev and Nysted 

wind farms.  Hub-height windspeed data was collected at each turbine, as well as two meteorological masts 
placed several kilometers behind each of the wind farms.  In both cases the mean remote windspeed was 8.5 
m/s.  The mean wind direction was aligned with the turbine rows, within a tolerance of o10± .  It is 
appropriate to allow such a tolerance, as the present boundary-layer methods are not applicable for the case 
where the wind is aligned exactly along a row of turbines, and local wake effects become dominant.9 

For the numerical calculations, the turbines were assigned a uniform CT of 0.80, which is a 
representative value for operation below the rated windspeed.  150 elements spanned the height of the 
computational domain, which was set to 1 km; the nodes were spaced uniformly on a logarithmic scale, with 
the first node at a height of 1 mm.  The step size Δx was 100 m (though the analysis was also run with Δx of 
200 m, with identical results). 

The initial conditions were specified as a logarithmic windspeed profile, like Figure 6.  The remote 
windspeed ue above the boundary layer was obtained by calibrating the slope of the logarithmic profile such 
that the hub-height windspeed, upstream of the wind farm, was equal to 8.5 m/s. 

The upstream boundary of the wind farm was located a distance of 10 Δx from the upstream boundary 
of the computational domain, in order to eliminate any inaccuracy associated with imprecise initial 
conditions. 

Figure 7 shows the hub-height windspeed as a function of position within and behind the Nysted wind 
farm.  Figure 8 shows the same for the Horns Rev wind farm.  The coordinate x = 0 has been defined as the 
position of the last turbine along the row.  Note that the thrust force associated with the last turbine has been 
applied over a downstream distance equal to the separation between turbines.  This is consistent with the 
assumption that the thrust force is distributed over a volume of air associated with each turbine.  

 
 

 
Figure 7: Hub-height windspeed through and behind the Nysted wind farm; wind direction aligned 

with turbine rows o10± ; dashed lines indicate the coordinates of the first and last turbines in the farm 

                                                      
9 The implication is that the bin width for the statistical distribution of wind direction should not be less than 

about 20o, otherwise the power will be overpredicted for those bins where the wind is aligned directly along a row or 
column of turbines. 
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Figure 8: Hub-height windspeed through and behind the Horns Rev wind farm; wind direction aligned 

with turbine rows o10±  

Distributing the rotor thrust force over a volume of air appears to result in underprediction of the 
velocity deficit for the second column of turbines; this is not surprising, since the local wake is not accounted 
for in the present model.  Beyond the second column, deeper in the wind farm, the boundary-layer method 
provides a good estimate of the hub-height windspeed, although the windspeed deep in the Horns Rev park 
was overpredicted by 3%.  There is not enough data to conclude whether the long, asymptotic return to the 
undisturbed windspeed, downstream of the wind farm, is realistic.  Both Figure 7 and Figure 8 hint that the 
recovery may be somewhat faster than predicted; but in any case, the wake is seen to extend for many 
kilometers downstream. 

The physics behind the hub-height velocity curves is elaborated in Figure 9, which shows the 
calculated velocity profiles, as a function of height y, at various locations through the Horns Rev wind farm.  
The coordinate x = -5 km is the undisturbed logarithmic boundary layer profile, while the coordinate x = 0 
km is the downstream edge of the wind farm.  Hub height is 70 m, and the rotor diameter is 80 m.  The wake 
of the first turbine (second line from the right) extends only marginally beyond the diameter of the rotor.  
Deeper in the wind farm, the perturbation to the boundary-layer grows to a height much greater than that of 
the wind turbines; and it also begins to asymptotically approach an equilibrium condition.  Downstream of 
the wind farm (not shown in Figure 9), where there are no turbine thrust forces, the process of boundary-
layer development must reverse; but due to the large perturbation, a distance of many kilometers is required 
before the boundary layer asymptotically approaches its original state.  Implicit in the velocity profiles is the 
turbulent mixing into the boundary-layer of high-velocity air from above. 
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Figure 9: Velocity profiles through the Horns Rev wind farm, illustrating the development of the 

atmospheric boundary layer; ue is the windspeed at a height of 1 km; hub height is 70 m, and the rotor 
diameter is 80 m 

4 Annual Energy Production (AEP) 
Hub-height velocity profiles such as those shown in Figure 7 and Figure 8 can be used to compute the 

power output of a given turbine along the line of analysis: 

 
2

31
2 4 h P

DP u Cπρ=  (4.1)  

where ( )P hC u  is specified as input.10  For turbines not placed exactly along an analysis line, the hub-height 
windspeed is estimated by interpolating linearly from adjacent analysis lines.  Note that the distribution of 
rotor thrust over a representative volume of air prevents an analysis line from "missing" the influence of a 
nearby turbine. 

4.1 Wind Directions and Analysis Lines 
Wind statistics at a given site are usually provided as a wind rose: essentially a table of the probability 

of a given combination of wind compass direction and speed.  It is customary that the wind rose direction 
indicates where the wind is coming from, so 180o must be added to obtain the downwind direction.  The 
compass is divided into a number of discrete wind directions.  A Viper analysis along several lines is 
performed for each wind direction, and the hub-height windspeed at each turbine is obtained by interpolating 
between adjacent analysis lines. 

Viper computes the evolution of the boundary layer along a two-dimensional xy plane.  The x axis is 
aligned with the downwind direction, and the y axis points vertically upwards.  Seen from above, the plane of 

                                                      
10 As noted in Section 2.3 in the context of thrust force, it is feasible to specify ( )jD x  and ( , )P j hC x u , for the 

jth turbine, in order to model different turbine types or wind farm control strategies.  However, ( , )T hC x u  is applied 

continuously over the domain whereas ( , )P j hC x u  is applied at the location of each turbine.  The distribution of 

( , )T hC x u  in the farm should, of course, be consistent with the distribution of turbines at which ( , )P j hC x u  is 
evaluated. 
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a single boundary-layer analysis is a line through the pattern of turbines in a wind farm; Figure 2 is an 
example.  The analysis must be performed along a sufficient number of such lines so that the hub-height 
windspeed at a given turbine location can be reliably interpolated.  A requirement is that a line should be 
located at or just within each of the outer boundaries of the wind farm.  An example of a particular farm 
layout and wind direction is shown in Figure 10.  In the case labelled "not acceptable", the outermost lines 
are in the undisturbed flow, and thus will have a constant windspeed as a function of xa.  Interpolating to 
these outer lines will tend to overpredict the hub-height windspeed at the outer rows of turbines. 

Figure 11 shows some suggested analysis line placements for a pair of representative cases.  Note in 
particular how one line is located immediately at or inside each of the outer borders of the wind farm. 

 
 

 
Figure 10: Examples of placement of analysis lines (dashed) in a wind farm, emphasizing that a line 

should be located immediately within each of the outer boundaries to avoid overpredicting the windspeed 

 
Figure 11: Some suggested analysis line placements to ensure reliable interpolation 
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4.2 Example of Dogger Bank 
The Dogger Bank offshore wind zone will be used as an example for an AEP calculation.  A wind rose 

for Dogger Bank is provided in a report by the Forewind Consortium [6].  The reference height for the wind 
measurements is not given; it is assumed that these are representative of the hub-height windspeed.  Table I 
shows the probability data obtained from the wind rose.  A good fit to this data is obtained with a probability 
density function described by a Weibull distribution: 

 1( , )
(

e
)

xp
( )c

c c
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where β is a constant 2.2, and pθ  and α are functions of the compass direction θc; each can be represented by 
a Fourier series: 

 
1

0 sin( )
N

k
k

c kAA k Bθ
=

+ +∑ . (4.3)  

The coefficients are listed in Table II, with all angles in radians. 
 

Table I: Probability data (scatter diagram) obtained from a wind rose for the Dogger Bank Zone, 
assumed to represent the hub-height windspeed; the sum of all the entries in the table is 1 

 
 
 

Table II: Coefficients on the Fourier series approximating the Dogger Bank wind probability density 
function 

 
 
The compass is divided into a number of discrete wind directions; 12 is recommended, giving the 

directions listed in Table I.  Likewise, the feasible range of windspeeds is divided into discrete bins; it is 
recommended to use 11 bins, centered at V∞ = 5, 7, ..., 23, and 25 m/s.  These resolutions on direction and 
windspeed are recommended based upon experience, representing a balance between accuracy and 
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computation time.  For each wind direction and windspeed, a Viper analysis is run to obtain the hub-height 
windspeed at each turbine.  Denoting the power output from the jth of NT turbines as Pj, the AEP associated 
with the mth wind direction and nth windspeed is: 

 , , , ,
1

AEP ( , )
TN

m n n m j m n
j

p V V P Yθ θ∞ ∞
=

= ∆ ∆∑ , (4.4)  

where V∞∆  and θ∆  are the bin widths of the windspeed and compass directions, respectively, and Y is the 
number of seconds in a year (31,557,600 s on average, including leap years). 

It is possible to shorten the required computation time by omitting repetetive analyses.  In particular, it 
has been observed that above some windspeed like 15 m/s or 17 m/s, all the turbines will produce their rated 
power; in this case, a boundary-layer analysis is not necessary to estimate the energy production.  Also, it is 
recommended to take advantage of symmetry in the wind farm layout, where possible. 

Figure 12 shows example results for a uniformly-spaced 14-by-14 array of wind turbines.  The rotor 
diameter is 180 m, and the spacing is 7D.  The contours indicate annual energy production per turbine, in 
GWh.  The ratio of production from the lowest- and highest-producing turbines is about 0.87.  These values 
can also be compared against a production of 51.4 GWh from an isolated turbine, with no wind farm effects. 

 
Figure 12: AEP per turbine for a square wind farm; 14-by-14 array of 180 m diameter turbines, 

uniform 7D spacing, Dogger Bank wind climate 

4.3 Accelerated Tabular Analysis for Simple Homogeneous Layouts 
The calculation of AEP can be accelerated greatly for simple, homogenous turbine layouts.  Let the 

turbines in a wind farm be placed in a regular pattern, with a uniform, isotropic turbine spacing.  Let all the 
turbines have the same diameter and ( )T hC u  and ( )P hC u  relationships.  Let the layout pattern form a wind 
farm boundary that is a rectangle or other simple convex polygonal shape.11  Then, as stated in Section 2.3, it 

                                                      
11 Convexity ensures that no part of the farm lies in the shadow of a remote part of the farm, regardless of the 

wind direction; for instance, the shape of the farm cannot be an "L" if the present short-cut methods are to be applied. 
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is assumed that the thrust force from each turbine is spread throughout the characteristic volume of air 
associated with the turbine spacing.  It follows that, for a given remote windspeed V∞, the hub-height 
windspeed uh at a given location is only a function of the depth in the farm (that is, the distance from the 
upwind boundary of the wind farm to the turbine, along the wind direction) and the turbine spacing. 

A table can be generated by running a Viper analysis for each of several turbine spacings, and 
recording the hub-height windspeed as a function of position.  Here the turbine density is constant over the 
computational domain, and the length of the computational domain is longer than the maximum breadth of 
the actual wind farm. 

Once the table is generated, the hub-height windspeed for any turbine in the farm can be interpolated 
as a function of spacing and depth in the farm. 

5 Description of Script Files 
Here a brief overview of the script files is given, including the primary inputs and outputs.  The main 

script is viper.m.  Inputs and outputs are as follows, with all variables in SI units: 
Input Type Description 
fout int The file ID to which to write output.  The file must first be opened as, for 

instance, fout = fopen('out.txt','w') 
rho int Air density 
mu0 int Air viscosity 
Hhub real Hub height 
D real Rotor diameter 
Nt int Number of turbines in the wind farm 
xt real: Nt × 2 Position, in farm coordinates, of each wind turbine 
h real Height of the computational domain: 1500 m is recommended 
y0 real Surface roughness length: 0.001 m is recommended 
Ny int Number of nodes spanning the ya direction of the computational domain: 151 

is recommended 
ymin real Minimum element size near the wall (sea level): it is recommended to set this 

equal to y0 
Nx int Number of steps to take in the xa direction, such that Nx*dx is the length of the 

computational domain 
dx real Step length in the xa direction used in the boundary layer flow computation: 

200 m is recommended 
Nl int: Nw Number of analysis lines along which to perform a boundary layer flow 

computation 
xl0_w real: Nw × 2 For each wind direction, xl0_w specifies the origin (xw,yw), in wind 

coordinates, of the (xa,ya) coordinate system for the first analysis line 
dyl real: Nw Spacing between analysis lines: this is specified separately for each wind 

direction, as the breadth of the wind farm may vary depending on the direction 
Nw int Number of wind directions 
thc real: Nw Wind directions for analysis, radians 
dthw real Bin width of wind direction discretization, radians 
Nv int Number of windspeeds 
V0 real Initial windspeed 
dv real Increment in windspeed 
vcpct real: 25 × 2 A table listing the CP and CT coefficients of the turbine at windspeeds of 2, 3, 

..., 25, and 26 m/s. 
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Output Dimensions Description 
AEPt real: Nt Annual energy production of each turbine 
 

 
The script viper.m calls several other functions, as follows: 

Function Description 
ymesh.m Defines the ya coordinates of the nodes spanning the height of the computational 

domain; these are evenly spaced on a logarithmic scale 
windPDF.m This implements Equations 4.2 and 4.3 
turbulentBL.m Specifies an initial logarithmic velocity profile to initialize the boundary layer 

analysis 
turbineDensity.m A user-defined function returning the value of the turbine areal density (ρTD = 1/As) 

as a function of position in farm coordinates 
runBL.m Executes the boundary layer analysis along a single analysis line 
interpVCpCt.m Interpolates the table vcpct 
NSNewton.m Applies the Newton-Raphson method to converge on the velocity field such that the 

governing equations are satisfied 
NSfunction.m Formulates the linearized boundary-layer equations, returning [ ]J−  and g  from 

Equation 2.22 
 

6 Conclusions 
A set of Matlab scripts, named Viper, has been developed for computing the annual energy output of a 

wind farm.  The analysis method is based on a numerical finite-difference solution of the two-dimensional 
boundary-layer equations.  The results have been validated based on empirical formulas for turbulent flow 
over a flat plate, and full-scale measurements at the Horns Rev and Nysted wind farms.  Although validation 
data is lacking, on the same theoretical basis Viper can be used to predict the performance of irregular wind 
farms, for instance with variable turbine diameters, tower heights, rated powers, and spacings; or wind farms 
consisting of several blocks of turbines, with separation between the blocks. 

The method employed by Viper has limitations, most importantly that it is based upon two-
dimensional boundary-layer analysis.  A three-dimensional analysis of the flow through a wind farm would 
be more accurate, although more computationally intensive. 

It is possible that the Viper analysis could be accelerated significantly by linearizing the boundary-
layer equations, in the manner of Belcher et al. [1].  Linearization implies some loss of accuracy, and if 
implemented should be validated against nonlinear calculations. 

A Viper analysis can be greatly accelerated for regular layouts, either by taking advantage of 
symmetry or by generating tables of hub-height windspeed as a function of depth in the farm. 
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