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SUMMARY 

A Robust Method for Automatic Flight Detection 
Here, we present a robust method for detecting flight automatically for use in digital 
luggage tags. The method is based on simple statistical aggregates using air pressure and 
3D accelerometer measurements and complies with IATA and FAA requirements and 
recommendations. We achieve a correct detection of flight phases for 98.4% of the 
recorded data samples (with an ROC AUC score of 98.8%). 
Data was recorded onboard several commercial flights in Norway, both in cabin and in 
the luggage compartment. Due to technical setbacks during the project period and the 
COVID-19 pandemic severely reducing the number of flights, the data available for 
analysis and method development was very limited. To mitigate the risk for severe 
overfitting, we used several countermeasures such as diligent cross-validation and the 
choice to keep model complexity low.  
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Summary 
Here, we describe a method for automatic flight detection for use in digital luggage tags developed during 
a research project with BagID AS as an industry partner. To comply with regulatory IATA and FAA 
requirements and recommendations, the method is based on air pressure and 3D accelerometer sensor 
readings to provide two independent means to turn mobile communications off during flight. 
We collected and analyzed data from several commercial flights in Norway (both in cabin and in the 
luggage compartment) and used various machine learning methods and techniques to identify the most 
reliable and most robust combination of sensor signals to detect flight. The final method predicts "In flight" 
or "Not in flight" based on simple statistical measures calculated over a 60 second time window prior to 
prediction. It can be called at pre-defined intervals (for example, every 10min) or upon request. The 
method detects the flight phase correctly for 98.4% of all samples (and "Not in flight" correctly for 95.0%). 
The COVID-19 pandemic made it very challenging to collect data from commercial flights during the project 
period. Because of this, there was a substantial risk to develop a method that works well for the data at 
hand but performs poorly for yet unseen data (overfitting). To mitigate this risk as best as possible, we 
chose several counter-measures: A strong preference for keeping method complexity low, the diligent use 
of cross-validation, and reliance on domain knowledge and simple physics. 
BagID is currently using online updated flight time data (take-off and landing times) in conjunction with 
sensor readings to determine whether the device is in flight or not, and to control mobile communications 
accordingly. While we have yet to validate this approach with the methods described here, it is very likely 
that such a combination further increases the reliability of the automatic flight detection method 
described here. 

 

 
  

def detect_flight(pressure_min, pressure_std, acceleration_norm_l1_max): 
 

in_flight = ((pressure_min <= 978.5) & (acceleration_norm_l1_max <= 1.9915)) | 
((pressure_min > 978.5) & (pressure_std > 1.0819)) 
 
return in_flight 
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1 Background and Motivation 
Several stages along a passenger journey by air, such as ticket ordering and issuing or luggage check-in, 
already happen digitally. But luggage handling and check-in still relies on paper tags printed at the airport. 
On one hand, this constitutes a sizeable amount of paper and ink and a large expense for airlines. On the 
other hand, tracing by scanning paper tags at pre-determined locations is not quite optimal either and 
contributes to lost or damaged luggage which, in turn, causes flight delays. Smart and digital solutions hold 
great promise to make air travel more efficient and less taxing on the environment. 
BagID AS is an Ålesund-based company offering digital luggage tags that make luggage handling and 
control easier and less costly. The tags have built in mobile communications and sensors which allow to 
trace the luggage, provide its users with real-time updated flight information, or detect shocks to identify 
potentially damaging handling. 
To be able to use such devices onboard aircraft—and to be able to offer them on the market—flight 
authority requirements need to be fulfilled. According to the Federal Aviation Administration (FAA) and the 
International Air Transport Association (IATA), mobile communications need to be turned off during the 
entire flight phase, so that digital luggage tags must be able to detect flight automatically and reliably. 
Between May 2019 and May 2021, SINTEF Ålesund carried out a research project with BagID as a partner 
to develop a reliable and robust method for the automatic detection of flight for use on aircraft. To that 
end, data from various sensors was collected and analyzed, and algorithmic methods for flight detection 
were developed and validated. The report at hand describes the project methods and results and 
comments on future work and relevant risk factors. 
1.1 Outline 
The present document is structured as follows. First, we will outline the relevant regulatory and technical 
requirements, list the key research questions, and related previous work in Sec. 2. In Sec. 3, we will outline 
the data collection process, the choice of sensors, and explain what data was available for algorithm 
development. We discuss the results of the data analysis and the chosen signal processing steps in Sec. 4. 
Sec. 5 will then describe the methodology for algorithm development and Sec. 6 will present the final 
results. Finally, we discuss how the method can be further improved and what risks and shortcomings 
need to be considered in Sec. 7. 

2 Design of a Robust Method for Flight Detection 
2.1 Requirements 
The two regulatory frameworks relevant to the project and the development of an automatic flight 
detection algorithm are the IATA Electronic Bag Tag Implementation Guide 1.1 [1] and the FAA advisory 
circular AC 91.21-1D on the use of portable electronic devices (PEDs) aboard aircraft [2]. IATA states that 
the "PED must be designed with a minimum of two independent means to turn off completely, turn off 
cellular or mobile functions, or a combination of both when airborne". The FAA "prohibits cellular 
telephone operation while airborne" but "allows the use of cellular telephones in aircraft while on the 
ground". It further defines "airborne" by using "the takeoff and landing phases of flight as the last possible 
conditions to detect turning off and back on again" (see Appendix B.1). 
In addition to these regulatory requirements, the method should further: 

• Focus on Norway as the geographic region of interest. 
• Use as little energy as possible to help extend battery life. 
• Be easily implementable in the production device firmware. 
• Use only simpler functions for computation (for easy implementation and to save battery). 
• Be reliable across the widest range of relevant conditions possible. 
• Err on the side of simplicity rather than complexity (to increase reliability and reduce any risk of 

unforeseen or unwanted behavior). 
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• Be reasonably simple to further improve on in the future (and even support self-improvement 
processes). 

2.2 Research Questions 
Based on these requirements, we identified the following research questions for the project: 

• Which signals are most useful for detecting flight in general? 
• How do the sensors need to be configured and how do their measurements need to be processed? 
• Which combinations and processing of sensor signals gives the highest reliability for flight 

detection? 
• What information, other than sensor signals, is available that can aid automatic flight detection? 
• What should happen if one of the signals is unavailable to still be able to fulfill the requirements? 
• How is the method best implemented in production devices? 
• How reliable can the method be made? 

2.3 Related Work 
In 2018, BagID and SINTEF Ålesund carried out a pre-study to determine which sensor readings would be 
most promising to detect flight automatically. The pre-study used the off-the-shelf data logger MSR145 
(145B8) manufactured by MSR Electronics GmbH [3] to collect air pressure (10Hz), acceleration (50Hz), air 
temperature, air humidity, and light intensity (all 1Hz) during 4 commercial flights. It concluded that air 
pressure and accelerations were the most useful and reliable quantities to determine flight, with light 
intensity also appearing promising. It further suggested the use of a microphone to potentially pick up 
relevant sounds and noises (especially engine noises). 
In [4], Tawk et al. describe how a 3D accelerometer is used together with simple signal processing to 
automatically detect flight. The patent [5] also uses 3D accelerometer data and simple signal processing for 
flight detection. A patent filed by Samsung in 2014 [6] uses an air pressure sensor in combination with a 
library of cabin pressures for various flight types. It also describes how the GSM module reveals the flight 
phase when it reports to be out-of-range. 

3 Data Collection and Data Overview 
The data used to develop the flight detection method was collected from BagID's production devices on 
commercial flights in Norway between 14.10.2020 and 19.03.2021. Sensor signals were first stored locally 
on the device and then transferred to the BagID servers via mobile communications. They were finally 
made available to SINTEF for analysis and development. Unfortunately, local data storage and buffering 
gave us several challenges and limited data acquisition during flight phases to 4500 seconds (at 1Hz 
storage rate). 
In addition to the sensor data collected by the devices themselves, meta data about the various flight 
phases was available for most of the flights, see Table 1. This includes times for luggage drop off, aircraft 
push back from gate, take off, seatbelt on and off signals during flight, any turbulence events, landing, 
parking, and luggage pick up. 
 
Table 1: Overview over all data sets available to the project. 

File name Route Aircraft Type Device Take-off Landing 
2020-10-14-JV-OSL-AES-
2_sensor_202010210729.csv 

OSL-
AES 

Boeing 737-800 Production 2020-10-14 
18:25:12 

2020-10-14 
19:06:58 

2020-10-22-LEV-AES-
OSL_sensor_202010220744.csv 

AES-
OSL 

Boeing 737-800 Production 2020-10-22 
04:44:12 

2020-10-22 
05:28:00 

2020-10-23-LEV-OSL-
AES_sensor_202010261339.csv 

OSL-
AES 

Boeing 737-800 Production 2020-10-23 
12:33:30 

2020-10-23 
13:13:00 
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2020-10-23-LEV-OSL-
AES_sensor_202010261345.csv 

OSL-
AES 

Boeing 737-800 Production 2020-10-23 
12:33:30 

2020-10-23 
13:13:00 

2020-11-09-JB-OSL-TOS.csv OSL-
TOS 

Boeing 737-800 Production 2020-11-09 
10:57:00 

2020-11-09 
12:48:00 

2020-11-20-EV-AES-BGO_22255.csv AES-
BGO 

De Havilland 
Canada Dash 8-400 

Production 2020-11-20 
05:28:10 

2020-11-20 
06:01:40 

2020-11-20-EV-AES-BGO_24822.csv AES-
BGO 

De Havilland 
Canada Dash 8-400 

Production 2020-11-20 
05:28:10 

2020-11-20 
06:01:40 

2020-11-20-EV-AES-BGO_24855.csv AES-
BGO 

De Havilland 
Canada Dash 8-400 

Production 2020-11-20 
05:28:10 

2020-11-20 
06:01:40 

2020-11-20-EV-AES-BGO_24863.csv AES-
BGO 

De Havilland 
Canada Dash 8-400 

Production 2020-11-20 
05:28:10 

2020-11-20 
06:01:40 

2020-11-20-EV-AES-BGO_26124.csv AES-
BGO 

De Havilland 
Canada Dash 8-400 

Production 2020-11-20 
05:28:10 

2020-11-20 
06:01:40 

2020-11-20-EV-AES-BGO_30001.csv AES-
BGO 

De Havilland 
Canada Dash 8-400 

Production 2020-11-20 
05:28:10 

2020-11-20 
06:01:40 

2020-11-20-EV-BGO-AES_22255.csv BGO-
AES 

De Havilland 
Canada Dash 8-400 

Production 2020-11-20 
12:02:45 

2020-11-20 
12:33:30 

2020-11-20-EV-BGO-AES_24822.csv BGO-
AES 

De Havilland 
Canada Dash 8-400 

Production 2020-11-20 
12:02:45 

2020-11-20 
12:33:30 

2020-11-20-EV-BGO-AES_24855.csv BGO-
AES 

De Havilland 
Canada Dash 8-400 

Production 2020-11-20 
12:02:45 

2020-11-20 
12:33:30 

2020-11-20-EV-BGO-AES_24863.csv BGO-
AES 

De Havilland 
Canada Dash 8-400 

Production 2020-11-20 
12:02:45 

2020-11-20 
12:33:30 

2020-11-20-EV-BGO-AES_26124.csv BGO-
AES 

De Havilland 
Canada Dash 8-400 

Production 2020-11-20 
12:02:45 

2020-11-20 
12:33:30 

2020-11-20-EV-BGO-AES_30001.csv BGO-
AES 

De Havilland 
Canada Dash 8-400 

Production 2020-11-20 
12:02:45 

2020-11-20 
12:33:30 

2020-12-07-JV-OSL-AES.csv OSL-
AES 

Boeing 737-800 Production 2020-12-07 
09:55:40 

2020-12-07 
10:36:45 

2021-03-19-JV-AES-OSL_20697.csv AES-
OSL 

Boeing 737-800 Production 2021-03-19 
11:08:10 

2021-03-19 
11:46:00 

2021-03-19-JV-AES-OSL_20960.csv AES-
OSL 

Boeing 737-800 Production 2021-03-19 
11:08:10 

2021-03-19 
11:46:00 

2021-03-19-JV-AES-OSL_25282.csv AES-
OSL 

Boeing 737-800 Production 2021-03-19 
11:08:10 

2021-03-19 
11:46:00 

Logger 1 - 03.10.18.csv OSL-
AES 

Bombardier CRJ900 MSR145 data 
logger 

2018-10-03 
13:30:00 

2018-10-03 
14:19:00 

MSR325489_180907_153000.csv AES-
OSL 

Boeing 737-800 MSR145 data 
logger 

2018-09-07 
16:22:15 

2018-09-07 
17:02:50 

MSR325489_181005_173000.csv AES-
OSL 

Boeing 737-800 MSR145 data 
logger 

2018-10-05 
18:50:50 

2018-10-05 
19:27:00 

MSR325489_181101_140500.csv1 - - MSR145 data 
logger 

2018-10-31 
15:07:00 

2018-10-31 
15:51:00 

 
In total, 21 datasets from 8 separate flights were made available to the project. Several datasets contained 
missing data and less reliable readings. Complete data (at least air pressure and acceleration available 
during all phases of flight) was only available for 4 flights, all of which happened with the same aircraft 
type (Boeing 737-800) and on the same route (AES—OSL). 2 more flights on the route AES—BGO with De 
Havilland Canada Dash 8-400 were largely complete and only lacked some data during take-off. Data was 
also collected for different placements of the digital luggage tag (in the cabin and in the luggage 
compartment, either fastened on the outside of the luggage or inside the luggage). In addition, data from 4 

 
1 This data for this flight was erroneously recorded on the wrong day and thus contains no flight event at all. We 
included it for validation purposes. 
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flights was available from the pre-study [7]. While it was captured with different equipment (see Sec. 2.3) 
it still proved useful for development and validation. Table 2 gives an overview of the airports for which 
data was recorded during the project. 
 
Table 2: The four Norwegian airports represented in the available flight data. 

Airport Call sign Altitude / [m] Latitude Longitude 
Ålesund (Vigra) AES 21 62°33′45″N 6°07′11″E 
Oslo (Gardermoen) OSL 208 60°12′10″N 011°05′02″E 
Bergen (Flesland) BGO 52 60°17′37″N 005°13′05″E 
Tromsø (Langnes) TOS 10 69°40′53″N 018°55′04″E 

 
Overall, a relatively very small amount of data was available for analysis and method development. We 
tried to address this through careful and robust development and validation (see Sec. 5). Further 
comments on the risks stemming from little data are found in Sec. 7.1.1. 
3.1 Choice of Sensors 
The pre-study [7] revealed that air pressure and accelerations were most useful for the automatic 
detection of flight and that the device must be able to sense them. BagID's production devices, in addition, 
include sensors for light intensity, air temperature, and air humidity. For some of the flights, 3D gyroscope 
data was also available which can be used to identify horizontal and vertical acceleration components 
efficiently and reliably. 
 
Table 3: Sensors used in the devices used for data collection. 

Sensor model Type Sampling 
frequency 
used 

Note 

Bosch 
BMI0882 

3D accelerometer  1Hz Gyroscope data was not used during the 
project to reduce method complexity and 
power consumption 

Bosch 
BME2803 

Combined humidity 
and pressure sensor 

1Hz  

LITE-ON LTR-
303ALS-014 

Light sensor 1Hz  

 
3.1.1 Sampling Frequencies 
To be able to register engine noise, a sampling frequency of at least 50Hz is recommended for the 
accelerometer [7]. Because such frequencies were initially deemed much too high by BagID with respect to 
on-device data buffering, we investigated the use of 1Hz and finally found it to be sufficiently useful for 
flight detection. All other sensors were also logged at 1Hz which is well within the range recommended by 
the pre-study. 

 
2 BOSCH BMI088 Accelerometer data sheet: https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-
BMI088-DS001.pdf. Accessed 21.05.2021. 
3 BOSCH BME280 Combined humidity and pressure sensor data sheet: https://www.bosch-
sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf. Accessed 21.05.2021. 
4 LITE-ON LTR-303ALS-01 data sheet: https://optoelectronics.liteon.com/upload/download/DS86-2013-0004/LTR-
303ALS-01_DS_V1.pdf. Accessed 21.05.2021. 

https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMI088-DS001.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMI088-DS001.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://optoelectronics.liteon.com/upload/download/DS86-2013-0004/LTR-303ALS-01_DS_V1.pdf
https://optoelectronics.liteon.com/upload/download/DS86-2013-0004/LTR-303ALS-01_DS_V1.pdf
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Table 4: Sensor spec recommendations for flight detection. Due to data buffering constraints, 
accelerations were recorded at 1Hz. 

Sensor Sampling Rate Resolution Range 
Minimum Recommended 

Accelerometer 60 Hz 100 Hz 16 Bit (-2, +2) g 
Pressure  10 Hz 16 Bit (0, 2000) mbar 
Gyroscope (Same as accelerometer) 16 Bit (-100, 100) °/s 
Temperature  1 Hz 16 Bit (-10, 40) °C 
Humidity  1 Hz ≥ 8 Bit (0, 100) % 

 

4 Data Analysis and Processing 
4.1 Sensor Data 
Except for air pressure, a general trend that can be observed across all flights, is that flight phases show 
lower amounts of variations. That is, extreme values and the deviations from typical levels in general are 
smaller than there are outside of the flight phases. 
4.1.1 Air Pressure 
Air pressure measurements contain a low amount of noise and seem to be quite reliable for detecting 
flight automatically. While on the ground, air pressure typically shows lower amounts of variation while 
large changes are observable during ascent and descent, see Figure 2. Naturally, lower air pressure 
readings are consistently observed during flight, see Figure 1. 
Interestingly, sudden "humps" appear around take-off and landing phases that can be observed across all 
data sets, see Figure 3. We were not fully able to discern the cause for this phenomenon. It is likely related 
to the acceleration and deceleration which would cause the air pressure inside the aircraft to change as air 
is forced towards the back or the front of the aircraft, respectively. 
 

 
 

Figure 1: Distribution of all air pressure 
measurements. 

Figure 2: Air pressure recorded on a flight from AES to 
OSL. 
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Figure 3: Air pressure recorded around take-off (left) and landing (right) on a flight from AES to OSL. 

4.1.2 Accelerations 
Generally speaking, it is more difficult to extract patterns from 3D accelerometer data, which makes 
accelerations—though promising—challenging to use for flight detection. This is, largely, because it is a 3-
dimensional quantity, the sensor's orientation in space is not always known, and there are many other 
signals and patterns in the data that are not useful for flight detection. 
The captured information spans the entire frequency spectrum and gives a comparatively very high "noise 
backdrop" against which it is difficult to extract the relevant signals for flight detection. As an example, 
sudden shocks and knocks can, especially outside of flight, lead to very large readings and change the 
sensor orientation. Figure 4 shows the y-component measured during a flight between Bergen (BGO) and 
Ålesund (AES) and illustrates these issues (unknown and changing orientations, high noise levels, and 
shock event with large magnitudes). Figure 5 shows the distribution of accelerometer readings for all 
flights. Note how variations are noticeably smaller during flight phases. 
 

 
Figure 4: Y-axis acceleration recorded on a flight from BGO to AES.  
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Figure 5: Density plots for the 3D-accelerometer components during (right) and outside (left) of flight 
phases. Shown are the x, y, and z components ("acc_x", "acc_y", "acc_z") in units of 1g. 

4.1.3 Other Sensors 
We also captured and analyzed light intensity, air temperature, and air humidity during the project. In 
conclusion, none of these was very useful and we were not able to establish to what extent they can be 
used for flight detection with the small amount of data we had to work with. Light intensity, however, may 
still be a promising measurement (in addition to air pressure and accelerations). As mentioned, all data 
show smaller amounts of variations during flight phases. 
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Figure 6: Distribution of all light intensity 
measurements. (A constant 0.1lux is added 
to the measurements to be able to plot on 
logarithmic axis.) 

Figure 7: Light intensity recorded on a flight from AES to 
OSL. 

 

 
 

Figure 8: Distribution of all air temperature 
measurements. 

Figure 9: Air temperature recorded on a flight from AES 
to OSL. 
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Figure 10: Distribution of all air humidity 
measurements. 

Figure 11: Air humidity recorded on a flight from AES to 
OSL. 

4.2 Signal Processing 
The resampling and the aggregation of the sensor signals is necessary to be able to develop a simple but 
robust and reliable method according to the requirements (see Section 2.1). To this end, we studied time 
windows of 30, 60, and 120 seconds and various aggregation methods to quantify signal magnitudes as 
well as variations. For most parts, we used simpler statistical measures: Minimum, maximum, median, and 
mean to represent magnitudes; and quantiles, interquartile range, standard deviation, and mean average 
deviation to represent variations. In addition, we also tested methods used in human movement detection 
from 3D acceleration data [8]: Entropy, signal energy, kinetic energy, RMS, and zero crossing rate. Figure 
12 and Figure 13 exemplify the signal processing for the standard deviation of the air pressure using 60s 
aggregation windows. Note the much larger variations during flight phase owing to aircraft ascending and 
descending. 
 

 
 

Figure 12: Distribution of the standard 
deviation for all air pressure measurements 
using 60s time windows. 

Figure 13: Standard deviation of air pressure over 60s 
time windows recorded on a flight from AES to OSL. 
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4.2.1 Accelerations 
For accelerations, which are given as 3-dimensional vectors, different processing was available and 
needed. One very useful (and simple) measure are vector norms, we used both L1 and L2 norms. Figure 14 
and Figure 15 show the distribution of the mean and the standard deviation of the vector norms for all 
flight measurements over 60 second time windows. Note how larger values are almost exclusively found 
outside of flight phases. 
 

  
Figure 14: Distribution of the mean of the acceleration L1-norm (left) and L2-norm (right) using 60s time 
windows. 

 
 

Figure 15: Distribution of the standard 
deviation of the acceleration L2-norm using 
60s time windows. 

Figure 16: Standard deviation of the acceleration L2-
norm recorded on a flight from AES to OSL. 

The distribution of total acceleration (L2-norm) shown in Figure 17 also reveals heavy tails: While almost all 
readings are clustered around 1g, some measurements (shocks and knocks) extend far beyond that typical 
range. 
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Figure 17: Distribution of total acceleration 
(L2-norm) showing heavy tails. 

Figure 18: Acceleration L2-norm recorded on a flight 
from AES to OSL. 

Knowing the accelerometer's orientation in space allows to decompose the signals into horizontal and 
vertical acceleration components. The orientation can directly be measured using a gyroscope. As 
mentioned, we refrained from using the gyroscope during the project due to issues with availability and 
power consumption and to keep final method complexity low. 
Alternatively, we investigated the following method to decompose accelerations into horizontal and 
vertical components: 

1. First, the "activity" is detected using simple thresholds (mean and variance) for the sensor readings 
to fulfill the assumption that the (norm of the) acceleration is approximately 1g and, thus, the 
device at rest. 

2. Next, if no activity is detected, roll and pitch angles are calculated from the 3-dimensional 
accelerometer data. If activity is detected, this calculation is unreliable, and previous roll and pitch 
angles are used. 

3. Using the roll and pitch angles, the 3D acceleration vector is rotated and then decomposed in 
horizontal and vertical components. 

Figure 19 shows the distribution of horizontal and vertical acceleration components deconstructed in this 
way. Again, it is evident that flight phases are characterized by less variation in the signals with the vertical 
component largely registered around 1g (as expected). However, also note how the deconstruction 
method described here is not always reliable and gives vertical components between -1g and 1g. 
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Figure 19: Density plots for the horizontal ("acc_h") and vertical ("acc_v") accelerometer components 
during (right) and outside (left) of flight phases (in units of 1g). 

All in all, we found it difficult to reliably extract useful patters from decomposition into horizontal and 
vertical acceleration components. In some cases, see Figure 20, the method worked well enough to show 
the prolonged period of horizontal acceleration associated with take-off and ascent. But other flight 
phases were much harder to discern, and the method outright failed for several flights. 
 

 
Figure 20: Horizontal acceleration deconstructed from measurements from a flight from AES to OSL. 
Larger values are clipped to better illustrate the flight phase. 

 
Figure 21: Deconstructed horizontal acceleration around take-off (left) and landing (right) on a flight 
from AES to OSL. 



 

Project no. 
312000130 

 

Report No 
10 

Version 
1.2 
 

18 of 33 

 

 
Figure 22: Vertical acceleration deconstructed from measurements from a flight from AES to OSL. 

 
Figure 23: Deconstructed vertical acceleration around take-off (left) and landing (right) on a flight from 
AES to OSL. 

Lastly, it is worth noting that acceleration data has very high levels of noise and is comparatively hard to 
analyze and process. Because of this, we briefly investigated the use of a Butterworth bandpass filter. We 
eventually dropped this approach to keep method complexity low and because it would require more data, 
time, and work. 

5 Method Development 
A first general consideration for the flight detection method was whether it should be stateless or not, that 
is, whether the strategy should be to detect take-off (as the last possible time to turn off communications) 
and landing (as the earliest possible time to turn them back on) directly. In the end, we chose a stateless 
method because it gives two key benefits: 

• It is less complex and, thus, more robust in that it probably works better for conditions that we 
could not yet analyze due to a lack of data. 

• It allows to activate the sensors and call the method at given intervals (e.g., every 10 minutes) or 
upon request, and to save power in between. 

The final strategy was thus to try to detect whether the device is in flight only based on sensor readings 
during a limited time window (for example 60 seconds) immediately prior. This way, the device collects 
sensor readings for a shorter amount of time, calls the method to detect flight based only on these, and 
then turn mobile communications on (if no flight was detected) or tries again at a later time (if flight was 
detected). 



 

Project no. 
312000130 

 

Report No 
10 

Version 
1.2 
 

19 of 33 

 

Nonetheless, some work was done during the project on trying to detect take-off and landing directly, see 
also Section 7.2. 
5.1 Data Preparation and Preprocessing 
The first stage of processing the data was resampling so that measurements from a previous time slice can 
help determine whether we are in flight right at that moment. We studied time slices of 30, 60, and 120 
seconds, with the shorter slices offering a faster response and the longer ones offering more reliability and 
less noise. Overall, 60 second time slices gave the best tradeoff between performance, response, and ease 
of use (implementation). 
To greatly increase the amount of data to train and validate the method on, we performed resampling 
with all possible time shifts (the start time of each time slice was shifted by 0, 1, 2, …, 59 seconds) see 
Figure 24. In the end, this process gave a total of 143.117 individual samples (time slices) to work with 
(including the data from the pre-study). 

 
Figure 24: Resampling of data with different time shifts. Each slice is 60 seconds long and uses different 
start times. 

After resampling, we computed the various statistical functions (such as mean, quantiles, or entropy) for 
each signal (air pressure, acceleration norm, etc.) based on each of the time slices (samples). 
5.2 Methodology for Finding the Best Combinations 
To help identify the most reliable and strongest relationships between combinations of sensor readings 
and flight, we used different machine learning methods. The general strategy was to train a machine 
learning model on all, or part of, the processed sensor data and have it predict whether the signals 
correspond to "In flight" or "Not in flight". Decision trees, random forests, logistic regression, and Gaussian 
naive Bayes classifiers were tested and used to help identify the most promising combinations. 
A decision tree classifier is a simple machine learning method which, based on data, tries to identify the 
best variables (features) and the best thresholds to make a prediction (here, "In flight" or "Not in flight"). 
Not only can it be used to identify the best combination of sensor readings, a trained decision tree can also 
easily and directly be implemented as code. Finally, decision tree classifiers are able to predict probabilities 
for each of the classes (here, "In flight" or "Not in flight").  

Time slice 1 

Time slice 2 

Time slice 3 

Time slice 4 

Time 

… 
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Figure 25: Example for a decision tree classifier. Conditions are checked from top to bottom: If true, 
move to the left, if false, move to the right. For example, if the air pressure is not above 978.5mbar and 
the acceleration L1-norm is above 1.992g, predict "Not in flight". 

A random forest classifier is a method based on several individual decision trees each of which is only 
trained on a subset of the data or the features. This typically gives better performance and is more robust 
compared to single decision trees but is also not as easy to implement. We trained a random forest 
classifier on the data to help identify useful feature combinations using impurity-based feature 
importances, see Figure 26, and by studying the best performing individual trees. 
 

 
Figure 26: Impurity-based feature importances retrieved from a random forest classifier trained on all 
available data from production devices. 

Lastly, a cross-validated feature selection method was used to cross-check the results from the decision 
tree and random forest classifiers and for optimization. It evaluates all possible feature combinations (or 
randomly drawn subsets) using cross-validated grid search for hyperparameter tuning for each of the 
combinations. 
5.3 Training and Validation 
The machine learning methods were trained on all data from the BagID production devices, while the data 
from the pre-study was used as a hold-out test set. Classification performance was assessed using 10-fold 
stratified k-folds cross-validation and Area Under the Receiver Operating Characteristic Curve (ROC AUC) 
scoring. The use of cross-validation and rather simplistic methods is critical to reduce the (very likely) risk 
for overfitting resulting from the small amount of data available, see Section 7.1.1. 
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We chose the trade-off between classifier specificity and sensitivity with the help of confusion matrices, 
see Figure 27, and precision-recall curves, see Figure 28. To avoid overfitting, their computations were 
based on cross-validated estimates (10-fold stratified k-folds).  
 

  
Figure 27: (Cross-validated) confusion matrix for 
the decision tree classifier (threshold = 0.5). 

Figure 28: (Cross-validated) precision-recall curve 
for the decision tree classifier. Here, a threshold of 
0.2 was chosen as optimal. 

 

   
Figure 29: Flight detection for a flight from AES to OSL using a decision tree classifier (left), a random 
forest classifier (middle), and logistic regression (right). Predictions are averaged over 60s time windows 
for better visualization. 

It is worth pointing out that the ground truth for the labels "In flight" and "Not in flight" was established 
using the take-off and landing times given in Table 1 and that these will not be 100% accurate, generally 
speaking. Because of this, there is some inherent uncertainty in the final scores and performance metrics 
given in this report, and it is hard to distinguish between this effect and true method performance. 

6 Results 
As mentioned before, we found time windows of 60 seconds in combination with 1Hz signal sampling 
frequencies best for flight detection in production devices. Based on the methodology described in the 
previous Section 5, air pressure levels and variations together with acceleration norms were the best 
performing combination of features. Minimum and standard deviation worked best for air pressure levels 
and variations, respectively, and maximum worked best for the acceleration norm. There were, however, 
only minor differences between using these and similar corresponding measures, such as median or mean 
(instead of minimum or maximum) and entropy or interquartile ranges (instead of standard deviation). 
Likewise, we observed only minor differences in performance between using the L1 or L2 norm for the 
acceleration. 
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Figure 30: Contour plots for the feature combinations that were identified as most useful for the 
detection of flight based on 60s time slices: Minimum air pressure and maximum acceleration L1-norm 
(left) and minimum air pressure and standard deviation of the air pressure (right). (Air pressure in units 
of 1mbar and acceleration in units of 1g) 

All final methods were directly based on a decision tree classifier because it provides the best feature 
combinations along with simple-to-implement value thresholds. In other words, it allows us to express the 
flight detection method in terms of simple rules directly, offering a very high level of interpretability. 
6.1 Final Method 
Code 1 and Figure 31 illustrate the final method which worked best on the available data in terms of the 
validation described in Section 5.3. It is based on a decision tree classifier using minimum air pressure, 
standard deviation of the air pressure, and the maximum of the acceleration norm (L1), all with respect to 
a 60 second time window prior to detection. 
Code 1: Final method implemented in Python. It is based on the minimum air pressure ("pressure_min"), 
the standard deviation of the air pressure ("pressure_std"), and the maximum of the acceleration L1-
norm ("acceleration_norm_l1_max"). 

 
 

def detect_flight(pressure_min, pressure_std, acceleration_norm_l1_max): 
 

in_flight = ((pressure_min <= 978.5) & (acceleration_norm_l1_max <= 1.9915)) | 
((pressure_min > 978.5) & (pressure_std > 1.0819)) 
 
return in_flight 
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Figure 31: The best features and thresholds found for flight detection based on a decision tree classifier. 
"In flight" is predicted if at least one of these two statements is true with respect to the 60s time 
window prior: The minimum air pressure ≤ 978.5mbar (top, left) and the maximum acceleration L1-norm 
≤ 1.9915g (top right); or the minimum air pressure > 978.5mbar (bottom, left) and the standard 
deviation of the air pressure > 1.0819mbar. If neither of these two is true, "Not in flight" is predicted. 
(Thresholds are shown as red overlays). 
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This method achieved a ROC AUC score of 98.8%. It correctly predicts "In flight" for 98.4% of all samples 
(recall), and the correct prediction of "Not in flight" for 95.0% of all samples (precision), see Figure 32. 
 

  
Figure 32: (Cross-validated) confusion matrix for 
the final flight detection method. 

Figure 33: Flight detection for a flight from AES to 
OSL. Predictions are averaged over 60s time 
windows for better visualization. 

 
6.2 Method Based on Accelerations Only 
For investigation and as a backup, we also developed a method based on 3D accelerometer sensor 
readings only. The best performance was reached with a combination of interquartile range calculated 
from the L2 norm and standard deviation calculated from the L1 norm of the acceleration over the prior 60 
seconds. 
Code 2: Alternative method based on accelerations only implemented in Python. It is based on the 
interquartile range of the acceleration L2-norm ("acceleration_norm_l2_iqr") and the standard deviation 
of the acceleration L1-norm ("acceleration_norm_l1_std"). 

 

def detect_flight_acc_only(acceleration_norm_l2_iqr, acceleration_norm_l1_std): 
 

in_flight = (acceleration_norm_l2_iqr > 0.0059) & (acceleration_norm_l1_std <= 
0.0776) 
 
return in_flight 
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Figure 34: Contour plot for the feature combination that was identified as most useful for the detection 
of flight based on 60s time slices when only using accelerations: Interquartile range of the L2-norm and 
standard deviation of the L1-norm. (In units of 1g) 

As expected, it performed significantly worse than methods also using air pressure readings. It achieved a 
ROC AUC score of 88.0%. It correctly predicts "In flight" for 85.9% of all samples (recall), and the correct 
prediction of "Not in flight" for 80.1% of all samples (precision), see Figure 35. 
 

  
Figure 35: (Cross-validated) confusion matrix for 
the flight detection method based only on 
acceleration signals. 

Figure 36: Flight detection based only on 
acceleration for a flight from AES to OSL. 
Predictions are averaged over 60s time windows 
for better visualization. 

 

7 Considerations and Future Work 
7.1 Risk Factors 
7.1.1 Overfitting 
The largest risk factor is overfitting. As mentioned in Section 3, the data available for analysis and method 
development is heavily biased in favor of only 4 airports and only 2 different aircraft types. Moreover, all 
data was collected between October and March, and the local buffering issues described in Section 3 
restricted flight lengths to 4500s. Because of this, the risk that the analysis and method work significantly 
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better on the available data as compared to yet unseen data must be assumed high. Ideally, both should 
be extended and updated to include more airports, more aircraft types, different seasons, different routes, 
and different flight durations. It is highly recommended that data on at the very least 100 flights are 
collected and used to cover Norway alone, with a balanced variation with respect to aforementioned 
factors. 
To mitigate overfitting risk, we chose several counter-measures: A strong preference for simple methods 
to keep complexity low, the diligent use of cross-validation, and reliance on domain knowledge and simple 
physics. 
7.1.2 Use on Routes with Higher Ground Altitudes 
A likely issue related to overfitting (see Section 7.1.1), is the use for airports that are significantly higher 
than the 4 airports for which data was recorded (see Table 2). With higher altitude, air pressure decreases. 
Geilo is the airport with the highest altitude in Norway at 798m above sea level and air pressure will often 
be well below the threshold used in the flight detection method described in Section 6.1. 
Because the method also uses air pressure variation and accelerometer data, this does not necessarily 
mean that it will fail for higher altitude airports. But it means that its performance is only validated for 
airports with up to 208m in altitude (and only for the weather conditions represented in the available 
data between October and March). 
One possible way around this issue is the use of relative air pressures dependent on the airport altitudes 
for the specific flight route. As per 2021-05-12, BagID is testing such an approach, but it should be 
validated properly with the methodology described in Section 5.3. Alternatively, all air pressures could be 
normalized to sea level using airport altitudes. 
We also performed a preliminary check for which we scaled the air pressure during descent such that it 
rises to a lower value of 920mbar after landing (the approximate air pressure level for Geilo airport). The 
final flight detection method described in Section 6.1 correctly predicts "In flight" for 100.0% of this 
artificial flight data (recall), and "Not in flight" for 84.5% of it (precision). So, while by no means conclusive 
or evidential, this indicates that the method's ability to detect flight and turn off mobile communications in 
accordance with the regulatory guidelines may be robust to lower air pressures at higher airport altitudes 
(though it also indicates that it makes it harder to detect when to turn them back on again). Figure 37 
illustrates the results of this test. 
 

 



 

Project no. 
312000130 

 

Report No 
10 

Version 
1.2 
 

27 of 33 

 

 
Figure 37: Performance of the final flight detection method for an artificially modified descent to an 
airport with higher altitude and lower air pressure levels. Original air pressure (top, left) and "In 
flight" prediction for the original data (bottom, left) and modified air pressure (top, right) and "In 
flight" prediction for the modified data (bottom, right). 

Finally, weather conditions can also influence air pressures and influence the performance of flight 
detection based on pressure. We concluded with that this effect, although certainly present, is 
comparatively small compared to the effect of altitude changes. 
7.1.3 Air Pressure Regulation on Aircraft 
Another likely risk factor is how various aircraft types regulate cabin and luggage compartment pressures. 
The patent that Samsung filed in 2014 [6] for an automatic flight detection method was based on a library 
of cabin pressures for various flight types. Again, more data should be collected to better understand to 
what extend this can cause issues and how to respond to it, if it does. 
7.1.4 Missing Data and Sensor Errors 
It is very common to have methods fail when sensors or other parts of the hardware and firmware pipeline 
are malfunctioning. The project was missing some sensor data for some of the flights. Designing reliable 
and potent fault detection methods is a formidable task in itself, but the implementation of simple sanity 
checks is still highly recommended. 
7.2 Improvements 
The easiest way to improve on the existing method is to collect more data and repeat the steps of the 
analysis and the methodology described in Sections 4 and 5. This will make it possible to find decision tree 
thresholds that work even better, or it may also give better sensor signal combinations and processing 
steps. 
In addition, several other attempts can still be made to improve on the method, for example: 

• A closer look at the 3D accelerometer signal decomposition into horizontal and vertical 
acceleration components described in Section 4.2.1. 

• Investigate the use of flight phase predictions made earlier during a journey or the use of lagged 
features. 

• The decision tree classifier's ability to predict probabilities can be used (instead of predicting 
classes directly). By varying the associated probability threshold, the detection can be tuned to 
increase either the ability to correctly identify "In flight" or the ability to correctly identify "Not in 
flight" (but not both), see Figure 38. This should only be done after (much) more data is acquired, 
ideally. 

• The use of higher sampling frequencies for the accelerations (at least 50Hz, see Table 4) to possibly 
identify aircraft engine signature vibrations (as done in [4]). Figure 39 shows an example for an 
acceleration spectrogram that shows various signal signatures during flight. 
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• Using different sample weights when training the decision tree classifier to counteract the bias 
towards flight scenarios that may be overrepresented in the data (and may cause overfitting). 

• Formulating the problem in terms of a multi-category classification to study and detect various 
flight phases (acceleration, ascent, descent, deceleration) in more detail. Some work on this was 
done during the project to detect take-off and landing events directly. 

• The use of a microphone could help pick up engine sounds, which in turn should be valuable for 
automatic flight detection. 

 
Figure 38: Example for a precision-recall curve that can be used to choose a threshold for which the 
desired balance between precision ("Not in flight" is predicted correctly) and recall ("In flight" is 
predicted correctly) is obtained. 

 

Figure 39: Example for an acceleration spectrogram (L2-norm) obtain in 2018 on a flight from AES to OSL 
[7]. 
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A Predictions for All Datasets 
The following plots show the flight detection performance for all recorded flights and data sets. Predictions 
are averaged over 60s time windows for better visualization. Note that several flights lack data points (in 
which case no prediction is plotted) and recordings during take-off or landing phases. 
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B Correspondence with the Federal Aviation Administration 
B.1 Definition of Flight Phase 
E-mail sent from Brian Verna (FAA) to Severin Sadjina (SINTEF Ålesund) on 08.11.2018 about the definition 
of "airborne" with respect to mobile communications in PEDs. 
 
I would use the takeoff and landing phases of flight as the last possible conditions to detect turning off 
and back on again.  Detecting conditions prior to takeoff and after landing is also acceptable. 
 
Brian Verna 
Aerospace Engineer 
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Federal Aviation Administration 
Flight Standards Service 
Aircraft Maintenance Division (FS-300)  
Avionics Branch (FS-360) 
 
B.2 Method Implementation 
E-mail sent from Brian Verna (FAA) to Eivind Vinje (BagID) on 16.12.2020 documenting how the method 
described in Section 6.1 fulfills the Federal Aviation Administration (FAA) recommendations. 
 
Q1: Are we understanding the sensor/method redundance correct that only one sensor/method is needed 
to enable "flight mode", while we need two sensors/methods to disable "flight mode"? 
A1: This design element of how you are accomplishing the use of the sensors is not too particularly 
important.  The recommendation for two independent means to turn off intentional transmissions is 
achieved by your description.  The idea originates from the fact the FAA does not have regulatory authority 
over the design of portable electronic devices, so we cannot require a design feature for a certain  failure 
condition.  Most PEDs use COTS hardware and are not design and produced at the same pedigree as 
aviation software/hardware.  Therefore, the FAA recommends the two independent means, if one fails, 
then the other can reliably perform the function.  This gives us the safety assurance needed for aircraft 
operators to adopt this policy, or choose another policy.  This decision is completely up to the airline. 
  
Q2: If we detect that one of the sensors is defect (pressure or accelerometer), can we disable that part of 
the algorithm and use scheduled departure/arrival time as one of the triggers to "flight mode"? We are 
pulling scheduled departure/arrival time every 10 minute from the device, so these will be updated in case 
of delays. 
A2: Again, I think your concept meets the criteria for dual independent means, and your offering a third 
independent means for when one of the two sources fails is definitely sufficient.  I would even say if your 
device detected one source failed, then relying on the other source 100% would meet the criteria.  This 
gives credence to our recommendation to not relying on one means to shut off intentional transmissions 
before flight. 
  
Q3: Is it OK to use three sensors to detect landing instead of two, and if two of them are detecting landing 
we disable "flight mode"? 
A3: Same as above.  I really like the concept and it is creative.  However you choose to implement the 
turning on and off of the intentional transmitter is up to you.  I think this builds extra reliability and adds 
an extra layer of safety that many airlines would be pleased with.   
  
I hope this helps you out going forward. Please don’t hesitate to reach out if you have any more questions 
or concerns. 
  
Brian Verna 
Senior Technical Advisor 
  
Federal Aviation Administration 
Flight Standards Service 
Office of Safety Standards 
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