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Abstract—This paper presents an approach for representing
nonlinear operating point dependencies in small-signal state-
space modelling of power electronic converters. The intended
application is for unifying a set of small-signal models identified
from black-box simulation models or physical measurements into
a single operating point dependent model. The approach is based
on a polynomial fitting of the operating point dependency of
the matrix elements in a state-space modal representation. The
fitted expressions for the matrix elements provide a single model
that can be utilized for small-signal analysis in a wide range of
operating conditions and prevents the need for investigation of
individual models at each operation point. Two different cases
are discussed for evaluating the applicability of the presented
approach, including a grid-forming converter with a Virtual
Synchronous Machine (VSM)-based control and a conventional
grid-following converter with dc-link voltage control. The results
show that a quadratic fitting of the matrix elements can provide
acceptable model accuracy in most cases.

Index Terms—power electronic systems, model identification,
state-space models, small-signal analysis, MIMO-systems, labo-
ratory experiments

I. INTRODUCTION

Eigenvalue-based analysis provides an established frame-

work for assessing small-signal stability in power systems [1],

[2] and is currently being adapted to the emerging conditions

with dominant presence of power electronic converters [3],

[4]. The calculation of eigenvalues relies on a linearized

state-space model of the studied system. When a sub-system

model is not directly available, it must be identified, either

from a black-box model or from measurements on a physical

unit [5], [6]. Since power converters have inherent nonlinear

characteristics, the linearized state-space models will depend

on the operating conditions. Thus, state-space models must

be identified for all the operating conditions to be considered.

For screening of stability characteristics over a wide range of

operating conditions, this will require a high number of models

as an individual model must be defined for each operating
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point to be considered. Furthermore, for analysis relying on

model identification from measurements, all operating points

to be considered must be defined in advance to obtain the

required data-sets. Therefore, a simple way to express the op-

erating point dependency of state-space models continuously

throughout the operating range could be useful to support

small-signal analysis of systems including black-box models.

Several examples of parameterized macromodeling ap-

proaches have been proposed to handle variations in operating

conditions for state-space models. For instance, a multivariate

orthonormal vector fitting was developed in [7] to represent

frequency-dependency as well as parameter-dependencies in

fitted models. Similar methods are used in [8], [9], [10] to

develop geometry- or material parameter-dependent models.

In particular, [9] presents an example of a small-signal anal-

ysis that is quite reminiscent of an analysis performed for

power electronic converters. If input conditions are treated as

parameters, the parameterized macromodeling techniques can

be applied to the context of operating point dependency. This

is addressed in [11] by creating bias point-dependent linear

models for small-signal power integrity analyses.

This paper proposes a state-space modelling approach where

the dependency on operating conditions is fitted into the

expressions of the matrix elements. Thus, for each matrix

element a polynomial expression is fitted as a function of the

inputs. This allows for generating the linearized state space

model of the power converter at any operating point without

the need for an individual model identified with the specific

combination of input signals. For example, the eigenvalue

trajectories can be obtained as a function of the input signals

with any resolution, equivalently to an interpolation between

the points used for fitting of the matrix elements.

The introduced methodology for fitting the operating point

dependency into the matrix elements is a novel approach for

small-signal modelling and analysis, developed from [12], and

this paper presents a first application to the modelling of

power electronic converters. In the presented implementation,

the operation point dependency of the matrix elements is

approximated by superposition of the influence from each
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input. To ensure a clear reference for performance assessment,

the development and verification of the approach is based

on the analytical linearized state-space models of two cases

for a voltage source converter (VSC) with different control

systems. The first example is a virtual synchronous machine

(VSM) as documented in [13], while the second example is

a grid-following converter with dc voltage control (VDC) as

documented in [14]. The results from these two cases highlight

the potential performance and advantages of the proposed

modelling approach. The results also reveal the limitations

that appear for systems where the nature of the small-signal

dynamics change significantly with the operating conditions.

II. POLYNOMIAL FITTING OF OPERATING POINT

DEPENDENCY

Small-signal analysis of dynamic systems can be conducted

with a state-space model linearized at a steady state operating

point. The general linearized state-space formulation is given

by (1) and relates the variations in the states ∆x and in the

output ∆y to the inputs ∆u via the matrices A, B, C and D.

These matrices are in general a function of the linearization

point defined by (x0,u0).

∆ẋ = A(x0,u0) ·∆x+B(x0,u0) ·∆u

∆y = C(x0,u0) ·∆x+D(x0,u0) ·∆u
(1)

An equilibrium point of a nonlinear model corresponds to

zero state derivatives and can be found by solving a system of

algebraic equations as a function of the input signal. Thus, the

steady state operating point defined by x0 is linked to the input

conditions u0 via a nonlinear function that generally cannot

be computed in closed form:

x0 = g(u0) (2)

Thus, the linearized state space form can be rewritten to

explicitly indicate the dependence on the operating point as:

∆ẋ = A(g(u0),u0) ·∆x+B(g(u0),u0) ·∆u

∆y = C(g(u0),u0) ·∆x+D(g(u0),u0) ·∆u
(3)

Within a certain range of operating conditions, it is assumed

that the functional dependency of the state space matrices on

the operating conditions can be approximated with a simpler

form and, in the specific case of this paper, with a polynomial

function.
A(g(u0),u0) ≈ Ã(u0)

B(g(u0),u0) ≈ B̃(u0)

C(g(u0),u0) ≈ C̃(u0)

D(g(u0),u0) ≈ D̃(u0)

(4)

With this assumption, each element of the state matrices is

approximated by a polynomial expression of the inputs. For

example, if ai,j is a generic element of A, the objective is

to identify a polynomial expression fai,j
(u0) such that (5)

applies.

ai,j(u0) ≈ ãi,j(u0) = fai,j
(u0) (5)

Fig. 1: Example sweeps for a three-input system

A state space representation is not unique since it depends

on the particular choice of the states. Indeed, infinite equivalent

state-state representations can be obtained by similarity trans-

formations. To create a fit, it is crucial that the representation

of the system is consistent when varying the operating condi-

tions. In this paper a modal representation is preferred. Thus,

the matrix A is a block diagonal matrix, where the blocks rep-

resent the eigenvalues. To obtain a consistent representation,

further conventions concerning the state order and the scaling

of the B and C matrix are also needed, as discussed in [12]. A

main advantage of the modal representation is that each state

can directly be associated with an eigenvalue, which is useful

to maintain a consistent order of states. For the application of

the method to a set of identified state-space systems, this also

enables easy filtering of identification errors and outliers.

III. FITTING PROCESS AND SUPERPOSITION

The proposed fitting process provides a polynomial approx-

imation of the elements of the state matrices to incorporate the

dependencies on the operating condition. While the intended

application is for small-signal models that are identified from

a black-box model, a complete nonlinear state-space model is

used in the following as the starting point for analysis. As a

first step, the domain of the operating conditions is discretized

by dividing the range of variability for each input into a

finite number of values. This is illustrated in Fig. 1, assuming

three inputs (i.e. k, l,m) where each node corresponds to a

considered operating condition. For each operating point in

this discretized domain, the system can be linearized and the

four state matrices calculated. Considering the three inputs

from Fig. 1, three additional indexes can be added to represent

the matrix element for a specific input combination leading to

ai,j,k,l,m, bi,j,k,l,m, ci,j,k,l,m, and di,j,k,l,m. The indexes i and

j represent the position of the element in the matrix while

the indexes k, l, m represent the input values. The objective

is to identify a polynomial function for each matrix element,

representing the dependency of the matrix element from the

input values.

ai,j,k,l,m ≈ fai,j
(k, l,m) (6)

Although possible, fitting functions with multiple independent

variables requires a large number of data points, where, in

practice, the acquisition of each data point is connected to

high computational effort. Also, the number of input value

combinations increases exponentially with the number of input

values. Therefore, for systems with multiple inputs, there is a
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TABLE I: Input ranges in p.u.

Input VSM Range (Def.) Input Vdc Range (Def.)

active power ref. p∗ 0-1 (0.5) q-current ref. il,q∗ −0.5-0.5 (0)
reactive power ref. q∗ −1-1 (0) grid voltage vg 0.9-1.1 (1)
grid voltage vg 0.9-1.1 (1) grid freq. ωg 0.95-1.04 (1)
voltage ref. v∗ 0.9-1.1 (1) dc-current idc,s −1-1a (0.1)
grid freq. ωg 0.95-1.04 (1) dc-voltage ref. v∗dc 0.9-1.1 (1)
frequency ref. ω∗ 0.95-1.04 (1)
a range was limited to 0.1 to 0.3 for the fitting to prevent pole bifurcation

need for further simplification. The proposed method is carried

out as a two-step process.

In the first step, the dependency on each individual input

is determined by sweeping each input variable separately over

the input range while all other input variables maintain their

default values. For example, for input k the deviation fai,j ,k of

one matrix element ai,j from its value at the default operating

point k0 is assumed with a polynomial expression as:

fai,j ,k(k − k0) = pai,j ,k,1(k − k0) + pai,j ,k,2(k − k0)
2 + ...

(7)

where pai,j ,k,1 and pai,j ,k,2 are the coefficients determined

in the fitting process. This first step covers the operating

points on the sweep axes marked in Fig. 1. In the second

step of the process, operating points with more than one

input variable deviating from the default operating condition

are approximated by superposition of the individual input

dependencies from single-variable sweeps as:

fai,j
(k, l,m) = ai,j(k0, l0,m0) + fai,j ,k(k − k0)+

+fai,j ,l(l − l0) + fai,j ,m(m−m0)
(8)

where k0, l0 and m0 mark the default operating point where

the individual variable sweeps intersect, and each of the

functions fai,j ,k, fai,j ,l and fai,j ,m describe the dependency

on the corresponding input alone.

IV. APPLICATION OF THE FITTING PROCESS

A. Example cases

The process described in the previous section has been

applied to two power electronic converter configurations:

1) A grid-forming converter controlled as a Virtual Syn-

chronous Machine (VSM) according to [13]. The model

includes a virtual swing equation with active power-

frequency droop, and voltage-reactive power droop,

current reference calculation by a virtual impedance,

current controllers and active damping. The dc side

voltage is assumed to be constant. The system order

and, respectively, the number of states is 18.

2) A grid-following converter with dc-voltage control

(VDC), as used in [14]. The model includes the same

current control and active damping as the VSM-case,

a PLL for grid synchronization, and a PI-controller for

regulating the dc-voltage by providing the d-axis current

reference. This model also has 18 states.

Table I shows the inputs with corresponding sweep ranges

and default values for each system. The outputs for both
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Fig. 2: Trajectories of one example eigenvalue of the VSM for all individual
input sweeps total view (left) and zoomed in (right). The arrow marks the
lower limit of the sweep.
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Fig. 3: Dependencies of real part (left) and imaginary part (right) of one
example eigenvalue of the VSM for a sweep of p∗

models are the d- and q-components of the filter inductor

current, the output voltage and the output current. The VDC

model has in addition the dc-voltage as output.

B. Model Generation

The input ranges have been discretized with 11 points

each as an initial step, and the resolution has been increased

wherever necessary. Fig. 2 shows the trajectories of one

example eigenvalue of the VSM for all input sweeps. This

eigenvalue is the one with the highest influence on the input-

output behaviour according to the Hankel singular value it can

be associated with. The input ωg has the highest impact on the

system. The characteristic of the droop controllers can be seen

since p∗ and ω∗ as well as q∗ and v∗ share a trajectory.

Fig. 3 shows the real and imaginary part of one example

eigenvalue of the VSM for the sweep of p∗. It displays the

values obtained from the sweep as well as the fitted functions.

It can be seen that both dependencies can be described well

by the chosen quadratic function.

While the approach proved successful for the VSM model

as discussed for Fig. 3, the second model introduces major

challenges to the presented approach. Firstly, the VSM model

has eigenvalues that are either consistently real or consistently

complex throughout the whole sweep, which means that there

are no bifurcation points. For the second model, several

eigenvalues reach bifurcation points if the sweep of idc,s spans

from −1 to 1. Moreover, the eigenvalues are located in very

close vicinity and their trajectories intersect. In this case,

more steps throughout the sweep were needed to anticipate

the trajectories over the whole input range. Fig. 4 displays
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and a zoomed view (right) for the VDC model with a sweep of idc,s from −1

to 1

this behaviour for a sweep with 101 values. For the following

discussion, the input range of idc,s is limited to 0.1 to 0.3, so

that no bifurcation points appear during the sweep and fitting

without piecewise function definition is possible.

V. VALIDATION OF RESULTS

The validation of the method is performed in two steps: first,

by calculating the accuracy of the fitted model while varying a

single variable at a time. An evenly spaced array between the

upper and lower limit of the respective range for each input

is examined, while the remaining inputs are held constant at

the nominal operating point. The second part of the validation

consists of varying two inputs simultaneously while holding

the rest constant to examine the validity of the superposition

approximation. A 2D grid is examined for each pair, although

with a courser mesh than the single variable sweeps due to

the exponential nature of possible operating points (31 points

per input as opposed to 101).

The fitted model is compared to the analytical model at each

operating point for each transfer function in the frequency

domain by using the normalized root mean squared error

(NRMSE), given as:

NRMSE(H,H0) =

(

1−
||H0 −H||

||H0 −mean(H)||

)

· 100% (9)

where H0 is the reference data set for the frequency response

of one input output combination and H the corresponding data

set of the fitted system.

A. Single-Variable Dependencies

Tab. II shows a summary of validation results for the single-

variable dependencies. All median NRMSEs are higher than

98%, which indicates that the model is a good approximation

for the majority of input-output combinations at the analyzed

operating points. For many of the input dependencies, the

minimum NRMSE is higher than 99%, which means that

even in the worst case of the analyzed operating points the

fit approximates the analytical model with high accuracy.

B. Pairwise Combined Variable Dependencies

Fig. 5 shows the validation results for the combined sweep

dependencies. As there are 42 individual transfer functions at

TABLE II: Results for Individual Input Dependencies

Model Input
NRMSE in %

Model Input
NRMSE in %

min. median min. median

VSM p∗ 99.49 99.94 Vdc il,q∗ 75.67 99.60
VSM q∗ 99.99 100.0 Vdc vg 99.85 99.99
VSM vg 99.94 100.0 Vdc ωg 100.0 100.0
VSM v∗ 99.91 99.99 Vdc idc,s 75.41 99.24
VSM ωg 96.81 99.63 Vdc v∗dc 99.43 99.91
VSM ω∗ 94.92 99.66
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Fig. 5: Boxplots of NRMSE for combined sweeps

each operating point, a large number of transfer functions, and

consequently, error measurements are generated. Therefore,

the NRMSE values for all combinations are summarized in

a box plot showing the medians, 25th and 75th quartiles, and

the extremes (excluding outliers). As expected, the fits have

increased error compared to the individual input sweeps in

both cases. However, most of the fit percentages remain quite

high, i.e. the median fits are all above 98% and 94% for the

VSM and VDC system, respectively.

The input combinations with the worst fitting results can

be directly correlated to the single-variable sweep fits. For

example, the lowest mean individual fits in the VSM system

are ωg , ω∗, and p∗, in that respective order. It can be seen

that the worst three combined input sweep fits are those that

contain a combination of these inputs. The next worst fits

contain only one of these three inputs.

Fig. 6 shows the worst single fit operating point for an input

and output in the VSM system, at ω∗ = 0.971, vgd = 0.9.

Note that this fit is not shown in the boxplot as outliers are

not shown. This case is quite representative of the the worst

fits for the other combinations. While sweeping along ω∗,

the frequency responses seem to be mismatched in operating

point, meaning that the responses would match more closely

with a shifted operating point for the superposition model.

This occurs consistently for sweeps including ω∗ at ω∗ =
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Fig. 6: Worst case combined sweep

0.971, where the frequency response changes rapidly from

operating point to operating point, and similar phenomena

can be observed for other inputs. This may indicate that a

different method of examining the error is needed to account

for mismatch in the operating point.

The fitting of the VDC system results in generally worse

fit quality than the VSM system. This is expected, due to

the difficulty in fitting the eigenvalues as discussed in Section

IV-B. Therefore, the behavior of the poles clearly must be

examined in the fitting process. However, if the input range

is limited such that no bifurcation of the poles is included, a

fairly good fit of the system can be achieved.

VI. CONCLUSION

This work presents an approach for representing the op-

erating point dependency in small-signal state-space models

of power electronic converters. The proposed approach is

based on expressing the state-space matrices in modal form

and fitting each matrix element with a polynomial expression

of the input variables. The fitting functions are obtained as

a superposition of polynomial expressions for the individual

variables. This allows the approximation of the linearized

state-space models for all operating conditions within a defined

range of input variables from a unified input-dependent state-

space representation. The primary intended application area is

for representing the operating-point dependent non-linearity of

system models obtained by black-box identification methods.

The presented results, obtained with two different cases of

control for a grid-connected power converter, indicate that

the methodology can provide a high level of fitting with

quadratic expressions for the matrix elements. The modal form

proved to be valuable to maintain a consistent structure of the

matrices over the operating point range. However, the method

shows limitations for cases when two real poles bifurcate

into a couple of complex conjugated poles, or vice versa. In

the studied case with a dc voltage controller, this proved to

limit the range of applicability of the proposed polynomial

representation of the matrix elements. One possible solution is

to repeat the process by splitting the overall range of operating

conditions into smaller intervals without internal bifurcations.

However, this results in a more time consuming and tedious

process for obtaining a set of applicable models, and implies

that different models must be used in the different intervals.

Evaluation of other alternative representations of an identified

state-space model that could avoid this issue is left for further

research.
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