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Abstract—This paper presents a semi-analytical Monte Carlo
method for rare event sampling applied to power system reli-
ability analyses, which combines traditional Monte Carlo-based
methods with simplifications from analytical methods. The result
is a procedure which assess the reliability of a system with the
level of detail which a Monte Carlo method offers, combined
with computation speed gains from analytical methods. A case
study is included, comparing the performance of the proposed
Semi-Analytical Monte Carlo method with a Sequential Monte
Carlo method, and an analytical reliability evaluation technique
using approximate equations. The case study verifies the method
results, scalability and ability to incorporate uncertainty in
outputs. The method presented has other potential applications,
e.g., in the study of power system resilience.

Index Terms—reliability, Monte Carlo, analytical, power sys-
tems, resilience

I. INTRODUCTION

The power system is a critical infrastructure which provides
essential services for the normal operation of modern day
society [1]. The introduction of complexity, interdependencies
and uncertainties due to the integration of variable renewable
energy resources, new components, and the merging of the
information and communication system infrastructure and
power system into the cyber physical power system (CPPS)
are just some of the current challenges which can affect the
security of electricity supply [2]–[4]. It is therefore important
to understand how these challenges affect the capacity of the
power system to withstand strains, and its ability to perform its
intended function. This is typically studied through vulnera-
bility/resilience analyses, and reliability analyses, respectively
[5]–[7]. The method developed in this paper is applied to
reliability analyses of the power system but has potential
applications in other areas which are subject to rare events,
e.g., power system resilience analyses.

This paper describes a hybrid procedure which combines
a Monte Carlo Simulation (MCS) and analytical reliability
evaluation technique building on the strengths of analytical
and simulation approaches. The core difference between these
traditional approaches and the Semi-Analytical Monte Carlo
(SAMC) method presented in this paper is that the latter
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simulates the most likely time and duration of an unwanted
event, e.g. the simultaneous outage of multiple components,
before analytically calculating the associated failure frequency.
The backwards reasoning is inspired by how extraordinary
events in power systems are studied in [7], [8] and the pro-
gression of an Event Tree Analysis (ETA) [9]. The proposed
method always produces realizations of unwanted events in
each iteration of the simulation, thus making it time-efficient.

The remainder of the paper is organized as follows: Section
II introduces key terms and modelling approaches relevant
for the study of power system reliability, while the proposed
method is presented in Section III. A case study is presented in
Section IV to illustrate the applicability of the method, before
the paper is concluded in Section V.

II. MODELLING OF POWER SYSTEM RELIABILITY

An introductory discussion of analytical and simulation
based methods of calculating power system reliability indices
can be found in [10]. An advantage of the analytical ap-
proaches is that they are fast to calculate and produce long
term expected values of system performance which may be
sufficient for many purposes. The disadvantages are that they
rely on simplifications, and have a limited ability to model
complex systems. The reliance on expected values both as
inputs and outputs in analytical approaches can be a po-
tential source of under-communicated risks, where unwanted
events with very large consequences but small probabilities
is consumed into the expected value [11]. The alternative
approach is to try to simulate the actual behavior of the system,
incorporating uncertainties through probability distributions,
which can give a more detailed understanding of the system
reliability for complex systems. The primary challenge of the
simulation approach is computational time [12].

The power system is both a complex and reliable infrastruc-
ture [6], which suggests that simulation approaches should be
used to quantify the power system reliability but also that this
may be a difficult task: Traditional power system operation is
often based on the N-1 criterion, where the system should be
able to withstand any credible single contingency at all times
in such a way that the system is capable of accommodating
the new operational situation without violating operational
security limits [13]. A single contingency can be understood
as an outage occurrence of one system component, while a

Author Accepted Manuscript version of the paper by Erlend Sandø Kiel and Gerd Hovin Kjølle 
in 2023 IEEE PES Innovative Smart Grid Technologies Conference Europe - ISGT-Europe (2023), 

DOI: http://dx.doi.org/10.1109/ISGTEUROPE56780.2023.10407144 
Distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) 



Iterations OrderComponents

SAMC

For each iteration

Establish component time
series of failure probability

Failure
model

For each contingency order

For each component in service

Allocate component failure to
initial contingency time-span

Pick outage duration of component failureOutage
model

Calculate failure frequency of contingency

Calculate duration of contingency

Calculate consequence of contingencyConsequence
analysis

Store indices

Summarize analysis

Fig. 1. Flowchart describing the method.

multiple contingency refers to the concurrent outages of two
or more system components [14]. The number of components
included in a contingency is sometimes referred to as its order.

Considering that the power system is a highly reliable
infrastructure, higher order contingencies could be termed rare
events. It may be difficult to simulate a sufficient number
of samples of such events to provide good estimates of the
quantity of interest [15], [16]. Variance reduction techniques
such as importance sampling (IS), the cross entropy (CE)
method, and multilevel Monte Carlo (MLMC) are some possi-
ble solutions to this challenge [17]–[19]. These methods adapt
how samples are picked in order to generate sufficient samples
of the quantity of interest, and in turn to describe it by its
expected value and variance. The method proposed in this
paper, on the other hand, simulates the system conditional on
a rare event occurring, which has been identified as a problem
which deserves more research attention [20].

III. METHOD

Fig. 1 gives a simplified description of the proposed SAMC
method. The initial step is input data, where the number of
components and iterations is specified, as well as the order of
the contingencies evaluated. Following this, three nested loops
are used to calculate the final reliability indices. The outer loop
tracks the iterations of the algorithm and establishes a time
series of failure probability for each component. The middle
loop tracks the order of the contingencies evaluated, such that
new realizations of higher order contingencies are based on
information about previous order contingencies. Combinations
of an initial contingency and additional component outages
are constructed in the inner loop, which is used to generate
samples of new contingencies of the given order, where
information about the contingency sample is used to calculate
the final reliability indices.

A single component failure is allocated to a point in time in
the inner loop. This is done probabilistically based on the com-
ponent time-series of failure probability, e.g., by picking the
failure event from a categorical distribution with the relevant
time-series as input. The failure can be allocated to any point
in time covered by the time-series if there are no previous
outages in the contingency, however, if this component failure
is part of a contingency with an order higher than one, then the
time-span is limited by the time-span of the initial contingency.
The new component failure is assigned an outage duration.
This is used to calculate a failure rate, outage duration and
consequence for each realization of a contingency, which is
stored and later summarized.

To find the failure frequency of the overlapping outage of
two components, it is necessary to find the probability of the
second component experiencing a failure during the outage of
the first component. This is done in (1) where p

[ti,ti+ri]
j is the

series-system failure probability of the second component j
during the outage duration, r, of the first component, i, in the
time-span after the initial fault happened, [ti, ti + ri].

p
[ti,ti+ri]
j = 1−

ti+ri∏
k=ti

(1− pkj ) (1)

For one iteration, the failure frequency, λ, of the produced
second order contingency is the product of the failure fre-
quency of the initial contingency and the probability of failure
of the additional component j, in the time-span of the initial
contingency, i (2). The total failure frequency of a second
order contingency consisting of the two components i and j
for the iteration is the sum of this sequence of events, starting
with either component being the initial failure (3).

λi→j = λi · p[ti,ti+ri]
j ; λj→i = λj · p

[tj ,tj+rj ]
i (2)

λi,j = λi→j + λj→i (3)

The outage duration, r, of a second order contingency is
equal to the time-period of concurrent outages of component
i and j (4).

ri,j = [ti, ti + ri] ∩ [tj , tj + rj ] (4)

Energy Not Supplied (ENS), as a measure of the conse-
quence due to a contingency at a given time, is the product of
the associated outage duration and interrupted power, P t

i,j (5).

ENSt
i,j = ri,j · P t

i,j (5)

The distribution of sequences of events leading to an outage
duration and ENS will be naturally weighted for by the
sampling frequency of the event in traditional MCS. This is
not the case in the SAMC-approach where the average value
of outage durations and ENS must be weighted by failure
frequency, as for ri,j in (6), where ι is the iteration number.
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Fig. 2. Recursive logic of the method. Red crosses signifies component
failures, leading to a ”down” state. Green crosses signifies that the component
is once again in an ”up” state. Brackets show the associated outage durations.

ri,j =
1∑
ι λi,j

·
∑
ι

∑
i̸=j

[
λι
i,j · rιi,j

]
(6)

The recursive logic of the method – appending an addi-
tional component failure to an existing contingency – can be
extended to any number of concurrent outages of n system
components. This is illustrated for a system with four overhead
transmission lines – used in the Section IV case study – in
Fig. 2. An initial contingency of line 1 is the basis of a
second order contingency involving line 1 and 2: A failure
of line 2 is allocated to a point in time bounded by the time-
span of the initial contingency. Line 2 is then assigned an
outage duration. The resulting second order contingency is the
concurrent outage of the two components, and a failure fre-
quency, outage duration is calculated for the new contingency.
This contingency can be further extended by appending an
additional component outage to the contingency to construct a
contingency of a higher order. The dashed lines illustrate the
time-span of a given contingency.

There are various forms of uncertainties that could be
considered in the analysis, such as uncertainty due to lack
of knowledge or due to natural variability, as discussed in e.g.
[21]. This should be considered on a case-by-case basis, and
is reflected in the way failure- and outage data is served as
input from external models into the method.

Failure model. The method operates on a time series of
failure probability. Time series of failure probabilities for the
components can be constructed from a failure model. These
could either be assumed constant or time varying, depending
on modelling capability and which threats are incorporated
into the analysis, see e.g. [22], [23]. The failure model could
produce a fixed or uncertain output. Introducing the failure
model at this stage of the analysis, as seen in Fig. 1, allows
for re-calculation of the time series of failure probability for
each iteration, thus incorporating different types of uncertainty
related to the failure probability of the components.

Outage model. The outage duration due to a component
failure can similarly be entered into the analysis in a number
of different ways, which allows for incorporating uncertainty

Bus 1 Bus 2

Bus 3 Bus 4

G1 G2

L1
(60 MW)

L2
(30 MW)

(∞ MW) (∞ MW)

Line 2 Line 3

Line 1

Line 4

λ1 = 2 f/y
r1 = 20 h

λ2 = 3 f/y
r2 = 15 h

λ3 = 4 f/y
r3 = 12 h

λ4 = 5 f/y
r4 = 10 h

Fig. 3. 4-bus test network [28]. Including component reliability data for
overhead transmission lines: Annual failure rate in failures/year. Outage
durations in hours. Line ratings are 135 MW.

of this parameter into the analysis. The outage duration can
be assumed to be a predefined scalar value, picked from a
probability distribution, or generated by a logical model [24].

Consequence analysis. The consequence of a given con-
tingency can be evaluated in different ways. DC- or AC
power-flow is used to identify the interrupted power due to
a contingency at a specific point in time in similar reliability
evaluation tools [25], [26].

IV. CASE STUDY

The performance of the proposed method is compared
through a case study to that of more well known analytical
approximate equations (see e.g. [10]) and an implementation
of a Sequential Monte Carlo (SMC) method inspired by [27]
and [26]. A 4-bus test network [28], seen in Fig. 3, is used
in the case study. This test network has a high failure rate
of the overhead transmission lines, which makes it easier to
generate realizations of contingencies for the SMC comparison
method. Only one operating state is considered, with both
generators able to supply infinite demand. Interrupted power
due to a contingency is decided by the transmission line
ratings. The case study considers up to 2nd order contingencies.
10000 iterations of the SAMC and SMC implementations are
performed.

A scaled beta distribution for the failure rate and outage
duration is used to add uncertainty in the input and output
variables. Both distributions have α = β = 3 parameters, and
minimum/maximum values of the failure rate distributions are
± 40 percent, while it is limited to ± 25 percent for the outage
duration. The mean values are equal to that found in the test
system. The distributions of values are arbitrarily chosen.

A failure model generates time-series of constant com-
ponent failure probabilities from annual failure rates: The
relationship between the annual failure rate of a component,
λc, and the failure probability in a given hourly time step, ptc,
is given in [23], where γ is the number of years covered by
the times-series (7). Each iteration of the SAMC and SMC
procedures corresponds to a simulation-year in the case study.

λc ≈
1

γ

∑
t∈T

ptc (7)
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The implementation of the SMC method follows four main
steps: A failure rate is picked from a probability distribution
for each iteration. Time series of failure probabilities for com-
ponents are constructed based on this failure rate. Component
failures are picked from a binomial distribution by looping
over the time series of failure probabilities. Component outage
durations are picked from an associated probability distribu-
tion. The results are parsed in order to identify overlapping
outages, and reliability indices are calculated.

The case study aims to uncover if the proposed SAMC
method is efficient, accurate, and able to capture important
information about the distribution of key reliability indices.

A. Results

TABLE I
COMPARISON OF PERFORMANCE: SMC AND SAMC PROCEDURES a

Method Iterations Realizations of contingencies Computation
time (seconds)

Line 2,
Line 3

Line 2,
Line 4

Line 3,
Line 4

SMC 10 000 359 385 486 4.163
SAMC 10 000 10 000 10 000 10 000 0.256

a) Python implementations using Numba [29]. CPU parallel processing of algorithm
iterations. Computation time includes summation and parsing of results.
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Fig. 4. Annual expected ENS for the system.
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A comparison of the two MCS methods included in the case
study is presented in Table I. It shows that the SMC method
produces less realizations of the second order contingencies
causing interrupted power in the test system than what is the
case when using the SAMC method, where a realization of the
quantities of interest is produced in every iteration. The two
approaches contain different calculations and summations, and
the SAMC computation time was only six percent of that of
the SMC implementation for the same number of iterations.
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Fig. 7. Simulated distribution of ENS should a given contingency occur.

Fig. 4 shows the calculated annual expected ENS of the
system. The orange histogram shows the distribution of ex-
pected ENS across all iterations using the SAMC method. The
vertical lines show the average expected ENS for the three
implemented methods. The SAMC-method (red line) yields
an expected value above to that found by using analytical
method (dashed black line) by less than one percent. The SMC
implementation yields a result almost 5 percent below results
found using the analytical method.

Fig. 5 show that both the mean and variance of the annual
expected ENS for the system converges more rapidly with the
SAMC-method, than when using the SMC method. An impor-
tant point here is that the SMC method produces simulation
years with either unwanted event(s) occurring which produces
ENS, or no unwanted events which produces no ENS. The
SAMC method, however, always produces an expected ENS
for the system. This causes the variance of the SMC estimate
to be considerably higher than for the SAMC estimate.

A closer inspection of results related to the contingency
containing the overlapping outage of line 2 and 3 can be
found in Fig. 6. The SAMC mean values are closer to that
found by the analytical method also in this case, and there is
an added benefit of having a distribution of possible outage
durations – weighted by failure frequency – for that particualar
contingency. Fig. 7 show the simulated distribution of ENS
should different contingencies occur.

The 4-bus test network is not suitable to investigate the
scaleability of the method, so an an additional analysis of the
method is presented in Fig. 8. The figure shows the computa-
tion time of the SAMC algorithm for a test-system consisting
of a different number of components, where each component
is given an unique failure rate and outage duration distribution.
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ponents. 10000 iterations, 2nd order contingencies. Average of 3 executions.

The computation time follows what is expected trajectory of
complexity due to increased components. For a fixed number
of iterations and multiple contingencies containing up to two
components this would be O(n2 − n). The figure shows that
the method can be applied to larger systems.

V. CONCLUSION

The SAMC-method produces results which is verified
against other methods in the case study. Avoiding simulating
non-events leads to a quicker convergence in output parameters
than what is the case when using a SMC method, which
together with the analytical simplifications have a positive
effect on the computation speed. The output is also in the
form of distributions, which communicate a more complete
risk picture than expected values. The proposed method is
relatively easy to implement, is extendable to any nth order
contingencies, and scaleable to larger systems.

Some suggested further work is the inclusion of dependent
events in the SAMC-modeling framework to further benefit
from the MCS ability to model complex relationships, and im-
proved communication of analysis results to decision makers.
The use of the method in resilience or vulnerability analysis,
through its extension to higher order contingencies, would also
be a welcome addition to the analysis.
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