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Abstract 
Early-stage clustering in two Al–Mg–Zn(–Cu) alloys has been investigated using atom probe tomography and transmission electron microscopy. 
Cluster identification by the isoposition method and a statistical approach based on the pair correlation function have both been applied to 
estimate the cluster size, composition, and volume fraction from atom probe data sets. To assess the accuracy of the quantification of 
clusters of different mean sizes, synthesized virtual data sets were used, accounting for a simulated degraded spatial resolution. The quality 
of the predictions made by the two complementary methods is discussed, considering the experimental and simulated data sets. 
Key words: aluminum alloys, atom probe tomography (APT), Guinier-Preston (GP) zones, natural ageing (NA), pair correlation function (PCF), transmission electron 
microscopy (TEM) 

Introduction 
Atom probe tomography (APT) has a unique combination of 
three-dimensional (3D) spatial resolution down to the nano-
meter scale along with high chemical sensitivity (Kelly & 
Miller, 2007; Gault et al., 2012). This enables the study of 
small precipitates or clusters in metals. Quantification of clus-
ter size and composition at different stages of precipitation is 
essential and remains at the forefront of research in under-
standing and designing the next generation of alloys. 

Several approaches for cluster identification have been de-
veloped to define and characterize clustering and precipitation 
over the years (Johnson & Klotz, 1974; Vaumousse et al., 
2003; Lefebvre et al., 2007, 2011, 2016; Stephenson et al., 
2007; Gault et al., 2012; Samudrala et al., 2013; Miller & 
Forbes, 2014; Felfer et al., 2015; Hyde et al., 2017; Zelenty 
et al., 2017). In most cases, they consist of three data mining 
steps: (i) the clustering algorithm identifies solute clusters in 
the data by considering solute segregation, (ii) an enveloping 
algorithm searches for atoms of other elements that are within 
each solute cluster, and (iii) an eroding algorithm erodes the 
matrix–particle interface that may have formed as a result of 
the enveloping step. 

These methodologies generally demand the user to manually 
determine multiple parameters, leading to inconsistent results 
and challenges in reproducing them. Also, to correctly identify 
certain clustering phenomena, a visual inspection of the results 
is often used to assess the accuracy of the parameters used. This 
too is strongly user dependent and can give inconsistent results. 
Usually, a well-defined parameter estimation procedure is used 

as seen for the case of the maximum separation method (MSM;  
Williams et al., 2013) to improve reproducibility and consist-
ency in the results. Studying clustering and precipitation 
through atom probe is rendered more complicated due to the 
local magnification effects caused by differences in evaporation 
fields between different phases (matrix and particles; Vurpillot 
& Oberdorfer, 2015). The advantage of cluster identification is 
that it enables the extraction of local information, thus provid-
ing information on each identified cluster (composition, size). 

Statistical approaches such as radial distribution functions 
(RDFs) (De Geuser et al., 2006; Sudbrack et al., 2006), on the 
other hand, aim at describing the distribution of solute atoms 
as a whole and do not consider each cluster separately. This gives 
element-specific averaged information on the cluster state of the 
matrix, both in terms of amplitude and correlation length. This 
enables a direct comparison of the degree of clustering between 
different data sets without the need of user-defined parameters. 

Recently, Zhao et al. (2018) coupled a parameter-free stat-
istical approach to an interpretation model enabling fitting of 
the RDFs in order to extract the composition of second-phase 
particles and estimate volume fraction, number density, and 
particle size. The methodology has previously been applied 
to Al–Cu–(Li–Mg) (Ivanov et al., 2017) alloys, the Al–Mg al-
loy system (Medrano et al., 2018), and the Al–Zn–Mg (Zhao 
et al., 2018) system. This enables a statistical significance of 
the results and reproducibility, while giving the average values 
from the data set analyzed. 

Here, we combine two different approaches: a local cluster 
identification method, i.e., the isoposition method (IPM) and a 
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statistical methodology based on RDF or rather on pair correl-
ation functions (PCFs; Lefebvre et al., 2016; Zhao et al., 
2018). On the basis of these two methodologies applied to 
atom probe data sets of two Al–Zn–Mg–(Cu) alloys, as well 
as with the help of simulated data sets, we aim at better assess-
ing the robustness of the experimental parameters obtained by 
APT on very small clusters. 

Experimental Section 
Six millimeter thick plates from two commercial alloys, re-
ceived from Benteler automotives, were used in this study. 
The major difference between the two alloys is that one con-
tains copper and is slightly richer in solute content, while the 
other is a copper-free alloy. The measured composition of 
the two alloys is given in Table 1. 

Small blocks of samples sized 3 cm × 3 cm were cut and so-
lution heat treated (SHT) at 480°C for half an hour in a salt 
bath followed by a water quench. The samples were grounded 
and polished for microhardness measurements using a 
1,000 gf Vickers indenter. The hardness values reported are 
an average of five individual measurements for each condition. 
The alloys were naturally aged (NA) for 3 months at room 
temperature, after which they were characterized by APT 
and transmission electron microscopy (TEM). 

All APT samples were prepared by following a standard 
two-step electropolishing process (Lefebvre et al., 2016). A 
minor contamination of copper (Cu) was seen as a capping 
layer at the tip of the APT needle similar as reported by  
Famelton et al. (2021). This could be due to the Cu present 
within the sample itself that contaminates the electrolytic solu-
tion (Danoix et al., 2001). The reconstructed volume contain-
ing this Cu-enriched region was removed from the subsequent 
data analysis. 

APT experiments were carried out on a Local Electrode 
Atom Probe (LEAP) 5000XS from Cameca Instruments. It is 
a straight flight path instrument with a detection efficiency 
of 80%. For all analysis, the base temperature was set to 
30 K, and the laser energy was adjusted to obtain an equiva-
lent pulse fraction of 20% of the direct current voltage to 
avoid preferential evaporation (i.e., around 100–130 pJ;  
Hatzoglou et al., 2020). A detection rate of 0.5% and a pulse 
frequency of 250 kHz were used for all samples analyzed. 
Data sets containing 25–35 million ions were collected for 
each alloy. Reconstructions were made using the structural in-
formation according to Gault et al. (2009) by using the 
Integrated Visualization and Analysis Software (IVAS) by 
Cameca Instruments Inc. The Norwegian Atom Probe App 
software (2022) developed by C. Hatzoglou was additionally 
used for post processing of the experimental data and also to 
synthesize simulated data sets. 

The cluster identification method used, i.e., the IPM meth-
od, was developed at the Groupe de Physique des Materiaux 
(University of Rouen, France) and is based on the chemical 

concentration (Mg + Zn) and an atomic distance criterion. A 
detailed explanation of the methodology and its criteria esti-
mation can be found elsewhere (Lefebvre et al., 2016; Hyde 
et al., 2017). 

In the 7xxx Al alloy system, the clusters exhibit higher 
atomic density as compared to that of the matrix and with 
morphological distortion. This is mainly due to the local mag-
nification effects typically caused by the difference in evapor-
ation fields between cluster/matrix, previously reported 
(Hatzoglou et al., 2023, 2018; Lawitzki et al., 2021). The 
same local magnification effects have previously been reported 
in other studies (Shah et al., 2022b; Thronsen et al., 2023). 
However, the cluster dimension along the evaporation direc-
tion (Z direction) is less biased by local magnification effects 
(Vurpillot et al., 2000; Vurpillot & Oberdorfer, 2015), since 
it is the least biased direction in the APT. A more precise esti-
mate of the size of clusters, as identified by IPM, can be based 
on a directional estimate in the Z direction, the so-called 
Extentz (Ez) parameter (Miller & Forbes, 2014), which for 
one cluster is defined as follows: 

Ez = |Zmax − Zmin|. (1) 

Here, Zmax and Zmin are the outermost atoms in the Z direc-
tion of the identified cluster. Hence, Ez is the maximum dis-
tance between outermost cluster atoms in this direction. The 
Ez is comparable to how the diameter of spherical particles 
is typically measured from TEM images. Previous studies 
have found a correlation between the particle and tip size 
along with comparing APT and TEM size measurements 
(London et al., 2015). In this work, all APT data sets (7003 
and 7046) started close to 3 kV, and the respective voltage his-
tory curves are given in the repository for tip size estimation. 

Another standard way of estimating size for spherical par-
ticles in APT is using the radius of gyration (or diameter), as 
obtained from a cluster identification methodology. The ra-
dius of gyration is the root mean square of the distance be-
tween the center of mass and the coordinates of the 
constituent atoms classified as a cluster (Miller & Kenik, 
2004; Lefebvre et al., 2016). Other methodologies like the 
best fit ellipsoid (Karnesky et al., 2007) can also be used to 
quantify size measurements for nonspherical particles but 
were not required in this study since the clusters in Al–Zn– 
Mg(–Cu) alloys are spherical (Lervik et al., 2021). Sizes re-
ported in this study are all based on diameters extracted 
from the Guinier radius and from Ez. The Guinier diameter 
is simply twice the Guinier radius calculated from the cluster 
identification. The size and compositional errors are calcu-
lated based on the standard deviation. The error in the number 
density is calculated by dividing the number density with the 
square root of the total number of particles. 

The PCF method is based on the RDF calculated for each 
solute (Zn, Mg, and Cu) as the central atom. The RDF 
na−b(r) is defined as the number of atoms of species b at a dis-
tance r of an atom a. The RDF enables the computation of the 
average composition Ca−b(r) of element b at a distance of r 
from the element a given as follows: 

Ca−b(r) =
na−b(r)


b na−b(r)

. (2) 

If Ca is the bulk composition of element a, then in an isotropic 
system, Ca. Ca−b(r) is the correlation of the spatial compos-
ition of element a and element b given as follows: 

Table 1. Measured Alloy Composition of the Investigated Alloys (Shah 
et al., 2022b).   

Cu Fe Mg Si Ti Zn Zr Al  

7003 wt%  0.01  0.22  0.73  0.09  0.02  5.68  0.15 Bal. 
at%  0.00  0.11  0.84  0.09  0.01  2.43  0.05 

7046 wt%  0.28  0.2  1.31  0.08  0.03  6.47  0.15 Bal. 
at%  0.12  0.1  1.52  0.08  0.00  2.79  0.05   
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Ca · Ca−b(r) = 〈Ca(r1
→) · Cb(r2

→)〉. (3) 

where r = |r2
→− r1
→
|. When r approaches large values (larger 

distances), the convolution approaches Ca . Cb. The PCF can 
then be introduced by subtracting this final value: 

γa−b(r) = Ca · Ca−b(r) − Ca · Cb. (4) 

For large r, there is no correlation and γa−b(r) = 0. The PCF can 
be rewritten as follows: 

γa−b(r) = 〈ΔCa(r1
→) · ΔCb(r2

→)〉. (5) 

This highlights the fluctuation in composition 
(ΔCa = Ca(r1

→) − Ca) and is relevant to the PCF. A normalized 
correlation function can further be introduced: 

γa−b(r) = ΔCa · ΔCb · γ0a−b(r). (6) 

where γ0a−b(0) = 1 and γ0a−b = 0 for large r. If we consider only a 
single type of ion, we obtain the autocorrelation: 

γa−a(r) = ΔC2
a · γ

0
a−a(r). (7) 

As mentioned by Zhao et al. (2018), the mean squared com-
position fluctuation is immune to the local magnification ef-
fects due to difference in the electric field required to induce 
the evaporation phenomenon of the different phases (but not 
to spatial resolution effects). 

If we further assume a two-phase system with a homogen-
ous composition of element a, with precipitate composition 
Ca

p in a matrix of composition Ca
m and that both share the 

same atomic volume, the volume fraction fv of the precipitates 
can be written as follows: 

fv =
Ca − Ca

m

Ca
p − Ca

m
. (8) 

The average of the product of compositional fluctuations can 
then be calculated as follows: 

ΔCa · ΔCb = fv(1 − fv)(Ca
p − Ca

m)(Cb
p − Cb

m). (9) 

For a single type of ions, this can be simplified as follows: 

ΔC2
a = fv(1 − fv)(Ca

p − Ca
m)2 = (Ca

p − Ca)(Ca − Ca
m). (10) 

The PCF value at the origin (r = 0), when considered alongside 
the matrix composition (Geuser & Lefebvre, 2011), offers a 
robust means of extracting precipitate composition and vol-
ume fraction, free from the influence of local magnification ef-
fects. The normalized correlation function for a sphere of 
radius R can also be calculated assuming a homogenous dens-
ity with a sharp interface with the matrix as follows (Guinier 
et al., 1955; Philippe et al., 2009): 

γsphere
0 (r, R) =

1 −
3r
4R

+
r3

16R3 (r ≤ 2R)

0 (r > 2R)

⎧
⎪⎪⎨

⎪⎪⎩

. (11) 

Assuming a log-normal size distribution of spheres and inte-
grating Equation (11), the experimental data can be fit to ex-
tract the size of the clusters. A 20% dispersity in the 
log-normal distribution is assumed, and a contribution of an 
excluded volume is also added (Kruglov, 2005). 

The PCF is plotted as γ(r) · r, allowing for an easier compari-
son of the differences in size between different conditions, 

since the position of the maximum of γ(r) · r is related to the 
length of correlation (i.e., to the size of the clusters). 

The TEM specimens were prepared by grinding bulk 
specimens to ∼100 μm thickness before they were punched 
out to 3 mm disks and subsequently electropolished using an 
electrolyte mixture of 1/3 HNO3 and 2/3 C3CH3OH. The tem-
perature was kept at 25 ± 5°C at an applied voltage of 20 V. 
High-angle annular dark-field scanning TEM (HAADF- 
STEM) images were collected using a double-corrected JEOL 
ARM200CF operated at 200 kV with convergence semiangle 
and inner collector angle 27 and 48 mrad, respectively. 

Results 
Hardness 
The hardness of the supersaturated solid solution (SSSS) 
for the 7003 alloy starts at around 46 HV while it is higher 
for the 7046 alloy, close to 61 HV. The hardness progressively 
increases for both alloys during NA, as shown in Figure 1. 

The hardness measurements taken after 3 months of NA re-
vealed a considerable hardness increase to around 115 HV for 
the 7003 alloy and 135 HV for the 7046 alloy. Further hard-
ness measurements revealed that the hardness for both alloys 
later saturated at around 125 and 155 HV for the 7003 and 
7046 alloy, respectively, after 1 year NA. Nevertheless, 3 
months of NA was chosen as the conditions to characterize 
the microstructure of these alloys. 

APT Results Processed by the IPM Methodology 
The APT data sets were used to extract smaller regions of 
interest (ROI) that were used for visualizing the clustering, 
as shown through Figures 2a and 2b for 7003 alloy and  
Figures 2d and 2e for 7046 alloy. The IPM was used to extract 
size distributions, as seen in Figures 2c and 2f for 7003 and 
7046 alloys, respectively. Size measurements in this study refer 
to the diameter of the precipitates measured using Equation 
(1) similar to our previous studies (Shah et al., 2022a,  
2022b). Additionally, the radius of gyration has been used 
to elucidate the mean diameter. The radius of gyration is the 
radius of a body having its mass concentrated at a single dis-
tance from its center of mass (Kelly & Miller, 2007; Gault 

Fig. 1. Evolution of hardness as a function of ageing time for both 7003 
and 7046 alloys. The blue circles indicate the condition that was chosen 
for APT analysis.   

Sohail Shah et al.                                                                                                                                                                                                  3 



et al., 2012). The size distributions shown are an average of 
the size distributions obtained for the two data sets for each 
alloy. 

For both alloys, the size distribution fits well with a log- 
normal distribution. Table 4 shows the quantitative measure-
ments extracted from the IPM. It is quite evident that the two 
data sets for each alloy show similar size and composition of 
the clusters. The average size of the clusters for the 7003 alloy 
is around 1.8 nm, while it is slightly lower, around 1.5 nm, for 
the 7046 alloy, as measured by Ez. The average Zn/Mg ratio 
for the 7003 alloy is around 2 while it is around 1.5 for the 
7046 alloy, as indicated in Table 4. The measured Extentx 

(Ex) is consistently larger than Ez, as seen in Table 2 for all 
four data sets whereas the opposite is expected for low-field 
particles. This is mainly due to the spatial resolution aspect 
of APT dominating the local magnification effects and 
will be discussed in the Discussion section. Since Extent in x 
and y are very similar, only Ex is reported in Tables 2 and 4. 
The measured Ez is in close agreement with the size measure-
ments by TEM (shown in the Cluster Observations by 
HAADF-STEM section) and hence is regarded as more rele-
vant in terms of describing the size using the IPM in this case. 

APT Results Processed by the PCF Methodology 
The calculations of zinc (Zn–Zn), magnesium (Mg–Mg), cop-
per (Cu–Cu) correlations along with the cross correlations for 
the three elements are shown in Figure 5. The first maximum 

of the curves, indicative of the size of the objects, is similar 
for all the correlations. This indicates a single distribution of 
clusters containing both Zn and Mg (and Cu for 7046). This 
size is consistently smaller for 7046 than for 7003, in agree-
ment with the IPM results. The amplitude of the Zn–Zn PCF 
is larger for 7003 than for 7046, while the Mg–Mg PCF amp-
litude is smaller for 7003 than for 7046. These observations 
confirm a higher Zn/Mg ratio for the 7003 than for the 
7046. The Cu correlations in Figure 3 are shown only for 
the 7046 alloy, since 7003 is a Cu-free alloy. Figure 3f shows 
higher scatter for the Cu–Cu plot due to lower signal from the 
Cu atoms. 

More quantitative results can be obtained from the PCF by 
fitting the data to a two-phase modeled data set (matrix + clus-
ters) containing spherical particles of homogeneous compos-
ition and with sharp interfaces (we shall further see that 
while this might be a reasonable assumption for larger precip-
itates, it is a coarse approximation for small clusters). The 
spherical shape is a good approximation being confirmed by 
the TEM analyses presented in the Cluster Observations by 
HAADF-STEM section. We further assume a log-normal dis-
tribution of the diameter. This model implies that all correla-
tions should be proportional, i.e., they should all have the 
same shape γ0(r) but with a different amplitude ΔC

2
. For 

more efficient fitting, we thus fitted the shape to the Zn–Zn 
correlation and assumed it was fixed for the other correlations, 
with only the amplitude changing. Despite the limitations of 
the interpretation model (spheres, homogeneous composition, 

Fig. 2. APT subvolumes of dimensions 25 × 25 × 70 nm3 extracted from the APT data sets showing clustering in the 7003 alloy for (a) data set 1 and (b) 
data set 2. Similar cluster volumes for the 7046 alloy are shown for (d) data set 1 and (e) data set 2. The average size distribution based on Ez of the two 
data sets of the two alloys is shown in (c) and (f).   
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and sharp interface), the quality of the fit is excellent, enabling 
the parameters of the model (size, compositions) to be 
extracted. 

The parameters extracted from the fit are shown in Table 3. 
These parameters show similar trends as the results from IPM, 
i.e., the clusters in 7003 are consistently larger than in the 
7046 and the cluster compositions are in reasonable agree-
ment with the Zn/Mg ratio being close to 2 for 7003 and 
1.5 for 7046. The main source of uncertainties on the values 
obtained through fitting is not due to the fitting procedure it-
self but rather to the limitation of the fitting model itself, i.e., a 
distribution of spheres with homogenous composition and a 
sharp interface with the matrix. The effects of these limitations 
on the parameter values are difficult to quantify but will be 
further discussed in the Discussion section. There are also sys-
tematic discrepancies between the IPM and PCF results, which 
can be explained by the way these parameters are computed 
and will be discussed further in the Discussion section. 

Cluster Observations by HAADF-STEM 
Atomically resolved HAADF-STEM was employed to investi-
gate the clusters in the alloys. Figures 4a and 4b show that 
both 7003 and 7046 exhibit a dense population of Guinier 
Preston (GPI) zones. Visually, the GPI zones have a larger diam-
eter in the 7003 alloy. This is in accordance with our previous 
results on the same alloy (Shah et al., 2022b). To investigate 
this in a quantitative matter, the diameters of at least 300 GPI 
zones were measured per condition. The GPI zones in 7003 
had an average diameter of 1.87 ± 0.17 nm, while in 7046, 
the average diameter was 1.67 ± 0.11 nm. The Ez is very similar 
to the way size measurements from TEM results often are ob-
tained. In this work, the size measurements of the GPI zones 
in the STEM images were estimated by assuming that the zones 
were spherical in shape. For each zone exhibiting clear atomic 
structure, the size was estimated by measuring the diameter of 
the zone. The error is given as the standard deviation. 

The size distributions of alloys 7003 and 7046 are illus-
trated in Figures 4c and 4d. In this analysis, we focused on 

estimating the distribution using only the structured GPI zones 
that were clearly identifiable, encompassing approximately 
50–60 GP zones. The inclusion of unstructured clusters, typic-
ally those with diameters smaller than 1 nm, posed a challenge 
due to the uncertainty of their overlap with lower-lying clus-
ters. It is important to note that while this limitation should 
not significantly impact the observed trend, which indicates 
slightly larger clusters in the 7003 alloy compared to the 
7046 alloy, it does imply that the mean diameters estimated 
from HAADF-STEM are likely to be overestimated. 

The IPM and the PCF Methodology Applied on 
Simulated Data Sets 
Experimental artifacts associated with an APT data set include 
the following:  

(i) A detection efficiency of 80% (similar to the LEAP 
5000XS used to analyze the experimental data sets in  
Fig. 2).  

(ii) Positioning uncertainty of atoms with different 
resolutions. 

The reduced detection efficiency of 80% was accounted for in 
the simulated data sets. APT volumes were simulated with box 
dimensions 20 × 20 × 100 nm3. A data set with a mean par-
ticle diameter of 1.8 nm was synthesized, picked up from the 
learnings of the 7003 alloy data sets. This is labeled as V1.8. 
A standard deviation of around 20% of the mean diameter 
and a log-normal distribution were applied. The particles 
were Zn and Mg enriched but without Cu, like the experimen-
tal data sets of the 7003 alloy. Only Al, Zn, and Mg elements 
were used to generate the volumes. The particles introduced 
into the volumes had a sharp interface. Once all particles 
have been introduced, a random spatial distortion of each 
atom position was made to obtain a more realistic data set 
as compared to an experimental measurement. Hence, the ini-
tially abrupt particle interface was blurred. 

First, an “ideal resolution” of 0.2 nm in depth and 0.5 nm in 
lateral resolution was applied to the entire data set. This is a 
Gaussian resolution with 0.2 and 0.5 nm representing 2σ. 
This implies that the position of atoms was randomized by 
0.2 and 0.5 nm in the evaporation and lateral directions, re-
spectively. The concentration of solute in the particles is set 
higher than what is extracted from the experimental data. 
This is done in order to try and simulate the experimental 
data with respect to particle metrology. Next, the resolution 
is degraded until a match in the PCFs is observed when com-
pared with the experimental PCFs. We call this dataset the 
“degraded resolution” and label it V1.8DR. 

The number densities of both data sets were set to 1E25 m−3. 
The size distribution for V1.8 is shown in Figure 5b while the 

Table 2. Average (Mean) Results of Cluster Analysis by IPM for APT Data Sets of 7003 and 7046 Alloys.  

Mean Diameter 
(nm)  Ez (nm) 

Cluster Composition (at%) Number Density 
(1024/m3) Zn/Mg Ex (nm) Zn Mg Cu  

7003 D1  2.45 ± 0.60  2.59 ± 1.53  1.75 ± 0.91  11.77 ± 0.32  5.82 ± 0.22  0.09 ± 0.02  3.19 ± 0.08  2.03 ± 0.14 
7003 D2  2.53 ± 0.59  2.69 ± 1.45  1.88 ± 0.84  10.77 ± 0.29  5.35 ± 0.21  0.04 ± 0.01  3.25 ± 0.08  2.02 ± 0.10 
7046 D1  2.15 ± 0.45  2.29 ± 1.10  1.50 ± 0.64  11.59 ± 0.41  7.61 ± 0.15  0.19 ± 0.10  2.34 ± 0.07  1.52 ± 0.08 
7046 D2  1.96 ± 0.39  1.63 ± 1.02  1.21 ± 0.57  12.39 ± 0.45  8.09 ± 0.67  0.32 ± 0.19  1.51 ± 0.10  1.54 ± 0.17 

The uncertainties are calculated through 2
�������
C(1−C)

N



, where C is the concentration of a particular element and n the total number of atoms in the isolated clusters 
identified by IPM.  

Table 3. Mean Cluster Size (Diameter), Composition, Number Density, 
and Zn/Mg Ratio Obtained by Fitting the PCF Methodology Data in  
Figure 5 Assuming a Log-Normal Distribution of Spherical Clusters.  

Mean  
Diameter  

(nm) 

Cluster Composition 
(at%) 

Number  
Density  

(1024/m3) 
Zn/ 
Mg Zn Mg Cu  

7003 D1  2.98  9.76  5.03  0.14  5.9  1.97 
7003 D2  3.15  8.69  4.52  0.11  6.3  1.95 
7046 D1  2.61  7.76  5.34  0.3  13.2  1.47 
7046 D2  3.1  8.02  5.32  0.36  7.7  1.53   

Sohail Shah et al.                                                                                                                                                                                                  5 



corresponding PCFs are seen through Figures 5c–5e. The amp-
litude of the PCF of V1.8 is much greater than other data sets 
(experimental and simulation) while the amplitude of PCF of 
V1.8DR is very similar to that of the experimental data sets 
(7003 D1 and D2). 

The quantitative data extracted by the IPM for V1.8 and 
V1.8DR are shown in Table 4. Both these volumes have a 
higher concentration of solute input in the particles; 20 at% 
Zn and 10 at% Mg. Since both the ideal resolution and the de-
graded resolution volumes resulted in concentrations much 
lower than the input concentrations, it is clear from the IPM 
results that the apparent composition of the clusters is greatly 
affected by the resolution. Number densities of detected clus-
ters are also highly affected, for both volumes, as seen in  
Table 4. 

When the resolution is degraded, the size measurements for 
V1.8DR by the IPM are underestimated, as seen in Table 4, 
using the Ez parameter, being smaller than expected. This is a 

nontrivial effect, which indicates that a substantial proportion 
of the interfacial cluster atoms has been attributed to the matrix 
during IPM. Since the applied spatial resolution is better in Z 
than in XY, the Ex values are consistently larger than Ez. 

Because of the broader extension of the clusters due to the 
spatial resolution, the PCF methodology computes a larger 
average size than prescribed by the input data set. The 
degraded resolution also strongly affects both the number of 
detected solutes in the clusters and their number densities, 
cf., Tables 4 and 5. 

The PCF methodology confirms the effect of the degraded 
resolution with similar results as compared to IPM for V1.8, 
as seen in Tables 4 and 5. Most importantly, it should be no-
ticed that V1.8DR seems to mimic the behavior of the 7003: it 
gives similar results on the detected clusters with both IPM and 
PCF, the overall shape and amplitude of the PCF curves are 
similar, and the volume was obtained with initial cluster sizes 
compatible with HAADF-STEM. 

Table 4. Average (Mean) Results of Particle Analysis Done by the IPM on Simulated Volumes. 

Condition Guinier Diameter (nm) Ex (nm) Ez (nm) 

Cluster Composition (at%)   

Zn Mg 
Number Density  

(1024/m3) Zn/Mg  

V1.8  2.32 ± 0.24  2.36 ± 1.11  2.24 ± 1.01  16.56 ± 0.52  8.17 ± 0.32  5.65 ± 0.02  2.03 ± 0.08 
V1.8DR  1.93 ± 0.20  2.40 ± 1.012  1.89 ± 0.86  12.92 ± 0.37  6.37 ± 0.21  3.50 ± 0.01  2.03 ± 0.07  

Fig. 3. Pair correlation functions for (a) Zn–Zn, (b) Zn–Mg, (c) Zn–Cu, (d) Mg–Mg, (e) Mg–Cu, and (f) Cu–Cu pairs from the APT data sets shown in  
Figure 2.   
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Discussion 
The Apparent Discrepancies in the Cluster 
Parameters as Seen by the Methodologies 
We have looked at the clustering state in the 7003 and 7046 
alloys by APT (IPM and PCF) and by HAADF-STEM. We 
found similar trends among the methods: the clusters seem 
consistently smaller in the 7046 than in the 7003. The 
Zn/Mg ratio was found to be about 2 for 7003 and 1.5 for 
7046 with both APT methods. There are however systematic 
discrepancies that can be at least partially explained both by 
the difference in approach between IPM and PCF based meth-
ods and by the nature of APT data. These discrepancies are as 
follows: 

(i) The IPM method finds consistently higher solute con-
tent in the clusters than the PCF methodology. 

(ii) The IPM method finds consistently lower number dens-
ity of clusters than the PCF methodology.  

(iii) Both APT methods find larger clusters than 
HAADF-STEM. 

These discrepancies should be discussed in the context of very 
small clusters that do not present a sharp interface with the 
matrix, partly or entirely because of a finite spatial resolution 
limiting the positioning accuracy. 

It should be kept in mind that the IPM methodology and the 
PCF methodology are two very different approaches. The IPM 
is a cluster identification method. Its objective is to label each 
atom in the data set as belonging either to the clusters or to the 
matrix. The result depends on the choice of parameters, which 
are chosen through an optimization process aiming at minim-
izing the amount of “false positives” whereby atoms from the 
matrix are wrongly labeled as clusters. It requires as input an 
estimate of a minimal size for the clusters. An erosion step 
guarantees that the clusters do not include a shell of matrix. 
This ensures that compositions computed on the detected clus-
ters are measured in a condition, neither including too small 
clusters nor interfacial area of the clusters that includes matrix 
atoms from a diffuse interface. 

This is in contrast with the PCF method, which considers 
the data set as a whole and assumes that the clusters have a 
homogeneous composition. Hence, when the cluster/matrix 

Fig. 4. HAADF-STEM images from (a) 7003 and (b) 7046 showing a dense population of GPI zones. The red circle in (a) exemplifies how the sizes of the 
GPI zones were estimated using the diameter of the circle. Corresponding size distribution estimation has been done for (c) 7003 and (d) 7046 based on 
50–60 clusters. The finer clusters without structure were not included in the statistics due to uncertainty of overlap.   
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interface is actually diffuse and the cluster size is small, the 
average composition measured by the PCF fitting method is 
likely to be smaller, explaining discrepancy (i). 

Discrepancy (ii) is indirectly related to (i) and can also be ex-
plained by the selective approach (IPM) versus global ap-
proach (PCF): the smaller clusters from the data set may be 
part of the cluster distribution fitted by the PCF approach 
while being labeled as too small to be a cluster by IPM, thus 
lowering the detected number density. Whether this is a 
good or a bad thing depends on the situation. The IPM param-
eters could be set to detect more clusters but very likely at the 
cost of an apparent lower cluster composition. 

Discrepancy (iii) is more informative on the metrology of 
such small clusters by APT than on the methods themselves. 
The size histograms obtained by HAADF-STEM are likely to 
be very good estimates of the size of the clusters. If anything, 
they might be slight overestimations since the smaller diffuse 

clusters were left out of the calculation. This means that the 
clusters’ apparent size in APT is too large. Since the data set 
reconstructions were properly calibrated and since the local 
magnification effect (higher density in these objects) should 
have a reverse effect, this can be only attributed to a spatial 
resolution blurring of the interfaces (De Geuser & Gault, 
2020). 

The application of the two methodologies to simulated data 
sets enabled to better estimate the instrumental effect on the 
cluster parameters by attempting to create realistic simulated 
data sets that are compatible with our experimental results. 

Studies of Simulated Volumes 

Number Density Measurements 
From the ideal resolution data set, 64% of the particles are de-
tected with the IPM, while when applied to the degraded 

Fig. 5. Simulated volume (a) V1.8 showing isoconcentration surface of 7 at% Zn + Mg to visualize the particles inserted. Size distribution obtained from 
IPM for (b) V1.8. PCF for (c) Zn–Zn, (d) Zn–Mg, and (e) Mg–Mg for both volumes.   
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resolution data set (V1.8DR), only 39% of particles are 
detected. Hyde et al. (2017) found it challenging to detect 
clusters smaller than 1 nm in diameter using the same method-
ology, while the detection of clusters was even worse using the 
MSM, despite having a higher solute concentration contrast 
between the matrix and the clusters. This is in line with the 
current observations as demonstrated in Figure 5b with the 
size distribution showing no clusters detected below 1 nm in 
diameter. 

The results for the “degraded resolution” suggest that the 
number densities measured are even lower when a lower reso-
lution is accounted for. The spatial distortions in lateral and 
depth resolution make it further challenging to detect the clus-
ters smaller or close to 1 nm in diameter. To distinguish the 
smallest particles (with diameter smaller than about 1 nm) 
from random solute fluctuations becomes problematic, and 
thus, a lot of fine particles are not detected by the IPM. With 
the methodology estimation reported by Hyde et al. (2017), 
no false-positive clusters were introduced. This was done by 
comparing the “real cluster id” generated from the simulated 
volume with the IPM cluster id. With the degraded resolution, 
the smaller clusters are simply not there anymore due to the 
blurring caused by the spatial resolution effects. 

The statistical method using the PCF, on the other hand, esti-
mates the number density from the volume fraction of particles 
based on the average volume of particles as fv/〈V〉. There is only 
a slightly higher estimated volume fraction for the cases with de-
graded resolution. However, the average particle diameter esti-
mated for V1.8DR is higher than for V1.8. Hence, similar 
number densities are predicted by the PCF methodology for 
the ideal resolution and the degraded spatial resolution. As al-
ready discussed, this difference between IPM and PCF is due 
to different approaches (selective for IPM and global for PCF). 

Size Measurements 
When considering the ideal resolution data set (V1.8), we see 
that both methods (IPM and PCF) overestimate the size of par-
ticles by around 28%, cf., Tables 4 and 5. However, when 
considering the degraded resolution data set (V1.8DR), a 
smaller average cluster diameter is estimated by the IPM 
(∼1.9 nm, cf., Table 4), while the PCF methodology overesti-
mates the size by almost 60% (cf., Table 5). The IPM mitigates 
the effect of spatial resolution and blurring of atoms by utiliz-
ing the erosion step, which removes the interface atoms from 
the clusters. This in turn reduces the size of clusters and can ex-
plain the trend of lower size measurements for V1.8DR. Note 
that this data set is very similar to the experimental one in 
terms of PCF amplitudes and concentration estimates. 

The PCF methodology, on the other hand, slightly overesti-
mates the cluster diameter with degraded spatial resolution. 
This can be explained by the scatter to the atomic positions, 
which for the PCF methodology leads to an increase in the 
net volume within each cluster. The volume fraction measured 

by the PCF methodology also increases for V1.8DR as com-
pared to their ideal resolution counterparts, which explains 
the increase in the mean diameter estimated by the PCF 
methodology. 

Composition Estimates 
The simulated volumes V1.8 and V1.8DR had a higher input 
concentration of solutes in the particles (Zn = 20 at% and 
Mg = 10 at%) than the measured ones. This was mainly 
done to achieve a similar amplitude of the PCFs after spatial 
degradation as compared to the experimental data. The ampli-
tudes of V1.8DR and of the experimental data set (7003 D1 
and D2) are very similar, as seen in Figure 6. 

For both the IPM and the PCF methodology, the Zn and Mg 
contents in the clusters are close to the input composition of 
particles for V1.8. However, when the spatial resolution is de-
graded, the Mg and Zn contents in the clusters become under-
estimated by both methodologies for V1.8DR, as seen in  
Tables 4 and 5. 

Let us first consider the PCF approach. The amplitude of 
PCFs for the degraded data sets is smaller than its ideal reso-
lution counterpart, as seen in Figure 6. Note that Equation 
(10) for the particle compositions involves the bulk compos-
ition as well as the matrix composition. Ca

p is very sensitive, be-
cause of the factor of 1/(C − Cm) being close to zero in  
Equation (10). This increases the uncertainty and makes the 
composition of solute in particles challenging to accurately 
measure by this method. The computation of the particle com-
position thus strongly depends on the matrix and bulk compo-
sitions used. The values of ΔC2

Mg, ΔC2
Zn and ΔC2

Zn−Mg at r = 0 
can be used in Equation (10) to extract these as the two un-
knowns (CMg

p and CZn
p ), although matrix compositions can 

be influenced strongly by the lateral scatter. 
Although IPM estimated the composition of particles in 

V1.8 close to the input concentrations, care must be taken, 
since the particles smaller than about 1 nm in diameter remain 
undetected due to the spatial degradation and possibly the par-
ticles no longer existing (become a part of the random fluctu-
ation). These small particles then become poorly represented 
in terms of the statistics. Hence, the composition of these par-
ticles has a high uncertainty, and the estimated composition is 
dominated by the larger particles, which have a defined inter-
face and composition. However, in the synthesized samples 
considered here, all particles had the same stoichiometry; 
hence, this issue did not affect the estimates in our cases. 

The IPM underestimates the composition for the degraded 
resolution volumes. This is expected, since the lateral scatter 
can result in the artificial introduction of a significant level of 
matrix (Al) into the defined particle. A similar trend was seen 
by Hyde et al. (2011) when using MSM to determine the com-
position for simulation of trajectory aberrations. This results in 
a small solute cluster being significantly diluted due to the scat-
ter caused by the degraded resolution parameters. 

Table 5. Mean Particle Diameter, Composition, Number Density, and Zn/Mg Ratio Obtained by the PCF Methodology by Fitting the Data in Figure 5, 
Assuming a Log-Normal Distribution of Spherical Particles. 

Condition Diameter (nm) 

Particle 
Composition (at %)   

Zn Mg Number Density (1024/m3) Zn/Mg  

V1.8  2.24  18.76  9.43  6.82  1.99 
V1.8DR  2.90  10.50  5.12  5.14  2.05   
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Interestingly, the concentration of solute in particles measured 
by both IPM and PCF for V1.8DR is very similar to the experi-
mental data sets, as seen in Table 3. Although the solute concen-
tration is underestimated when compared to the input values in 
the data set, we see that the degraded resolution (V1.8DR) is in-
deed a good representation of the actual experimental data set. 
This in turn indicates the underestimation of solute concentra-
tion in the experimental data sets. It is well known that the local 
magnification effects cause trajectory aberrations, coupled with 
degradation of resolution ultimately leading to the underestima-
tion of solute inside particles. We see a similar trend here con-
firmed by V1.8DR, wherein a higher concentration of solute in 
particles is heavily underestimated, causing erroneous compos-
ition measurements. The Zn/Mg ratio estimated for both simu-
lated volumes is close to 2, as seen from Tables 4 and 5, 
indicating that the quantification of the amount of Zn and Mg 
inside particles is affected proportionally, and hence, the true ra-
tio is expected to be preserved. 

Experimental Data Interpretation 
The analysis conditions were optimized for the experimental 
data to avoid preferential evaporation. A high pulse fraction 
and low temperature were used to analyze all data sets 
(Saxey, 2011). No sign of molecular dissociation (Jin et al., 
2022) was seen. Based on the understanding gained from the 
simulated volumes, the average compositions of GP zones 
for 7003 and 7046 alloys estimated by both PCF methodology 
and IPM are underestimated. The apparent particle compos-
ition was lower than the input value (20 at% Zn and 12 at 
% Mg) for the simulated volume, along with a reduced meas-
ured number density, mainly due to particles below 1 nm not 
being detected. 

In principle, the shapes of the PCFs for Zn, Mg, and Zn–Mg 
should all be the same, since they originate from the same par-
ticles (spheres). This is very well reproduced in the simulated 
volume, as seen in Figures 5b and 5c. Both simulated volumes 
(V1.8and V1.8DR) have the same shape as seen from Figures 
5b and 5c. They overlap each other and follow the “pseudo- 
binary” assumption. 

The experimental data set, on the other hand, shows slightly 
different shapes of the PCFs. Since we have only a single popu-
lation of clusters (GP zones predominantly), we should ideally 
expect all PCFs to be of the same shape. In particular, the mean 
size of the GP zones would be slightly smaller if it was based on 
the fit from Mg rather than that of Zn. Several works on Al– 
Zn–Mg alloys (Stiller et al., 1999; Engdahl et al., 2002) have 
reported this effect, where the extension of the Zn enrichment 
in precipitates is higher than that of Mg. This can be inter-
preted as an APT artifact, wherein subtle changes in the evap-
oration field of the matrix atoms within particles change the 
electric field distribution and hence cause these chromatic 
aberrations (Marquis & Vurpillot, 2008). 

However, the use of the Zn PCF in the calculations cannot solely 
explain the overestimation of the mean diameter by the PCF meth-
odology. A decrease of the estimated diameter of around 7% is 
seen when using the PCF of Mg instead of Zn. The spatial reso-
lution is element specific, as we see in the case of PCFs plotted 
for different elements for the same data set in Figure 7. This is 
more of an instrument effect that is not seen in the simulated vol-
umes. Additionally, this will also affect the results obtained by the 
IPM. The spatial resolution plays an important role in determining 
the size, as also pointed out by other authors (Marquis & 
Vurpillot, 2008; De Geuser & Gault, 2020). 

It can be seen by comparing Figure 6a and Figures 5b and 5c 
that there is a part of the PCF that is negative. This “dip” is 

Fig. 6. PCF plots of (a) Zn–Zn, (b) Zn–Mg, and (c) Mg–Mg for the simulated and experimental (7003) data sets. The degraded resolution data set of the 
simulated volume is a close match in terms of PCFs compared to the 7003 data sets.   
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more prominent in the PCF curves from the measured experi-
mental data sets than in the simulated volumes. The interpar-
ticle interaction qualitatively gives this effect, and the dip can 
be well reproduced by accounting for an “excluded volume” 
(Kruglov, 2005) in the PCF methodology. This is because 
two particles cannot overlap. Hence, the position of each par-
ticle is not independent. However, the dip can also be due to 
depletion in solute around the particles as part of the solute 
diffusion, which is also not accounted for. Anyhow, the cor-
rection for the dip decreases the estimate of the mean diameter 
only slightly, by a few percent. Hence, it will neither affect 
much the estimates of particle compositions. 

The IPM gives representative size measurements with 
Guinier diameter, Ex, and Ez for the simulated volumes as 
seen in Tables 4 and 5. This is not the case for experimental 
data sets though. TEM measurements agree with the IPM 
size measurements (Ez) for the experimental data sets. The 
Ex is overestimated for all four data sets and on average is 
around 1.7 times the Ez. The considered clusters are low-field 
precipitates giving rise to higher atomic density; hence, the op-
posite was expected, i.e., a contraction in the XY plane and po-
tentially to appear smaller. However, this is not the case. This 
opposite trend is attributed to the local magnification effects 
and trajectory overlaps due to the difference in evaporation 
field between the matrix and particles, which are seen in the 
experimental data sets (Vurpillot et al., 2000). In other words, 
the spatial resolution is locally worse. 

Number density measurements, as highlighted in the above 
section, are heavily underdetermined by IPM for V1.8. From 
the TEM results, many disordered clusters smaller than 
1 nm are seen, which are not taken into account while estimat-
ing the size distribution as seen in Figures 4c and 4d due to the 
challenge of deconvoluting the overlapping clusters. 

Both methodologies have shown reasonable agreements on 
size and composition measurements. The important under-
standing from the simulated volumes in an attempt to mimic 
the experimental data sets showed that both methodologies 
underestimate the concentration of solute within particles. 
Features less than 1 nm usually go undetected, and conse-
quently, the number densities are underestimated. Care must 
be taken, since number densities measured by IPM are sensi-
tive to the size of the particles, while the estimate by the PCF 
is based on the average volume of the particles. 

Conclusions 
By using a combination of APT data interpretation methodolo-
gies, supported by simulated data sets and HAADF-STEM ex-
periments, we have shown that reliable APT measurements of 
the size and compositions from small clusters issued from the 
early stages of decomposition in Al–Zn–Mg alloy are challen-
ging. Because of their small size, the particles/clusters are sub-
ject to significant distortions due to degraded resolution, 
leading to an increase of their apparent size as well as a decrease 
of their apparent solute content. While these effects are likely to 
be system dependent, we have estimated in our case that the 
cluster solute content dropped by 40%. The effect on the ap-
parent size is more complex to evaluate because it is strongly 
anisotropic, due to the anisotropy of the resolution in the lateral 
and evaporation directions. It is clear, however, that these ef-
fects are most severe for the smaller clusters, so that particular 

Fig. 7. Normalized PCF for Zn–Zn, Zn–Mg, and Mg–Mg obtained from (a) 
7003 experimental data set and simulated volumes (b) V2DR and (c) 
V3DR.   
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care should be taken when interpreting apparent size and 
compositions of clusters from APT measurements of naturally 
age-hardened or underaged conditions of Al–Zn–Mg alumi-
num alloys. 

Availability of Data and Materials 
The raw data used to reproduce the presented results are avail-
able in the Zenodo repository: http://doi.org/10.5281/zenodo. 
8403644. 
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