
Vol.:(0123456789)

Energy Systems
https://doi.org/10.1007/s12667-023-00614-y

1 3

ORIGINAL PAPER

Optimal price‑based scheduling of a pumped‑storage 
hydropower plant considering environmental constraints

Asja Alic1   · Linn Emelie Schäffer2,4 · Marco Toffolon1 · Vincenzo Trovato1,3 

Received: 2 December 2022 / Accepted: 6 August 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
The paper proposes a novel medium-term scheduling model for a hydropower sys-
tem composed by a pumped storage hydropower plant connected to a traditional 
hydropower plant subject to three types of environmental constraints; these deal 
with the maximum water abstraction from the reservoir thought the turbines and 
through the pump for energy production, the minimum environmental water flow 
and the ramping capabilities of water volumes inside the system’s reservoirs. The 
scheduling problem is formulated for a planning horizon of 1 year with weekly deci-
sion stages. The methodology to determine the optimal operation of the plant is 
based on a stochastic dynamic programming algorithm which allows for an accurate 
representation of the uncertainties associated to the water inflows and energy prices. 
Moreover, it facilitates the handling of the non-convex characteristic of the state-
dependent constraint on maximum water abstraction from the reservoir. The model 
is applied to the case of a real hydropower system based on a cascaded watercourse 
with two conventional hydropower plants in south of Norway to assess the economic 
benefits of having a pumping unit and the technical impact of the above-mentioned 
environmental constraints. Furthermore, this work proposes a methodology to ana-
lyze the optimal operation of the hydropower system, computed for different tempo-
ral resolutions, in order to investigate the techno-economic impact of the constraints 
involving dependencies on the states of the system, the different environmental con-
straints and other seasonal effects on the accuracy and the applicability of medium-
term scheduling models. Further case studies assess the computational burden and 
the precision of the results when adopting a finer discretization of the state variables 
of the dynamic-programming-based methodology.
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GHG	� Green House Gases
HPP	� Hydropower Plant
MEF	� Minimum Environmental Flow
PSHP	� Pumped Storage Hydropower Plant
RES	� Renewable Energy Sources
SCWA​	� State-dependent Constraint on Maximum Water Abstraction
SDP	� Stochastic Dynamic Programming
WVs	� Water Values

Sets
Dh	� Set of discharge segments from turbine per hydropower plant h
E
h
	� Set of pumped-water segments from pump in the upstream hydropower 

plant h
H	� Set of hydropower plants
I 	� Set of sub-intervals within each daily stage z
J 	� Set of iterations in SDP algorithm
K	� Set of sub-intervals within each weekly stage t
L	� Set of stochastic states per stage t
N 	� Set of discrete reservoir segments per reservoir
Sp	� Set of endogenous states–reservoirs’ volumes
Su	� Set of all stochastic states–weekly water inflows and average weekly 

energy prices
Su
h,t

	� Subset of stochastic states for reservoir h in stage t
T 	� Set of weekly stages
Tenv	� Subset of weeks during which the state-dependent constraint on maxi-

mum water abstraction is active
TMEF	� Subset of weeks during which the minimum environmental flow is 

required
Z	� Set of daily stages

Indexes
d	� Index for discharge segment for turbines
e	� Index for pumped-water segment for pumps
h	� Index for hydropower plant
i	� Index for the sub-interval within stage z
l	� Index for stochastic state in reservoir h within stage t
k	� Index for the sub-interval within stage t
m	� Index for volume segment in upper reservoir
n	� Index for volume segment in lower reservoir
r	� Index for water volume intervals for the evaluation of ramping constraints
t	� Index for weekly stage
z	� Index for daily stage

Decision variables
bh,k	� Variable for minimum environmental flow from reservoir h, in sub-inter-

val k [m3/s]
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fh,k	� Spillage from reservoir h, in sub-interval k [m3/s]
ph,k	� Generated power from reservoir h , in sub-interval k [MW]
pp

h,k
	� Power absorbed by the pump in the upstream reservoir h , in sub-interval 

k [MW]
qh,k,d	� Water discharge from turbine in sub-interval k , segment d from reservoir 

h [m3/s]
qp

h,k,e
	� Water pumped from pump in sub-interval k , segment e from the upstream 

reservoir h [m3/s]
res+

h,k
	� Slack variable for positive volume variations for reservoir ℎ, in sub-inter-

val k [Mm3]
res−

h,k
	� Slack variable for negative volume variations for reservoir ℎ, in sub-inter-

val k [Mm3]
mef h,k	� Slack variable for minimum environmental flow for reservoir ℎ, in sub-

interval k [m3/s]
vh,k	� Water volume in reservoir h , at the end of sub-interval k [Mm3]
�t+1	� Expected future revenue at stage t [€]
�n,m	� Weighting variable for reservoir segments n,m

Parameters
Cc	� Penalty cost for slack variables [€/m3/s]–[€/Mm3]
Cs	� Penalty cost for spillage [€/m3/s]
E	� Number of segments of the approximating piecewise liner function of the 

pump unit
FH	� Conversion factor, number of hours in each sub-interval k [h]
FC	� Conversion factor, flow to volume [Mm3/m3/s]
Fz	� Conversion factor, number of hours in each sub-interval z [h]
FVn,m	� Expected future revenue points for reservoir segments n and m [€]
I	� Number of sub-intervals in each daily stage z
J	� Maximum number of iterations in SDP algorithm
K	� Number of sub-intervals in each weekly stage t
L	� Number of states in each weekly stage t
N	� Number of discretization points per reservoir
Nr	� Number of water volume intervals for the evaluation of ramping 

constraints
ppmax

h,e
	� Maximum power absorbed by pump in the upstream reservoir h and 

pumped-water segment e [MW]
Pdh	� Parameter for pump direction
Qmin

h
	� Minimum environmental flow from hydropower plant h [m3/s]

Qmax
h,d

	� Maximum discharge from turbine per reservoir h and discharge segment 
d [m3/s]

QPmax

h,e
	� Maximum pumped water from pump in the upstream reservoir h and 

pumped-water segment e [m3/s]
sp	� Endogenous state
su
h,t,l

	� Stochastic state l at stage t per hydropower plant h
T 	� Number of stages in yearly-planning horizon
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vh,0	� Initial water volume in reservoir h for week t = 1 [Mm3]
Vlim
h

	� Environmental threshold for the downstream reservoir h [Mm3]
Vmax
h

	� Maximum storage volume in reservoir h [Mm3]
Vmin
h

	� Minimum storage volume in reservoir h [Mm3]
V
h
	� Threshold volume in the downstream reservoir h for pumping [Mm3]

Yh,t	� Total weekly water inflow to reservoir h at stage t [Mm3]
Yh,z	� Total daily water inflow to reservoir h at stage z [Mm3]
Z	� Number of stages in weekly-planning horizon
�h,k	� Net water head for hydropower h , in sub-interval k [m]
Δwv

j
	� Change in Water Value matrix in iteration j €/Mm3]

�	� Convergence tolerance for WVs [€/Mm3]
�h	� Deviation index for reservoir h [Mm3]
�h,d	� Performance slope for turbines per hydropower plant h and discharge seg-

ment d [MW/m3/s]
�p

h,e
	� Performance slope for pump in the upstream hydropower plant h and seg-

ment e [m3/s/MW]
�t,k	� Scaling factor for price variability in sub-interval k for stage t
�z,i	� Scaling factor for price variability in sub-interval i for stage z
�t	� Weekly average energy price at stage t [€/MWh]
�z	� Daily average energy price at stage z [€/MWh]
�s
h,N

	� Water volume for reservoir h per segment s and N discretization points 
[Mm3]

�+
l
	� Maximum water level increase for ramping constraints [m]

�−
l
	� Maximum water level decrease for ramping constraints [m]

�+
v
	� Maximum water volume increase for ramping constraints [Mm3]

�−
v
	� maximum water volume decrease for ramping constraints [Mm3]

�h,k	� Distribution factor of inflow to each sub-interval k in reservoir h
Ψh

j,t
(… )	� Water value matrix for reservoir h , stage t , iteration j

�
s

h,N
	� Upper extreme for the water segment s in hydropower plant h, for N dis-

cretization points [Mm3]
�
_

s

h,N

	� Lower extreme for the water segment s in hydropower plant h, for N 

discretization points [Mm3]

1  Introduction

The penetration of Renewable Energy Sources (RES),  such as wind and solar 
energy, in the several power systems worldwide have reached a remarkable share 
contributing to the reduction of Green House Gas emissions (GHG) stemming from 
conventional thermal power plants [1, 2]. However, the uncertainty and intermit-
tency of their outputs and the lack of support to the system inertial response [3] may 
affect the system frequency stability since the existing protection schemes might fail 
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to operate because of their pre-set condition [4, 5]. To mitigate these shortcomings 
and provide safe operation and control of power systems, additional and appropriate 
control schemes and ancillary services are needed. Furthermore, power system oper-
ators may require energy storage technologies and adequate management strategies 
to flexibly change their generation/demand output and provide ancillary services to 
the power systems. Pumped Storage Hydropower Plants (PSHPs) are nowadays one 
of the most mature and most spread technologies for energy storage [6]. The basic 
principle relies on the movement of water between two interconnected reservoirs, 
which are located at different altitudes. A volume of water may be diverted from the 
upper reservoir through a penstock to spin a hydraulic turbine coupled to a synchro-
nous generator in order to produce electrical energy (discharge phase). Afterwards, 
the system may absorb electrical energy to spin a hydraulic pump to move the vol-
ume of water from the lower reservoir back to the upper one (recharge phase) [7]. 
The opportunity to pump water towards the upper reservoir allows to store potential 
energy associated to a volume of water at a certain altitude and use this energy, later 
when needed, to produce electricity. Their round-trip efficiency, which indicates 
the percentage of the stored energy that can be retrieved later [8] may reach 80%—
depending on site-specific conditions [6]. Moreover, the typically large water stor-
age capacities of PSHPs make these systems suitable for energy-shifting over short-, 
medium- and long-term horizons [6]. On the one hand, PSHPs can produce energy 
if the power system position is short (the total demand exceeds the generation e.g. 
due to a lack of wind/solar generation). On the other hand, PSHPs absorb energy, 
while in pumping operation, to help the power system cope with long positions (the 
total generation is higher than the demand e.g., due to extra-availability of RES).

Such flexible operation of PSHPs may provide economic benefits. In fact, PSHPs 
may engage in energy arbitrage, operating in pump-mode in moments of low energy 
prices and operating in turbine-mode when the energy prices are higher. While con-
tributing to secure integration of uncertain and intermittent RES in power system, 
PSHPs might therefore give also significant potential economic advantages.

Even though traditional hydropower plants (HPPs)—with no pumping capabili-
ties—and PSHPs might play a key role in the energy transition, they have a non-
negligible impact on the surrounding ecosystems [9, 10] which must be considered 
when operating the existing hydropower systems or before constructing new ones. 
HPPs and PSHPs may modify both the morphology and the hydrodynamics inside 
the reservoirs as well as the flow regimes and the water quality of downstream 
watercourses [11]. The construction of dams and artificial reservoirs reduces the 
connectivity of aquatic systems, altering the flow regimes and causing hydropeaking 
phenomena. Consequently, non-natural hydropower waterflows may endanger flood-
plains, threaten fish, bird species and facilitate erosion processes [9]. These effects 
might be even more relevant in PSHPs where a pumping system is present. As a 
matter of fact, a more frequent movement of water between two interconnected res-
ervoirs might increase both the frequency and the magnitude in the water level vari-
ations inside each of the reservoirs [11]. Furthermore, the vertical mixing of water 
volumes can alter the thermal structure, deep water mixing processes and water cir-
culation characteristics [12]. Consequent changes in stratification can modify the 
water quality, the oxygenation and the nutrient concentration inside the water bodies 
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which in turn might affect aquatic species and the wildlife [12]. Especially during 
winter periods, also the stability of the ice cover of the reservoirs might be affected 
by these variable and frequent water fluctuations [13].

To mitigate these shortcomings and preserve the sustainment of the local flora 
and fauna, several site-specific environmental restrictions might be imposed by the 
national regulators or by the hydropower producers themselves as a voluntary act 
[14]. To find an efficient and sustainable trade-off between power production and 
the requirements on environmental flows, these environmental regulations must be 
precisely modelled and implemented as constraints in scheduling models. Among 
others, the minimum environmental flow (MEF) and the ramping constraints are 
the most commonly applied in HPPs and they are already adopted by many Euro-
pean countries. Note that MEF indicates the minimum amount of water that must 
be released from the reservoirs to preserve the quality of watercourses downstream 
the hydropower plants. The ramping constraints limit the variations of the flow 
downstream the outlet of the HPPs or the water level fluctuations inside the reser-
voir below a certain threshold. In addition, there are other types of environmental 
constraints known as “state-dependent” constraints, which are already widely used 
in Norwegian hydropower systems. Differently from the previous constraints, the 
state-dependent constraints are strictly dependent on the values of one or more state 
variables of the system, e.g., incoming water inflows and reservoirs’ volumes [15]. 
Moreover, they can be enforced or not or even simply modified in accordance with 
specific logical conditions and/or within determined periods of the year [16]. It is 
easy to be convinced that the application of any environmental constraint eventually 
decreases the possible operation of the PSHP, restricting the set of feasible solu-
tions for the optimal sequence of operations of the power plant. This, in turn, would 
reduce the associated revenue for the system.

1.1 � Context and related works

In light of the techno-economic and environmental considerations above, the 
assessment of the optimal operation of hydropower systems becomes crucial 
[17]. In general, the assessment of the optimal operation of a HPP over a certain 
horizon is subject to external uncertainties such as water inflows, snow storage 
and wholesale energy prices which in turn depend on other issues such as the 
available energy mix [18]. The modelling of these uncertainties into an optimal 
scheduling model depends on the length of the considered horizon. It is common 
to refer to long-, medium- and short-term optimal scheduling models for HPPs 
[19]. Long-term scheduling models are typically stochastic models used to make 
forecast on future energy prices, water inflows and energy production and they 
have typical scheduling horizon of 1–10 years. Medium-term models instead are 
used to evaluate the optimal management of the water volumes inside the reser-
voirs under inflow and price uncertainty for a planning horizon of few months 
up to a year [20]. Short-term scheduling models consider shorter periods of days 
or weeks during which the modelling and impact of certain uncertainties can be 



1 3

Optimal price‑based scheduling of a pumped‑storage hydropower…

neglected. In fact, differently from the long- and medium- term models, short-
term scheduling problems are deterministic models [17]. The optimal scheduling 
model developed in the proposed paper belongs to the category of medium-term 
problems.

Furthermore, it is worth pointing out that the assessment of the optimal operation 
of a HPP, e.g., in order to maximize the revenues, may not be trivial when state-
dependent constraints are enforced. This is because of the specific formulation of 
these constraints which would eventually make the overall optimization problem 
non-convex and thus hard to be solved. One practical example is the state-depend-
ent constraint on maximum water discharge, which prohibits the discharge of water 
through the turbines for energy production when the water levels of the reservoirs 
are below a certain threshold. This constraint aims to retain water during summer 
periods when inflows are abundant in order to satisfy both the ecological and recrea-
tional needs for high water levels during spring-summer seasons.

Previous works have demonstrated that the Stochastic Dual Dynamic Program-
ming (SDDP) is the most effective methodology in the field of the medium-term 
(and long-term) scheduling models for a hydropower system [21]. In addition, 
another methodology—the Stochastic Dynamic Programming (SDP)—stands out in 
literature as an effective tool when models are characterized by pronounced non-
convexities. The SDP is an efficient tool for solving sequential optimization prob-
lems—such as hydropower scheduling problems involving multi-stage decision 
processes—by decomposing the main optimal control problem into smaller optimi-
zation problems, according to Bellman’s principle of optimality [22]. Furthermore, 
the SDP algorithm facilitates the implementation of constraints involving time 
and state-dependent logical conditions—which in turn might result in non-convex 
mathematical formulations—and enables the representation of uncertainties such as 
water inflows and energy prices [20]. Finally, the SDP algorithms are suitable for 
small systems involving a limited number of state variables due to the intrinsic large 
computational capability required.

Two interesting and similar applications of the SDP are in [23] and [24] where 
the operational profitability of a hydropower system selling both energy and reserve 
capacity in a competitive market setting is presented. A mathematical model based 
on SDP is used to compute the Water Values (WVs) for the hydropower system. An 
effective extension of the SDP method, especially for large watersheds with multidi-
mensional inflows, is the sampling-SDP. As opposed to SDP, the WV function with 
the sampling-SDP depends on the index of an inflow scenarios. The optimization 
is therefore performed by using the inflow sequences directly rather than statistical 
models of the inflow scenarios. An application of this methodology to a real hydro-
power system in Canada is presented in [25]. Finally, a deterministic formulation of 
a discrete dynamic programming methodology to consider the variability and uncer-
tainty of water inflows and market energy prices is adopted in [26].

The medium-term optimal scheduling model proposed in this paper relies on the 
use of the SDP methodology. The choice is driven by the presence of non-convex 
and state-dependent environmental constraints. Moreover, it is worth noting that the 
analysis of the integration of the environmental constraints developed in this paper 
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within alternative methodologies (e.g., stochastic dual dynamic integer program-
ming or sampling-SDP) is beyond the scope of the paper.

Concerning the integration of environmental restrictions, previous studies have 
investigated the implementation of site-specific environmental constraints in opti-
mal scheduling models for traditional HPPs and how they can affect the hydropower 
system operation. The methodologies developed in [26–28] have explored the eco-
nomic impacts of MEF and of ramping constraints both on the WVs and on the 
annual operation of conventional HPPs. Results in [27] have evidenced how the 
implementation of such constraints can significantly affect the WVs which tend to 
increase with a larger MEF and decrease with more severe ramping constraints. In 
particular, the influence of MEF is stronger during the wettest seasons while the 
impacts of ramping constraints are more pronounced during the driest periods. Note 
that the MEF—which usually has the highest values during spring and summer—
can be seen as a reduction in the reservoir level which is reflected as an increase in 
the WVs. Additionally, [26] has demonstrated how the annual losses in energy pro-
duction and revenues increase quadratically as function of ramping constraints and 
increase almost linearly as function of MEF. Instead, the authors of [28] have found 
that ramping constraints can negatively affect the overall revenue by redistributing 
the power generation from periods of high energy prices to periods of lower energy 
prices but may give an increase in the total energy production.

On the other hand, [20] and [29] have investigated how the presence of state-
dependent constraints on maximum water discharge can affect the water manage-
ment inside the reservoir and the WVs themselves, especially during the restriction 
period. Results in [20] have shown that the state-dependent constraint on maximum 
discharge significantly impacts the WVs and therefore the operation of the system. 
Specifically, simulation results have shown that systems subject to this constraint 
exhibit an overall decrease in both the total energy production and in the revenues. 
Instead, the outcomes of [29] have evidenced how a tighten linear approximation 
can lead to a more accurate model representation and improvement in the system 
operation.

1.2 � Contributions

This paper provides clear contribution to the existing literature. The initial meth-
odology developed in [20] is effectively extended to produce a novel medium-
term scheduling model for a hydropower system composed by a PSHP and a tra-
ditional HPP. Furthermore, the system is subject to state-dependent constraints 
on maximum water release throught both the turbines and the pump unit and 
two additional environmental constraints: the constraints on MEF and on the 
ramping characteristics. It must be pointed out that the original model consid-
ered only the state-dependent constraint on maximum discharge for a traditonal 
HPP—thus limiting the discharge of water through the turbines for power produc-
tion. The addition of a pumping unit required therefore the re-formulation of the 
state-dependent constraint on maximum discharge in order to consider also the 
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maximum water allowed to be pumped by the pump during the restriction period. 
To highlight this fundamental modelling advancement, the present work refers 
to this constraint as “state-dependent constraint on maximum water abstraction” 
(SCWA), thus considering both the water discharged through the turbines and the 
water pumped by the pump unit.

The novel medium-term stochastic scheduling model allows therefore the assess-
ment of the optimal techno-economic operation of a hydropower system that aims 
to maximize the potential economic revenue while respecting the three above-men-
tioned environmental restrictions. The impact of these limitations is evaluated also 
considering the effect in PSHP operation on the sorrounding ecosystem. The SDP 
algorithm is used to evaluate the solution strategy for a hydropower system based 
on a cascaded watercourse composed by two interconnected reservoirs with relative 
power stations, enabling the representation of the uncertainties of water inflows and 
energy prices and facilitating the resolution of non-convexities present in the prob-
lem formulation due to state-dependent constraint on maximum water abstraction.

The main contributions of this paper can be summarized as follows:

1.	 The first contribution deals with the modelling of the optimal scheduling algo-
rithms. The original medium-term scheduling model—developed for a cascade 
system of two traditional HPPs—has been extended to include a pumping unit. 
Moreover, the model considers the simultaneous presence of three environmen-
tal constraints: (i) a constraint on MEF, (ii) a set of constraints on the varia-
tions on the water level fluctuations inside the reservoir and (iii) a SCWA from 
the reservoir. To the best of the authors’ knowledge, the implementation of the 
above-mentioned constraints to a hydropower system with a PSHP has not been 
formulated and tested in previous works. Similarly, previous works did not imple-
ment the three above-mentioned constraints, simultaneously.

2.	 The second contribution is the analysis on the actual ability to effectively ensure 
state-dependent constraints over different optimization horizons (e.g., weekly and 
daily horizons). In fact, due to their strict dependence on the knowledge and value 
of the state variables, the effectiveness of specific state-dependent constraints 
reduces when considering a weekly-resolution, leading to an under- or over-
estimation of the weekly energy production and revenues. Therefore, the proposed 
work investigates how specific state-dependent constraints might be enforced 
more precisely because of a more frequent knowledge of the state variables and 
the consequent changes in the system operation. In other words, this paper pro-
poses a novel methodology which, without introducing any computational burden, 
may effectively combine the typical framework of a mid-term scheduling model 
with the benefits of a more rapid optimal setting of the state variables.

3.	 The proposed model is applied to a real hydropower system located in south of 
Norway to assess the potential increase in annual revenues by adding a pump-
ing unit in a conventional hydropower plant. Moreover, the study evaluates the 
changes in operation, energy production and expected revenues of the hydropower 
system (both in traditional and pumping mode) when considering the presence 
of ramping constraints. Finally, the case studies investigate the effectiveness on 
the interpolation procedure for the calculation of the water volumes varying the 
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fundamental features of the SDP algorithm e.g., the granularity of the discretiza-
tion of the state variables.

This paper is organized as follows: Sect. 2 provides with an overview of the struc-
ture of the model, describing the considered hydropower system (Sect.  2.1) and 
explaining the use of the SDP algorithm for the calculation of WVs (Sect. 2.2) and 
the use of a Forward Simulation (FS) algorithm to assess the optimal operation of 
the hydropower system (Sect. 2.3). Section 3 deals with a description on the new 
modelling features (3.1 and 3.2) and describes in detail the mathematical formula-
tion of the optimization problem (3.3). Section 4 proposes a new methodology based 
on the features of the medium-term scheduling to simulate the operation of a hydro-
power system with daily stages. The case studies used to validate the model and the 
obtained results are reported in Sect. 5. Conclusive remarks are addressed in Sect. 6.

2 � Methodology

The proposed medium-term scheduling model is used to compute the optimal opera-
tion of a PSHP connected to a traditional HPP. The planning horizon is 1 year with 
weekly decision stages. The objective is to maximize the operational revenues whilst 
considering the presence of stochastic variables (i.e., water inflows and energy 
prices) and fulfilling technical and environmental constraints.

For this purpose, the proposed model requires the consecutive resolution of two 
algorithms: the SDP algorithm and the FS algorithm. The overall description of the 
resolution process is illustrated in Fig. 1.

The SDP algorithm solves the scheduling problem for each stage while consider-
ing all states of the model, i.e., the water inflows, wholesale energy prices and water 
volumes inside the reservoirs. For each combination of stages and states, the SDP 
algorithm calculates the relative WVs which inform on the optimal management of 
the water sources inside the reservoirs. The algorithm is solved backwards, starting 

Fig. 1   Model structure and 
resolution process of the SDP 
and FS algorithms
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from the end of the planning horizon, until convergence on the WVs is reached. 
Afterwards, the FS algorithm generates and simulates a certain number Ns of deter-
ministic scenarios in which the water inflows and energy prices are known before 
the weekly optimization problem is solved. Based on the optimal values of WVs 
(denoted with a star WVs* and being outputs of the SDP algorithm), the FS algo-
rithm optimizes the system’s operation and computes the expected revenues. Spe-
cific details on each of the algorithms are reported in the following.

2.1 � Hydropower system description

In general, a watercourse is referred to a set H of interconnected HPP where each 
HPP, indexed by h ∈ H , is composed by a reservoir, a penstock, and a powerhouse. 
Part of the water may be released from the reservoir though the penstock towards the 
turbine in the powerhouse, spinning it to activate a generator to produce electricity. 
Furthermore, a powerhouse may be equipped with a pump: by absorbing electrical 
energy from the power grid, the pumping machine allows for the water to be sent 
back to the reservoir of the plant. This setup is referred to a PSHP.

The presented medium-term scheduling model considers a hydropower system 
based on a watercourse composed by two cascaded interconnected plants such that 
H =

{
h, h

}
 . The upstream one is indicated with h = h and it is a PSHP; it dis-

charges the spilled water and the water used for energy production directly into the 
downstream reservoir denoted with h = h . Furthermore, given the presence of a 
pumping machine in the upper powerhouse h , the movement of water is also allowed 
from the reservoir h to the upper one h . The downstream plant h is a traditional HPP 
which discharges the spilled water and the water flowing through the turbines to pro-
duce electricity.

Moreover, as explained in Sect. 1.2, the proposed model considers that only the 
downstream reservoir h is subject to the SCWA.

2.2 � Stochastic dynamic programming algorithm

The objective of the SDP algorithm is the evaluation of the optimal WVs at each 
stage t = {1,… , T} of the optimization horizon. In this work, the optimization hori-
zon is chosen to be 1 year with weekly decision stages t , thus leading to T = 52 . 
Furthermore, each of the stages t is divided into K = 56 sub-intervals of three hours 
length, indexed by k = {1,… ,K}.

The WVs are expressed in €/Mm3 since they have an economic meaning. In fact, 
they represent the marginal value of storing water in a reservoir of a hydropower 
system. In accordance with the definition proposed in [30], the WVs represent the 
opportunity cost associated with the water stored in the reservoirs. The producer 
may decide to use the available water in the reservoir to direct energy towards the 
main power grid and collect revenues for it or store the water and use it at a later 
stage with a potential increase in profit. Note that, the WVs tend to decrease with 
increasing water volumes because the risk of spillage is higher, on the other hand 



	 A. Alic et al.

1 3

they tend to increase for low storage volumes because of a higher risk of empty-
ing the reservoirs. Therefore, the knowledge of WVs at each of the weekly stages t 
allows for an optimal management of the water volumes inside the reservoirs.

The SDP algorithm requires the definition of the state variables, which contain 
the main information of the system between one stage t − 1 and the next one t  . In 
this case, the set of state variables is made of two subsets: the first subset refers to 
the endogenous variables of the system ( Sp ) while the second one considers the 
exogenous and stochastic variables ( Su ) [20]. The endogenous state variables are 
the water volumes of the upper (h) and of the lower (h) reservoirs. Furthermore, as 
typically done for dynamic programming problems, these states are discretised. 
In this work, both the upper and the lower water volumes are equally divided 
into N equidistant points leading to a total of N2 possible water volume combina-
tions. The exogenous stochastic state variables are considered for each of the res-
ervoirs h and at each stage t  . Hence, a subset ( Su

h,t
∈ Su ) containing five possible 

states, indexed by l = {1,… , L} with L = 5 , is considered. Each of the L states 
comprises a pair of values: the total weekly inflow for each of the reservoirs (Yl)h,t 
[Mm3] and the corresponding average weekly wholesale energy prices (�l)t [€/
MWh]—as expressed in (1). It is worth noting that the weekly energy prices are 
the same for both the reservoirs.

The stochastic variables are modelled as discrete nodes using a discrete Markov 
chain [20]. This model receives as input several annual historical data of weekly 
inflows together with weekly average energy prices corresponding to the same 
weeks. A serial correlation between the inflows of two adjacent weeks t  and t + 1 
is evaluated, while a cross-correlation is calculated between the weekly inflows 
and the corresponding prices. For each week t  , 10000 points—corresponding to 
a combination of water inflows and relative energy prices—are sorted from the 
autoregressive model and grouped into five discrete nodes, using a K-means clus-
tering algorithm [31]. The transition probabilities from one state to another are 
determined by counting the shares of scenarios transitioning between different 
nodes, from one week to the next one [20].

The SDP algorithm solves the revenue-maximization problem described in 
Sect. 3.3 and calculates the WVs for each of the reservoirs ( h ∈ H ), at each of the 
weekly stages ( t ∈ T) and for all the reservoir volume combinations ( sp ∈ Sp ) and 
stochastic states ( su

h,t,l
∈ Su

h,t
⊂ Su ) of the model.

The evaluation of the WVs requires an iterative strategy since the WVs are 
unknown at the beginning of the procedure. In other words, the SDP algorithm 
is solved J times until a certain degree of convergence concerning the WVs is 
reached. At the first iteration ( j = 1 ), the WVs for the last stage T  are initialized 
to zero ( WVj=1,t=T = 0 ). Afterwards, within each iteration j ∈ J  , the SDP algo-
rithm is solved backwards, i.e. starting from the final stage T  up to the initial one, 
iterating over all reservoirs h , water volume states sp and their stochastic states 
su
h,t,l

 as illustrated in a simplified form in Fig. 2. Further explanations on the solu-
tion strategy can be found in [20].

(1)Su
h,t

=
{
Y1,…Yl,…YL;�1,… , �l,… �L

}
h,t
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The convergence of the SDP algorithm is checked by means of the stopping 
criterium (2) as done in [23], which evaluates whether Δwv

j
 , i.e. the absolute value 

of the difference between the WVs at t = T  and t = 0 at the end of iteration j , is 
smaller than a given tolerance �:

Where Ψh
j,t
(… ) indicates the matrix storing the values of WVs expressed in €/

Mm3 for reservoir h , stage t at iteration j . If convergence is reached, the iterative 
procedure stops. If not, (3) applies, where the WVs obtained from the first stage in 
iteration j ( WVj,t=0 ) are used as WVs for the last week T  in the next iteration j + 1 
(i.e. WVj+1,t=T ). This is to implement an infinite-planning horizon formulation i.e., 
assuming periodic yearly boundary conditions.

(2)

Δwv
j

=
||||Ψ

h
j,t=T

(
sp, su

h,t,l

)
− Ψh

j,t=0

(
sp, su

h,t,l

)|||| ≤ 𝜀 ∀sp ∈ Sp
,∀su

h,t,l
∈ Su

h,t
⊂ Su

,∀h ∈ H

(3)
Ψh

j+1,t=T

(
sp, su

h,t,l

)
= Ψh

j,t=0

(
sp, su

h,t,l

)
∀sp ∈ Sp

,∀su
h,t,l

∈ Su
h,t

⊂ Su
,∀h ∈ H

Fig. 2   Pseudocode of the SDP Algorithm scheme
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2.3 � Forward simulation algorithm

In accordance with Fig. 1, the FS algorithm computes the optimal operation of the 
combined plants of the considered hydropower system.

As explained in Fig. 3, for each generated scenario Ns , the FS solves the deter-
ministic weekly optimization problem by running the Scheduling Algorithm in 
Sect. 3.3 for each reservoir h , starting from the first week of the year t = 1 till the last 
one t = T  , and adopting the corresponding optimal WVs* obtained from the SDP 
algorithm. As a matter of fact, the states of the system, i.e., the water volumes in the 
reservoirs at the end of the previous stage vt−1

h,k=K
 , the total weekly water inflows Yh,t 

and average weekly energy prices �t , are now known quantities at the beginning of 
each stage t and given as input to the weekly-decision problem.

Hence the FS algorithm evaluates the optimal amount of water that must be 
released from the reservoirs for energy production ( q∗

h,k,d
 ) and optimal amount of 

water pumped by the pump unit ( qp∗
h,k,e

 ) at each sub-interval k.

3 � Modelling and formulation of the scheduling problem

3.1 � Pumping system

The proposed formulation of the PSHP adopts a modelling simplification of ignor-
ing the grid-connection configuration and types of electrical machines (e.g., fixed-
speed pumps vs. fully-fed or doubly-fed electrical machines). This allows to quantify 
a common overall upper bound for the flexibility and the additional value that can be 
provided by the PSHP whilst respecting fundamental environmental constraints. It 
is worth noting that the flexible operation of the pump unit enabled in this work bet-
ter resembles the features of a fully-fed or doubly-fed electric machine rather than a 
fixed-speed pump. Within this context, the first additional feature introduced in this 
paper is the modelling of the pumping system to upgrade the upstream traditional 
HPP to a PSHP. While in pumping operation, the pump installed in the upstream 
power station h would move a volume of water from the corresponding downstream 
reservoir h.

Fig. 3   Pseudocode of the FS Algorithm



1 3

Optimal price‑based scheduling of a pumped‑storage hydropower…

To do so, at each sub-interval k , the pump requires the absorption of electric power 
pp

h,k
 which is a function of the pumped water qp

h,k
 , the net head �

h,k
 and the pump effi-

ciency �p
h,k

 . The dependency of pp
h,k

 from the recalled parameters is non-linear e.g., 
due to the non-linear variation of the pump efficiency �p

h,k
 with respect to the net head 

�
h,k

 and on the pumped water qp
h,k

 . In accordance with the modelling assumptions of 
the turbines in [20], the proposed model neglects the net head variations with respect to 
the gross head available. This assumption if often implemented in medium-term sched-
uling models and lets the electric power pp

h,k
 be expressed by means of a single curve 

as the blue dotted one in Fig. 4. This curve can be therefore approximated by a concave 
piece-wise linear function (red solid line in Fig. 4).

The domain of the function is split into E intervals, indexed with e = {1,… ,E} . A 
generic interval e ∈ E

h
 is defined by the partition of the domain 

[
Qpmax

h,e−1
,Qpmax

h,e

]
 and 

the image 
[
ppmax

h,e−1
, ppmax

h,e

]
 . Within a generic interval e ∈ E

h
 , the relationship between 

the power consumption of the pump and the pumped water is imposed to be linear and 
it is described by the slope coefficient defined in (4):

Consequently, the power required by the pump pp
h,k

 at the upstream power station h 
at each sub-interval k , is formulated as in (5), while the relative pumped water qp

h,k,e
 is 

limited by (6), where Qpmax
h,e

 indicates the maximum water that can be pumped for each 
segment e:

(4)�p
h,e

=

Qpmax
h,e

− Qpmax
h,e−1

ppmax
h,e

− ppmax
h,e−1

∀e ∈ E
h

Fig. 4   Concave piecewise linear function modelling the relationship between the power consumption of 
the pump and the corresponding pumped water
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Moreover, it is important to account for the cavitation effect while in pump mode. 
Hence, the dependence of the pumping functioning with respect to the water levels 
inside the reservoirs has been considered. This issue is implemented by means of a 
state-dependent constraint on the water pumped by the pump qp

h,k,e
 where the state 

variables considered are the water volumes inside the downstream reservoir h from 
which the pump h is subtracting water. Since the reservoir volumes are known only 
at the beginning of the stages, the constraint is formulated as in (7). Here, the water 
volume used as reference threshold is the one at the end of the previous week vt−1

h,k=K
 : 

if the water volume inside the downstream reservoir h happens to go below a certain 
threshold V

h
 , the pump is not allowed to pump water for all the K steps of the 

incoming week t.

Depending on the current state of the water volume, the constraint is activated 
in the mathematical formulation before the optimization problem is solved at each 
stage t.

3.2 � Environmental constraints

The proposed model acknowledges two additional constraints dealing with environ-
mental issues related to the water inside the  reservoirs and the surrounding envi-
ronment. In particular, the first constraint regards the quality-related environmental 
standard of the flow downstream the hydropower plants; the second constraint deals 
with the frequent water level fluctuations inside the reservoirs caused by the opera-
tion of the hydropower system. These two issues are translated into a set of math-
ematical constraints (8, 9) that the optimal operation of the hydropower system must 
respect. In particular:

•	 The minimum environmental flow (MEF) bh,k [m3/s] in (8) indicates the minimum 
amount of water that has to be released from the reservoir h at each sub-interval 
k in order to sustain the downstream ecosystems. The MEF may be active only in 
specific weeks of the year:

•	 The ramping constraints aim at reducing possible fast and high variations of 
the water levels inside the reservoirs pursuant to the operations of the hydro-
power system. Since the optimization model proposed in this work considers 

(5)pp
h,k

=
∑
e∈E

h

qp
h,k,e

�p
h,e

∀k ∈ K

(6)0 ≤ qp
h,k,e

≤ Qpmax
h,e

∀k ∈ K,∀e ∈ E
h

(7)
∑
e∈E

h

qp
h,k,e

= 0 if vt−1
h,k=K

≤ V
h

∀k ∈ K

(8)bh,k = Qmin
h

∀t ∈ TMEF ⊂ T
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the water volumes vh,k as decision variables, the changes in water levels inside 
the reservoirs are formulated as changes in water volumes as in (9). The vari-
ations in water volumes from one sub-interval k − 1 to the next k are bounded 
by the downward and upward ramping rates, �−

v
 and �+

v
 respectively and both are 

expressed in Mm3. In this specific case, the ramping constraints are imposed to 
be active along the whole planning period.

3.3 � Scheduling algorithm

As illustrated in Figs. 2 and 3, the execution of the Scheduling Algorithm is nested 
in the SDP Algorithm and the FS Algorithm, respectively. The Scheduling Algo-
rithm requires the solution of a multi-stage revenue maximization problem where 
the hydropower system is assumed to be a price-taker agent operating in a competi-
tive energy market; thus, the operation of the hydropower system does not affect the 
market clearing.

Figure  5 illustrates the procedure for running the Scheduling Algorithm. For 
both the SDP and FS algorithms, the corresponding input values are read and the 
optimization problem (10–20) is built. The algorithm checks if the limitations on 
the pumping capabilities (Check 1) or if any of the environmental constraints (i.e., 
SCWA and ramping constraints indicated with Check 2 and Check 3 respectively) 
are required and solves the optimization problem subject to the applicable set of 
constraints.

The objective function �t(sp, suh,t,l) of the above-mentioned optimization problem 
is expressed by (10).

(9)�−
v
≤ vh,k − vh,k−1 ≤ �+

v
∀t ∈ T

Fig. 5   Pseudocode of the Scheduling Algorithm
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Equation (10) maximizes the revenue from operating the hydropower system at 
the current stage t , considering all the actions taken at each of the sub-intervals k 
and the expected future profit for stage t + 1 . The expected future profit �t+1 is a non-
convex function expressing the expected value of maintaining a certain amount of 
water stored in the reservoirs at the end of the stage t and it depends on both endoge-
nous ( sp ) and exogenous ( su

h,t,l
 ) state variables of the system. Moreover, the objective 

function (10) considers the power produced by the turbines ph,k at each sub-interval 
k and the power used to operate the pump pp

h,k
.

The weekly energy prices �t , expressed in €/MWh, are obtained from the Markov 
model described in Sect. 2.2 and they are distributed along the K sub-intervals by 
means of a scaling factor �t,k to maintain a generic daily pattern. The numerical val-
ues are courtesy of the Norwegian University of Science and Technology (NTNU). 
The values of �t,k have been used in this paper only as input parameters to the opti-
mization model. Moreover, since the power is expressed in MW and the electricity 
price in €/MWh, the conversion factor FH—which considers the number of hours 
within each sub-interval k—is used to express the objective function in €. The spill-
age of water fh,k—which is used to discharge the surplus of water when the water 
volumes inside the reservoir have exceeded their maximum capacity—is penal-
ized with a cost Cs . Moreover,res+

h,k
 and res−

h,k
 are two variables included both in the 

objective function (10) and in the ramping constraints (29) as penalizing factors. 
This has been done to provide a higher degree of flexibility to the operation of the 
hydropower system during the wet season. As a matter of fact, in cases of high-water 
inflows, it might be difficult to maintain the water level fluctuations within a given 
range and the hydropower system is allowed to violate the restriction on maximum 
water level variations by paying a penalty fee Cc . Finally, mef h,k is a slack variable 
included also in Eq. (20) which ensures the requirements on the MEF even during 
the restriction periods on SCWA.

The non-convex characteristics of the expected future value �t+1 is overcome by 
formulating the function as a linear combination of the weighting variables �n,m—
bounded to the discrete water volumes of the reservoirs—and the expected future 
profit points ( FVn,m ) which in turn are dependent on the WVs (10a). The indices 
n and m refer to the volume segments in the upper and in the in lower reservoir 
respectively. Hence, a Special Order of Sets (SOS2) is used to approximate �t+1 into 
a piecewise linear function. A more detailed description of the methodology used 
can be found in [20].

(10)

�t(s
p
, su

h,t,l
) = max

{
FH�t

∑
k∈K

�t,k

[∑
h∈H

ph,k − pp
h,k

]
− CS

∑
k∈K

∑
h∈H

fh,k

−CC
∑
k∈K

∑
h∈H

(
res+

h,k
+ res−

h,k
+ mef h,k

)
+ �t+1

(
vh∈H,k=K , s

u
h,t+1,l

)}

(10a)�t+1 =
∑
n∈N

∑
m∈N

�n,mFVn,m
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The water volumes inside the reservoirs are subject to the constraints described 
by (11a–14).

The equality constraints (11a and 11b) express the water mass balance for the 
upstream reservoir h and for the downstream one h , respectively. When considering 
(11a), v

h,k
 indicates the water volume of the upstream reservoir h at the end of the sub-

interval k while v
h,k−1

 indicates the water volume at the end of the sub-interval k − 1 . 
The same considerations can be done for the downstream reservoir h in Eq. (11b). 
In the FS algorithm, when considering the first sub-interval ( k = 1 ) of the first week 
( t = 1 ), the water volumes vh,k−1 of both the reservoirs assume the value of vh,0 which is 
treated as an input parameter:

Considering the first sub-intervals ( k = 1 ) of the following weeks ( t > 1 ), vh,k−1 
assumes the value of the water volumes at the end of the previous stage t − 1:

Considering the upstream reservoir h in (11a), Y
h,t

 indicates the total weekly incom-
ing water inflows, q

h,k,d
 the water discharged from the turbine, f

h,k
 the spilled water and 

b
h,k

 the MEF. Similarly, the water mass balance in (11b) considers the water outflows 
from the downstream reservoir h , thus the water discharged through the turbine qh,k,d , 
the spilled water fh,k and the MEF bh,k . Furthermore, besides the total weekly incoming 
inflow Yh,t , the equation considers also all the incoming water that is discharged from 
the upstream reservoir h. Finally, since only h is a PSHP, Eqs. (11a) and (11b) con-
sider also the water pumped by the pump qp

h,k,e
 together with the parameter Pdh , which 

indicates its flowing direction. When considering the downstream reservoir h , Pdh=h 
is equal to − 1, indicating that the water is subtracted from the downstream reservoir. 
When considering the upper reservoir h , Pd

h=h
 assumes the value 1, indicating that the 

upstream reservoir is receiving water from the downstream one. Note that �
h,k

 and �h,k 

(11a)

v
h,k

− v
h,k−1

+ FC

⎡
⎢⎢⎣

⎛
⎜⎜⎝
�
d∈D

h

q
h,k,d

+ f
h,k

+ b
h,k

−
�
e∈E

h

qp
h,k,e

Pd
h

⎞
⎟⎟⎠

⎤
⎥⎥⎦
= �

h,k
Y
h,t

∀k ∈ K

(11b)

vh,k − vh,k−1 + FC

⎡
⎢⎢⎣

⎛
⎜⎜⎝
�
d∈Dh

qh,k,d + fh,k + bh,k −
�
e∈E

h

qp
h,k,e

Pdh

⎞
⎟⎟⎠

−
�
d∈D

h

q
h,k,d

+ f
h,k

+ b
h,k

⎤
⎥⎥⎦
= �h,kYh,t ∀k ∈ K

(12)Vmin
h

≤ vh,k ≤ Vmax
h

∀k ∈ K,∀h ∈ H

(13)vt=1
h,k=0

= vh,0 ∀h ∈ H

(14)vt
h,k=0

= vt−1
h,k=K

∀h ∈ H
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are the inflow distribution factors for the intra-weekly sub-intervals k for the upstream 
and downstream reservoir respectively and FC is the conversion factor from m3/s to 
Mm3. As expected, the water volumes of the two reservoirs are maintained between a 
maximum volume Vmax

h
 and a minimum one Vmin

h
 by (12).

Moreover, the system is subject to the technical constraints (15–19).

Constraint (15) represents the relationship between the power produced by the tur-
bines ph,k and the corresponding water discharges qh,k,d which in turn are limited by 
(16). In a similar way, the relationship between the power absorbed by the pump pp

h,k
 

and the corresponding pumped water qp
h,k,e

 is expressed by (17) where qp
h,k,e

 is limited 
by (18) and (19), as explained in Sect. 3.1. Since the pumping unit is present only in the 
upper reservoir h , Eq. (19) considers the water volumes inside the downstream reser-
voir h to regulate the pumping activities. The procedure used to regulate the pumping 
unit is illustrated in Fig. 6.

Finally, Eqs. (20–29) implement the environmental constraints required by the local 
regulation.

(15)ph,k =
∑
d∈Dh

�h,dqh,k,d ∀k ∈ K,∀h ∈ H

(16)0 ≤ qh,k,d ≤ Qmax

h,d
∀k ∈ K,∀h ∈ H,∀d ∈ Dh

(17)pp
h,k

=
∑
e∈E

h

qp
h,k,e

�p
h,e

∀k ∈ K

(18)0 ≤ qp
h,k,e

≤ Qpmax

h,e
∀k ∈ K,∀e ∈ E

h

(19)
∑
e∈E

h

qp
h,k,e

= 0 if vt−1
h,k=K

≤ V
h

∀k ∈ K

(20)bh,k + mefh,k = Qmin

h
∀k ∈ K,∀h ∈ H,∀t ∈ TMEF ⊂ T

Fig. 6   Pseudocode of the Check 1 Algorithm relevant to the constraints on pumping functionality (19)
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Equation (20) implements the MEF bh,k that must be released from the reservoir 
h to maintain the quality of the ecosystem downstream the relevant plant. It is worth 
noting that, in (11a), (11b) and (20), the MEF has been modelled by means of a 
water route that is independent from the one referring to the energy production. This 
choice would allow to extend the functionalities of the model without major com-
plexities. In fact, it can be adapted to different configurations and adjusted to satisfy 
site-specific water allocations (i.e., water supply for civil uses, support irrigation, 
fish water routes and/or other bypass channels).

The SCWA imposed to the reservoir h are described by (21–28). The limitations 
on the maximum discharge through the turbines and on the maximum water pumped 
by the pump, as well as the constraint on the pumping functionality (19), are state-
dependent constraints which depend on the storage volumes in the reservoirs at the 
beginning of the stages i.e., the endogenous variable sp . The SCWA are active only 
for specific weeks of the year ( t ∈ Tenv ) and only depending on the current state of 
the system i.e., the water volumes vt−1

h,k=K
 and the weekly incoming inflows Yh,t . Note 

that the relevant constraints are added to the formulation before the optimization 
problem is solved, as illustrated in pseudocode of the Check 2 Algorithm in Fig. 7.

(21)
∑
d∈Dh

qh,k,d = 0 if vt−1
h,k=K

< Vlim
h

∀k ∈ K,∀t ∈ Tenv ⊂ T

(22)
∑
e∈E

h

qp
h,k,e

= 0 if vt−1
h,k=K

< Vlim
h

∀k ∈ K,∀t ∈ Tenv ⊂ T

(23)

∑
d∈Dh

qh,k,d ≤
∑
d∈Dh

Qmax

h,d
if vt−1

h,k=K
+ Yh,t ≥ V lim

h
∀k ∈ K,∀t ∈ Tenv ⊂ T

(24)

∑
e∈E

h

qp
h,k,e

≤

∑
e∈E

h

Qpmax

h,e
if vt−1

h,k=K
+ Yh,t ≥ V lim

h
∀k ∈ K,∀t ∈ Tenv ⊂ T

(25)vh,k=K ≥ V lim

h
if vt−1

h,k=K
+ Yh,t ≥ V lim

h
∀t ∈ Tenv ⊂ T

(26)
∑
d∈Dh

qh,k,d ≤
∑
d∈Dh

Qmax

h,d
if vt−1

h,k=K
≥ V lim

h
∀k ∈ K,∀t ∈ Tenv ⊂ T

(27)
∑
e∈E

h

qp
h,k,e

≤

∑
e∈E

h

Qpmax

h,e
if vt−1

h,k=K
≥ V lim

h
∀k ∈ K,∀t ∈ Tenv ⊂ T

(28)vh,k ≥ V lim

h
if vt−1

h,k=K
≥ V lim

h
∀k ∈ K,∀t ∈ Tenv ⊂ T

(29)res−
h,k

+ �−
v
≤ vh,k − vh,k−1 ≤ �+

v
+ res+

h,k
∀k ∈ K,∀h ∈ H
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If the water volume at the beginning of the restriction period is below a certain 
threshold Vlim

h
 , no water is allowed to be discharged through the turbine nor pumped 

by the pump from the reservoir for energy production purposes and constraints (21) 
and (22) replace (16) and (18) respectively. When and if the water volume reaches 
the threshold Vlim

h
 within the restriction period due to a high weekly incoming water 

inflow Yh,t , the turbine is allowed to discharge water for energy production and the 
pump is allowed to pump water: constraints (21) and (22) are relaxed and replaced 
with (23) and (24) while (25) is added to the problem formulation. Note that (25) is 
active for the first week in which the storage volume reaches the desired threshold, 
and it imposes the water volume inside the reservoir to stay above  Vlim

h
 by the end of 

the stage ( k = K ). Constraints (26) and (27) become active from the following week 
together with constraint (28) which imposes a minimum regulation volume for all 
the sub-intervals k of the stage: the discharge of water for power production and the 
withdraw of water by the pump are permitted as long as the water volume inside the 
reservoir is kept above the limit.

Finally, (29) represents the ramping constraints which impose the maximum 
water level variations between two adjacent operating time-steps. Also in this case, 
the ramping constraints are expressed as function of the water volume of the reser-
voir at the end of the previous stage vt−1

h,k=K
 , where the upward and downward ramp-

ing rates are expressed in Mm3 and given by �+
v
 and �−

v
 . Therefore, the maximum 

threshold of the water level variations expressed in meters must be converted in vari-
ations in water volumes. Furthermore, it is worth noting that, given the positive �+

l
 

and negative �−
l
 water level variations, the corresponding variations in water volume 

�+
v
 and �−

v
 change accordingly to the state of the stored water volume. In fact, because 

of the irregular shape of the reservoirs, the same variations in water levels corre-
spond to higher variations in terms of water volumes if the reservoirs are almost at 
their maximum capacity. On the contrary, they correspond to smaller volume vari-
ations if the reservoirs are almost empty. In order to find the correct water volume 
variation required, the maximum storage water volume of the reservoir Vmax

h
 has 

been divided into Nr intervals of water volumes indicated as Vr with r =
{
1,… ,Nr

}
 . 

For each generalized interval Vr , V−
r

 corresponds to the lower bound while V+
r

 to the 

Fig. 7   Pseudocode of the Check 2 Algorithm relevant to the SCWA (21–28)



1 3

Optimal price‑based scheduling of a pumped‑storage hydropower…

upper one. It is worth noting that V+
r
= V−

r+1
 . For each interval, the negative �−

v
 and 

positive �+
v
 water volume variations corresponding to the required water level varia-

tions - υ−
l
 and υ+

l
 respectively - are evaluated.

The implementation of such constraint is performed by running the Check 3 
Algorithm whose pseudocode is in Fig. 8. Before solving the optimization problem 
for the stage t , the Check 3 Algorithm determines the predefined intervals of water 
volumes Vr which include vt−1

h,k=K
 and, in turn, chooses the positive �+

v
 and negative �−

v
 

water volume variations - expressed in Mm3 - to be added to Eq. (29).

4 � Assessing the solution of the medium‑term scheduling model

As explained in Sect. 2.2, the SDP algorithm computes the 1-year worth set of WVs 
considering weekly decision stages. In turn, the optimal operation resulting from 
the solution of the FS algorithm maintains the same temporal weekly resolution 
t = {1,… , T} and the same intra-weekly sub-intervals k = {1,… ,K} . It is worth 
noting that the selection of weekly stages is typical for medium-term scheduling 
models. These models are in fact adopted to evaluate the optimal management of 
the water sources inside the reservoirs for planning periods of several months up 
to 1 year considering the uncertainties of water inflows and energy prices. To grant 
a more explicit representation of these stochastic variables while at the same time 
maintaining an affordable computational time, medium-term scheduling models are 
usually formulated and solved via SDP algorithms.

Note that, under this approach, the states of the system (e.g., water volumes inside 
the reservoirs sp , incoming water inflows and average energy prices su

h,t,l
 ) are known on 

a weekly basis. Such “infrequent” weekly disclosure of the states of the system may 
prevent the effective actual enforcement of some of the constraints of the FS algorithm. 
This issue might be more relevant during those weeks where the constraints depending 
on the state of the system are particularly binding. As a result, the optimal operation 
of the system might be affected by an over- or under-estimation of the hydropower 
system technical constraints and external issues (e.g., water inflows). In turns, the eco-
nomic performance of the hydropower system might be over- or under- assessed.

Fig. 8   Pseudocode of the Check 3 Algorithm relevant to the ramping constraints (29)
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Considering the FS algorithm, if the states of the systems—thus the water vol-
umes, the total water inflows, and the average energy prices—are known and 
assessed more frequently, e.g., on a daily base rather than on a weekly base, the 
actual enforcement of the constraints involving dependencies on the water lev-
els inside the reservoirs or on the incoming inflows could be implemented more 
effectively.

An illustrative example is offered in Fig. 9, where the data are taken from actual 
simulation results. The figure illustrates the evolution of the water volume inside the 
lower reservoir which is subject to the state-dependent constraint on maximum 
water abstraction. More specifically, the results report the water volumes evaluated 
at the stage t = 24 over all the K sub-intervals, for a randomly selected scenario 
among the Ns ones. The blue dotted line indicates the optimal water volumes 
obtained when solving the optimization problem with weekly stages, while the green 
solid line illustrates the water volumes obtained when solving the same problem by 
using daily stages. The state-dependent constraint on maximum water abstraction is 
active since week t − 1 but it might not be immediately satisfied because of the low 
water volumes at the beginning of the week and small external inflows. In this case, 
the water volume inside the lower reservoir at the beginning of the stage t—indi-
cated by the red square—, is below the threshold limit Vlim

h
 (horizontal dashed red 

line). Referring to the Check 2 Algorithm explained in Sect. 3.3, the weekly-stages 
model evaluates if the water volume reaches the predefined threshold by the end of 
the week (i.e. in K = 56 ) due to the total weekly incoming inflow Yh,t and applies 
(23–25). If so, the constraint on the minimum regulation volume (28) becomes 
active from the following week ( t = 25 ). In the daily-stage resolution instead, the 
model considers the state of the reservoir volume at the beginning of each day and 
the corresponding daily water inflow Yh,z within the week t . Considering the same 
week t and the same boundary conditions (i.e. the very first initial water volumes 
vt
h,k=0

 , energy prices and water inflows at every sub-interval k ), the predefined 
threshold Vlim

h
  is already reached at the end of the first day (for k = 8 ) because of a 

sufficient amount of daily water inflow, as indicated by the black dot in Fig. 9. The 
constraints (26) and (27) are immediately activated and the constraint on minimum 
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volume regulation (28) becomes active for the following days as illustrated by the 
green solid line.

This first example demonstrates how a finer resolution would permit a more accu-
rate implementation of the state-dependent constraints resulting in a more realistic 
operation of the hydropower system. However, the sequential resolution of both the 
SDP and FS algorithm by using daily stages would deviate from the objectives and 
benefits characterizing medium-term scheduling models. A finer resolution would 
require changes to the Markov chains for the representation of the daily-based sto-
chastic variables but also changes to the formulation of non-linear relationships 
characterizing specific constraints and further technical details. Furthermore, the 
implementation of these changes would largely increase the computational effort. 
Therefore, to evaluate the accuracy of using a daily-stages approach instead of a 
weekly one without impacting too much both the computational time and the model 
structure itself, this paper proposes a new methodology in which the temporal gran-
ularity between weekly stages t and t + 1 is increased only in the FS algorithm. In 
other words, when moving from one week to the next one, the FS optimizes the 
operation of the hydropower system taking advantage of a daily update of the rele-
vant WVs, total daily water inflows Yh,z , daily average energy prices �z , and the very 
first initial volume states vt

h,k=0
 evaluated previously in the SDP algorithm. A more 

detailed setup is graphically explained in Fig. 10; note that z = {1,… , Z} indexes 
represent the days within a week, thus Z = 7.

The higher granularity introduced by this proposed approach, requires updating 
the weekly WVs obtained from the SDP algorithm on a daily base, while respecting 
the boundary values at the beginning and at the end of the reference weeks. There-
fore, the following boundary conditions are applied:

The WVs referring to the remaining days within the week, i.e., ∀ z = {2,… , Z} , 
are computed by interpolation [32]:

(30)WVz=1 = WVt; WVZ+1 = WVt+1 with Z = 7

Fig. 10   A graphical illustration 
of the weekly (top) and daily 
(bottom) setup
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For the sake of consistency, the objective function (10) is updated below to 
account for the modifications above:

The K sub-intervals in the optimization problem based on weekly decisions are 
distributed equally along the daily stages, providing each stage z with I sub-inter-
vals indexed with i = {1,… , I} : therefore, the values of natural water inflows from 
the surroundings and the energy prices, expressed for each of the sub-intervals 
k = {1,… ,K} , do not change when moving to a daily resolution setup. Further-
more, the water volumes at the beginning of the considered weeks are set to be the 
same for both the weekly and daily stages resolution, as indicated by the red square 
in Fig. 9. In other words, considering the week t , the initial water volumes vt

h,k=0
 of 

the weekly-optimization problem are equal to the initial water volumes of the first 
day z = 1 of the same week t when considering the daily resolution vz=1

h,i=0
 . For the 

following stages of the daily-optimization problem, thus for z = {2,… , Z} , the cor-
responding initial water volumes vz

h,i=0
 will be equal to the water volumes obtained 

as result of the optimization problem of the previous day vz−1
h,i=I

 . This is to allow a 
more precise comparison between the weekly and the daily results, maintaining the 
same initial boundary condition regarding the states of the reservoirs at the begin-
ning of the considered week, as well as the total incoming inflows and average 
energy prices.

By doing so, the constraints that are dependent on the states of the system do not 
consider the state values at the beginning of each week t , but the values at the begin-
ning of each day z – thus the water volumes vz

h,i=0
 , the total daily inflows Yh,z and the 

daily average energy price �z -, granting the optimal decisions with higher accuracy.

5 � Case studies and results

5.1 � Case studies

The optimal scheduling algorithm comprising a PSHP (pertaining to the upper res-
ervoir h ) connected to a HPP (relevant to the lower reservoir h ) subject to technical 
and environmental constraints proposed in Sect.  3.3 is applied to the actual 
Rosskrepp-Kvinen hydropower, schematized in Fig.  11. The site is part of the 

(31)WVz = WVt +

[(
z − 1

Z

)(
WVt+1 −WVt

)]

(32)

�z

(
sp, su

h,z,l

)
= max

{
FZ�z

∑
i∈I

�z,i

[∑
h∈H

ph,i − pp
h,i

]

−CS
∑
i∈I

∑
h∈H

fh,i − CC
∑
i∈I

∑
h∈H

(
res+

h,i
+ res−

h,i
+ mefh,i

)
+ �z+1

(
vh∈H,k=I , s

u
h,z+1,l

)}
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Sira-Kvina watercourse, located in the South of Norway. As per today, the upper 
hydropower plant comprises the Rosskreppfjorden reservoir with its relative power 
station—Rosskrepp—while the lower one considers the Øyarvatn reservoir with the 
Kvinen power station. The upper reservoir has a regulation volume Vmax

h
 of 684.10 

Mm3, while the regulation volume of the lower reservoir is 104.10 Mm3. Note that, 
the regulation volume indicates the admissible volume of freshwater used for energy 
production only. The upper power station is equipped with a Francis turbine whose 
rated capacity is 38 MW and the maximum water discharge is 58 m3/s. Another 80 
MW Francis turbine is installed in the lower power station, where the maximum 
water discharge is 90 m3/s. The discharge water routes for energy production are 
indicated with blue solid lines, the water routes for spillage with blue dashed lines. 
The blue dotted line and the parameter Qmin

h,t
 indicate water route for the MEF (20) 

from the lower reservoir during a certain stage t . The other two arrows, each of them 
pointing at one reservoir, indicate the weekly water inflows Yh,t at stage t.

It is worth noting that the upstream HPP of the considered site cannot currently 
operate as a PSHP because the turbine in the upper power station is not able to oper-
ate in pumping mode.

Currently, the set of environmental constraints—the state-dependent constraint 
on maximum discharge through the turbines expressed by equations (21), (23), (25), 
(26), (28) and the MEF (20)—are applied to the lower reservoir. The threshold val-
ues implemented in (21), (23), (25), (26), (28) and (20) together with the reference 
weeks during which these constraints are enforced, are reported in Table 1.

Fig. 11   Schematics of the 
Rosskrepp-Kvinen hydropower 
system in its actual configura-
tion
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The state-dependent constraint on maximum discharge prohibits the water dis-
charge through the turbines for energy production during summer weeks (i.e., 
23–38) if the reservoir volume is below the threshold of 87.44 Mm3. This threshold 
represents the 84% of the total water capacity of the reservoir. According to the 
Check 2 Algorithm explained in Sect. 3.3, if the water volume vt−1

h,k=K
 at the begin-

ning of the restriction period is below the above-mentioned threshold Vlim
h

 and the 
total weekly inflows Yh,t are low, constraint (16) would be replaced by (21): by doing 
so, the water is impeded to flow through the turbine for energy production purposes. 
Nonetheless, if the water volume reaches the predefined limit due to large water 
inflows, constraint (21) is relaxed and replaced by (23). Constraint (25) is also added 
to ensure the achievement of Vlim

h
 by the end of that week. From the following weeks, 

constraint (23) is replaced by (26) while constraint (25) is replaced by Eq. (28) 
which imposes the regulation on the minimum reservoir volume: the HPP may oper-
ate as long as the water volume during all the sub-intervals k is maintained above 
that given limit. Moreover, the MEF (20) must be released from the lower reservoir 
to preserve the water flow downstream the plant. A water discharge of 0.5 m3/s is 
required from week 25 to week 38, while a MEF of 0.2 m3/s is imposed from week 
39 to week 42. During the remaining weeks of the year, no environmental con-
straints are set. As per today, there are no ramping constraints (29) applied to the 
two reservoirs.

Starting from the framework and the numerical settings currently implemented in 
the Rosskrepp-Kvinen hydropower system, this paper considers four different case 
studies whose main features are summarized in Table 2. In fact, the proposed paper 
aims to evaluate how the operation of the current hydropower system might change 
with the presence of a hydraulic pump unit and/or under the restrictions on water 

Table 1   Settings of the environmental constraints in Øyarvatn reservoir.

Environmental constraints Restriction period (weeks) Thresholds

State-dependent constraint on maximum dis-
charge (21), (23), (25), (26), (28)

∀t ∈ {23,… , 38} V lim

h
= 87.44 Mm3

Minimum Environmental Flow (20) ∀t ∈ {25,… , 38} Qmin

h
= 0.5 m3/

s

∀t ∈ {39,… , 42} Qmin

h
= 0.2 m3/

s

Table 2   Characteristics of the four case studies.

Pumping system 38 MW for 
upper power station (17–19)

SCWA 
(21–28)

MEF (20) Ramping 
constraints 
(29)

Base Case (BC) x x
Case A x x x
Case B x x x
Case C x x x x
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level variations. The results of the paper could be considered to evaluate the conse-
quent impact of such water level variations on the surrounding ecosystem. There-
fore, the Base Case (BC) considers the current framework and settings of the system 
where the lower reservoir is subject to the state-dependent constraint on maximum 
discharge and the MEF, as required by the current regulation [33]. Case A consid-
ers the same layout of the BC where, in addition, the electric machine in the upper 
power station (Rosskrepp) can now function also in pumping mode: the same rated 
power capacity of 38 MW is assumed for the two operating regimes. The state-
dependent constraint on maximum discharge through the turbine has been extended 
to consider also the water pumped by the pump. Therefore, the optimization problem 
for Case A considers the SCWA expressed by equations (21–28). Case B and Case 
C, replicate respectively, the BC and Case A with the additional application of the 
ramping constraints (29) to the upper reservoir—Rosskreppfjorden. Depending on 
the site-specific conditions and on the ecological activities present in the reservoirs, 
local regulations might require the limitation on water level fluctuations in order 
to reduce the negative impacts on the local surroundings arising from the frequent 
operation of the hydropower plant. In the case of the Rosskreppfjorden, fast and 
recurrent water level oscillations—in particular in a PSHP—can negatively affect 
the spawning activities of fishes and other aquatic species present in the reservoir.

All the numerical simulations concerning the case studies above-mentioned 
implement a planning horizon of T = 52 weeks with an intra-weekly resolution of 
3 hours, for a total of 56 sub-intervals K per each weekly stage t . Concerning the 
SDP algorithm, the endogenous states of the system ( su ), i.e. the upper and the lower 
water volumes in the reservoirs, have been discretized using N = 25 equidistant 
points, leading to 625 possible couples of volume’s combinations evaluated at each 
stage t . The convergence tolerance � is set to 10−3 €/m3/s. The discrete Markov chain 
used for the formulation of the stochastic state variables su

h,t,l
 is generated by using 

inflow data from 30 historical years—from 1981 to 2010—and they are provided by 
the Norwegian Water Resources and Energy Directorate [33]. The wholesale elec-
tricity market prices are instead provided by [34], reflecting a potential 2030 power 
system in the Nordic scenario. The penalty cost for spillage CS is equal to 1 M€/m3/s 
while the penalty cost for ramping constraints CC is equal to 0.1 M€/Mm3. Each of 
the case studies simulates the same Ns = 100 scenarios using the WVs from the cor-
responding SDP algorithm.

Ramping constraints (29) are imposed only to the upper reservoir—Rosskreppf-
jorden—with upper and lower bounds for the water level fluctuations set to υ+

l
= 

0.03 m and υ−
l
= −  0.03 m respectively. In this case, as explained in Sect.  3.3 

Table 3   Water volume variations in Rosskrepp reservoir

Index for water volume intervals r = 1 r = 2 r = 3 r = 4

Water volume lower bound V−
r

 [Mm3] 0 78 239 452
Water volume upper bound V+

r
 [Mm3] 78 239 452 684.3

Corresponding water volume variations, �−
v
, 

�+
v
 [Mm3]

±0.2364 ±0.4815 ±0.6380 ±0.7734
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concerning the Check 3 Algorithm, the maximum capacity of the reservoir has been 
divided into Nr = 4 intervals indexed by r (first row of Table 3). The numerical val-
ues of the lower V−

r
 and upper V+

r
 bounds of these intervals are in the second and 

third row of Table 3, respectively. The fourth row expresses the corresponding nega-
tive or positive water volume variations �−

v
 and �+

v
 . For the sake of example, in 

accordance with the Check 3 Algorithm, for a water volume V−
r
≤ vt−1

h,k=K
< V+

r
 at the 

end of the previous stage t − 1—where r = 3 and thus V−
r
= 239 Mm3 and V+

r
= 452 

Mm3 —the positive and negative water volume variations for the stage t are set to be 
equal to �+

v
=+0.6380 Mm3 and �−

v
= -0.6380 Mm3 respectively.

The choice of imposing these water level fluctuations has been taken considering 
the alteration parameters provided in [35].

Finally, the model has been developed using the programming environment 
Julia 1.7.3 [36] and the JuMP package [37], while the optimization problem has 
been solved using the CPLEX solver [38]. The case studies were carried out on an 
Intel(R) Core(TM) i5-52000 processor with 8.0 GB RAM.

5.2 � Results

5.2.1 � Energy production and revenues

The first set of results assess the annual energy production and the associated rev-
enues under each of the four case studies schematized in Table 2. The authors wish 
to emphasize that the present study aims to evaluate how both the annual energy 
production and the total revenues might change when considering the different oper-
ating conditions of the hydropower plants, i.e., when considering the presence of a 
hydraulic pump unit and/or limitations on water volume variations. In other words, 
this paper only evaluates potential operational benefits without carrying out a full 
investment analysis which includes the investment costs of the hydraulic pump.

The box and whisker plots in Fig. 12 indicate the variability of the total energy 
production from the whole system considering all the Ns=100 simulated scenarios.

Fig. 12   Annual energy production for Rosskrepp-Kvinen system considering the four case studies
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The total energy production is calculated as the sum of the energy output from 
the turbines of both HPPs along the whole planning period. More specifically, the 
results consider only the gross energy production which has been injected into the 
grid, neglecting thus the pumping load. Additionally, the numerical values reported 
inside the boxes indicate the median of the percentage variation in energy produc-
tion with respect to the BC (blue box with horizontal pattern) over the set of Ns 
scenarios. In general, the introduction of a pumping system leads to a higher energy 
production compared to traditional settings. As expected, the higher boost is granted 
by Case A (+9.34%)—yellow box with vertical pattern —, due to its increased 
flexibility stemming from the pumping functionality and the absence of ramping 
constraints (29). When considering Case B instead (green box with oblique pat-
tern)—which considers a traditional system with the enforcement of the ramping 
constraints—the results exhibit a decrease of -0.08%. Case C instead (red box with 
squared pattern), where the ramping constraints are imposed on a PSHP, illustrates 
an increase in energy production of +6.74%.

Concerning the annual energy consumption, the pumping unit in Case A requires 
0.044 TWh to pump 182.68 Mm3 on average considering all the simulated scenar-
ios. When considering Case C instead, 0.0297 TWh are required to move an aver-
age of 122.53 Mm3 of water among the relevant scenarios. As expected, the energy 
required by the hydropower system to operate the pump in Case C is lower with 
respect to Case A due to the presence of the ramping constraints. Clearly, these val-
ues are null when considering the Case BC and the Case B.

Similar results occur when considering the whole system’s revenues, as illus-
trated in Fig. 13. The graphs consider the net annual revenues over the Ns scenarios 

simulated, i.e., the difference between the total revenues resulting from the produc-
tion of the two turbines and the costs for pumping. The differences in terms of per-
centage with respect to the BC (blue box with horizontal pattern) are reported inside 
the boxes and they are calculated in the same way as done for the total energy pro-
duction. The results evidence that systems operating with a pumping unit exhibit 
higher incomes with respect to traditional systems, regardless of the implementation 

Fig. 13   Total annual revenues from Rosskrepp-Kvinen system
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of ramping constraints. Case A (yellow box with vertical pattern) leads to the most 
remunerative results, with in an increase in the total annual revenues of +2.35%. 
Case B (green box with oblique pattern) exhibits a decrease in the annual revenues 
of −1.01% which can be explained by the fact that ramping constraints might redis-
tribute the production from periods of high energy prices to periods of lower energy 
prices, similar to [28]. It is worth pointing out that Case C (red bow with squared 
pattern) exhibits an increase in revenues of +0.47 % with respect to the BC, even 
though the increase is lower than without the ramping constraints (Case A). There-
fore, the results confirm that the benefits arising from the use of a pumping system 
overcome the limitations imposed by the ramping constraints.

5.2.2 � Water levels

The evaluation of water level variations and the analysis of their frequencies of 
occurrence is fundamental for understanding the rate of change in water volumes and 
the possible setup of ramping constraints. This section illustrates the results regard-
ing the Rosskrepp reservoir considering all the four cases previously described. In 
particular, Fig. 14 indicates the percentage of sub-intervals k along the whole plan-
ning period during which the water level variations can be found in between a cer-
tain set of values. Furthermore, in order to have a complete understanding of the 
results in Fig. 14, it is worth computing, for each range of water level variations, 
the cumulative amount of water moved. The latter quantity is evaluated as the aver-
age—for all the simulated scenarios Ns—of the sum of the water volume variations 
recorded at the sub-interval k . These metrics are expressed in Mm3 and are reported 
in Fig. 14 by means of numbers above each column. It is worth recalling that the 
same water level variations might result in different variations in terms of water vol-
umes because of the irregular shape of the reservoir.

In general, positive water level variations higher than 0.05 m in 3 hours are rela-
tively frequent in reservoirs where ramping constraints are not present, in particu-
lar in those involving a pumping system (they occur for the 5.25% and 11.11% of 
the time in the BC and in Case A respectively). Similar results can be found for 
negative water level variations, which occur for 6.42% of the time in the BC (blue 
column with horizontal pattern) and for 8.79% of the time in Case A (yellow col-
umn with vertical pattern). In fact, the results obtained from the FS algorithm have 
demonstrated that the water levels can increase to values higher than 0.20 m and can 
decrease down to -0.15 m in 3 hours. However, in few cases, positive and negative 
water level variations also exceed 0.05 m in Case B (green column with oblique 
pattern) and Case C (red column with squared pattern) where ramping constraints 
(29) are imposed. This can be explained by two possible factors. First, the incoming 
water inflows from the surrounding catchment might be too high with respect to the 
volume variations permitted, especially during the snow-melting season. To avoid 
the spillage of potential water for energy production, the hydropower plant prefers to 
pay a penalty fee and therefore break the ramping constraint. Secondly, these large 
water level variations could be related to the incorrect selection of the upward �+

v
 

and downward �−
v
 ramping rates. In fact, similarly to the constraint on the pumping 
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functionality (19) and to the SCWA (21–28), the ramping constraints (29) consider 
the water volumes at the end of previous stage vt−1

h,k=K
 as reference values for the 

optimal choice of �−
v
 and �+

v
 . However, this could lead to small inaccuracies in the 

evaluation of the right water volume variations since the water volumes themselves 
can increase or decrease during the operations within stage t , passing to another 
interval of volumes, but maintaining the initial water volume variations. A practical 
solution to overcome this issue, is to increase the number of water volumes intervals 
Nr (Table 3) to evaluate the optimal water volume variations to be used in Eq. (29) 
or to directly use the bathymetry of the reservoir.

Furthermore, results highlight that the frequency of occurrence of negative water 
fluctuations between −0.05 m and 0.00 m, increases pursuant to the introduction 
of a PSHP in the hydropower system (Case A 42.77% vs. BC 34.56% and Case C 
45.87% and Case B 37.2%). An opposite trend is registered considering the fre-
quency of occurrence of positive water level fluctuations between 0.00 m and 0.05 
m. Also, the implementation of ramping constraints always increases the positive 
and negative frequency of occurrence of water level fluctuations (Case B 61.08%. 
vs. BC 52.86% and Case C 53.01% vs. Case A 36.42%).

In addition, concerning the null water level fluctuations, these occur less than 1% 
of the time in all the four case studies. The results exhibit that this phenomenon 
is triggered in two conditions. The first one envisages null water level fluctuations 
when there are no water inflows from the surrounding catchment and the system is 
idling (thus the turbine and the pump unit are not working). The second condition 
refers to a case when the turbine discharges exactly the same amount of the incom-
ing water inflow.

Another important result from Fig. 14 is that, for each of the simulated cases, the 
sum of all negative cumulative water volume variations is equal to the sum of the 
overall positive cumulative variations, confirming the correct implementation of the 
water mass balance during the operation of the plants over the planning horizon. 
Furthermore, for each of the four case studies, higher or lower frequency of occur-
rences in the positive and negative intervals do not imply higher or lower fluctua-
tions in absolute terms.
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	 A. Alic et al.

1 3

In fact, more frequent water level variations do not necessarily lead to larger 
cumulative water volume variations. This happens, for instance in Case BC (blue 
column with horizontal pattern). The negative water level fluctuations between 
−0.05 m and 0.00 m are less frequent (34.56%) than the positive ones between 0.00 
m and 0.05 m (52.86%). Nevertheless, the overall negative cumulative water volume 
variations are higher than the positive ones, corresponding to 336.4 Mm3 and 293.5 
Mm3 respectively. Similarly, in Case A positive water level variations higher than 
0.05 m occur for the 11.11% of the time and correspond to an overall water cumula-
tive volume variation of 279.9 Mm3. On the other hand, positive water level varia-
tions lower than 0.05 m happen for the 36.42% of the time but they correspond to a 
lower amount of cumulative water volume variation (244.5 Mm3).

Moreover, it is worth noting that, when considering the sum of the positive cumu-
lative water volume variations and the sum of the negative ones, these are higher in 
Case A with respect to the Case BC (524.4 Mm3 and 419.8 Mm3 respectively). This 
is consistent with the presence of a pumping system: the natural inflows and the 
water pumped by the pump might increase the overall water entering the reservoir, 
leading to positive volume variations. Consequently, because of the higher availabil-
ity of water inside the reservoir for energy production, the turbines work more fre-
quently thus increasing the overall negative water volume variations. A similar situ-
ation occurs in cases where ramping constraints are imposed: Case C exhibits more 
consistent cumulative water volume variations (481.7 Mm3) with respect to Case B 
(395.7 Mm3) due to the presence of a pumping unit.

This consideration is further highlighted in Case C (red column with squared pat-
tern). The negative water level variations between −0.05 m and 0.00 m appear for 
the 45.87% of the time and correspond to a cumulative water volume variation of 
478.9 Mm3. On the contrary, the positive water level variations between 0.00 m and 
0.05 m occur more frequently (53.01%) but correspond to a lower value of cumula-
tive water volume variations i.e., 476.0 Mm3. Even though positive variations are 
more frequent than the negative ones, the corresponding cumulative water volume 
variations are lower.

Regardless the possible implementation of ramping constraints, the results of the 
paper have highlighted fundamental differences already due to the fact that a tradi-
tional hydropower system (only with HPPs) is equipped with a PSHP. Results indi-
cated that a hydropower system with a PSHP can effectively boost both the annual 
energy production and the annual net revenues—accounting for the energy cost sus-
tained during the pump-mode operation—with respect to the traditional system with 
only HPPs.

Considering the Ns simulated scenarios, which are common to all the case stud-
ies, the results indicated that the median energy production can increase up to 9.34% 
with respect to a traditional system, while the median value of annual revenues can 
increase up to 2.35%. This is further confirmed by the cumulative water volume var-
iations evaluated during the planning horizon. Due to the presence of a pumping 
unit, the cumulative water volume variations are more frequent with a PSHP with 
respect to a traditional HPP (524.4 Mm3 and 419.8 Mm3 respectively). Besides the 
natural inflows entering the reservoir, the additional water inflow due to the pump-
ing unit increments the water availability in the reservoir. Consequently, driven by a 
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larger potential for energy production, the turbine tends to operate more frequently 
leading to larger energy production and annual revenues.

Nevertheless, it is worth reminding that the previous results considered only the 
potential increase in operation revenues from operating the existing system with a 
pumping unit. It would still be necessary to consider all the relevant investments 
costs in order to have a full financial analysis on the actual feasibility and profitabil-
ity of retrofitting an existing conventional HPP with a PSHP. Besides the costs for 
purchasing the relevant machineries, additional expenses accounting for civil works 
(i.e., enlargement of power station or construction of additional tunnels), permits, 
design phases as well as the installation of new monitoring systems should also be 
considered.

5.2.3 � Results from FS algorithm with daily stages

With respect to the methodology proposed in Sect. 4, two specific weeks of the year 
have been chosen and solved with a daily-stages approach. The system’s layout con-
sidered is the one of Case C which takes into account a hydropower system equipped 
with a PSHP where the upper reservoir is subject to the ramping constraints (29). 
Now the FS algorithm considers a daily optimization problem (10–29) where each 
stage z is divided into I = 8 sub-intervals of 3 hours each. The main characteristics 
of the weeks are described in Table 4.

The two above-mentioned weeks have been chosen because of the different imple-
mentation of the state-dependent constraint on maximum water abstraction (21–28). 
As explained in Sect. 3.3, the constraint is applied differently according to the states 
of the system i.e., initial water volumes and total water inflows, at the beginning of 
the stage. Week 23 indicates the beginning of the snow-melting period, and it is the 
first week for which the limitation on the water discharged through the turbines and 
on the water pumped by the pump for energy production is active. Week 34 instead 
represents a mid-summer week for which the state-dependent constraint on maxi-
mum water abstracted from the reservoir has long been present and during which the 
water volumes inside the reservoirs are kept above the predefined threshold limit. 
Moreover, a MEF of 0.5 m3/s is required.

Fig. 15 reports the percent variation in energy production and in revenues when 
using the FS algorithm with daily stages compared to weekly-stages, evaluated 

Table 4   Simulated weeks for a 
daily-stages approach

Weeks Characteristics

23 Early summer
First activation week of state-dependent constraint on maxi-

mum water abstraction from the reservoir
No MEF

34 Mid-summer, high water inflow period
State-dependent constraint on maximum water abstraction 

is active
MEF = 0.5 m3/s
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over the Ns scenarios simulated. The results demonstrate that decreasing the time 
length between stages may not necessarily improve the results despite a more 
accurate implementation of the constraints and that the differences in the out-
comes between two different resolutions might be more accentuated in specific 
periods of the year.

When considering week 23 (blue column with vertical pattern), in which the 
state-dependent constraints on maximum water abstraction from the reservoir 
should be activated for the first time, the results obtained with the daily-stages 
approach exhibit a decrease of −20.59% in energy production compared to the 
results obtained with a weekly-stage approach. Similarly, there is a decrease of 
−24.21% in the total revenues of this week. On the other hand, when considering 
week 34 (red column with horizontal pattern), during which the state-dependent 
constraint on maximum water abstraction from the reservoir has long been present 
and the water volumes at the beginning of the week are already above the given 
threshold, the differences are smaller. In fact, the daily-stages simulations register 
a decrease of −8.06% in the energy production and a reduction of −6.55% in the 
revenues.

This could be explained by the fact that knowing the states of the system 
daily—thus the water volumes at the beginning of each of the stages vz−1

h,i=I
 and 

the daily total water inflows Yh,z—the state-dependent constraint on maximum 
water abstraction is applied more accurately with respect to a weekly resolu-
tion. Given a more frequent knowledge of the state variables and of the WVs—
which have been previously calculated with (31)—the system might find a dif-
ferent optimal operation that maximizes the revenues. Consequently, the amount 
of water discharged and pumped might change with respect to the weekly reso-
lution and lead to different water volumes inside the reservoirs. This effect is 
clearly exhibited in Figs. 16 and 17 which illustrate the optimal water volumes 
evaluated with weekly (blue dotted line) and daily resolution (green solid line) 
for week 23 and week 34 respectively. The endogenous state variables—thus the 
initial water volumes inside the reservoir—are represented by the red squares for 
the weekly resolution and by the black diamonds for the daily one. At the begin-
ning of week 23, the initial water volume (red square) is below the predefined 

Fig. 15   Differences in percent-
age in energy production and 
in revenues between daily and 
weekly stages
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threshold as shown in Fig.  16. Considering the high daily incoming water 
inflows, (23–25) are effectively applied with the daily-resolution: the predefined 
lower threshold (red dashed line) is reached already at the end of the first day 
(at sub-interval k = 8 ). With a weekly resolution instead, given the high weekly 
incoming inflow, the system releases water for power production—Eqs. (23) 
and (24)—and reaches the predefined threshold by the end of the week (thus for 
k = 56 ) as required by Eq. (25).

Instead, in week 34 the state-dependent constraints on maximum water abstrac-
tion through the turbine and the pump (26, 27) and the relative regulation on mini-
mum volume (28) are already strongly consolidated. As a result, the differences 
in water volumes are less accentuated, as illustrated in Fig. 17, suggesting that the 
overall optimal operation evaluated with a daily resolution does not significantly dif-
fer from the one obtained with weekly stages.
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Fig. 16   Evolution of the optimal water volumes in week 23 considering weekly and daily resolution
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In conclusion, the results confirm that the weekly model might overestimate the 
total energy production and revenues from the hydropower system. Especially, the 
less precise knowledge of the states of the system may cause inaccuracies in the 
implementation of state-dependent constraints in the FS algorithm when changes in 
the system’s states change the optimization problem.

5.2.4 � Assessment on the interpolation procedure

As mentioned in Sect. 1.1, the main drawback of SDP algorithms is the computa-
tional burden to solve them, which increases with the number of state variables and 
with an increase in their discretization.

This paper analyses the main differences, both in the computational time and in 
the effectiveness of the interpolation procedure used to evaluate the water volumes 
at the end of the weekly stage. When solving the optimization problem, the stor-
age water volumes calculated at the end of the stage vh,k=K are linked to the dis-
cretized endogenous variables sp through an interpolation procedure. Within this 
purpose, each of the reservoirs has been discretized by using the same number of 
points N , indexed with s = {1,… ,N} , for a total of N2 possible combinations of 
water volumes states. All the s segments discretizing the same reservoir h have the 
same water volume and they are indicated with �s

h,N
 [Mm3]. To assess the effective-

ness of the above-mentioned interpolation procedure, the same case study and same 
scenarios have been simulated considering 5 different combinations of discretized 
segments. Table 5 summarizes the values of �s

h,N
 for both the reservoirs considering 

the different discretization combinations.
When solving the optimization problem, the optimal water volumes vh,k are found 

to be inside one of the s segments above-mentioned. Figure 18 provides an illustra-
tive example for the upper reservoir h . While �s=2

h,N
 indicates the water volume of the 

discretized segment s = 2 using N = 5 discretization points, the corresponding 
upper and the lower bounds – still expressed in Mm3 – are indicated with �s=2

h,N=5
 and 

�
_

s=2

h,N=5

 respectively. More precisely, the water volume v
h,k

 is more likely to be found 

in between one of the two halves ( 
�s=1

h,N=5

2
 ) composing the corresponding volume seg-

ment s . The same considerations are valid for the lower reservoir h.

Table 5   Volume segments for the two reservoirs, considering five discretization combinations

Combination Total number 
of points N2

Discretized volume segment for 
upstream reservoir �s

h,N
 [Mm3]

Discretized volume segment for 
downstream reservoir �s

h,N
 [Mm3]

5×5 25 171.03 26.03
10×10 100 76.01 11.57
15×15 225 48.86 7.44
20×20 400 36.01 5.48
25×25 625 28.50 4.34
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In order to give a quantitative measure of the impact of a finer volume discretiza-
tion on the interpolation procedure for the water volumes, the performance index PI 
(33) is used:

Where �h indicates the deviation from the water volume vh,k=K of the reservoir h at 
the end of the stage t from the closest extremes �s

h,N
 or �

_

s

h,N

 of the water segment s 

to which it belongs to, as illustrated in Fig. 18. Moreover, the equation considers the 
values of 

�s

h,N=5

2
 and 

�s
h,N=5

2
 which indicate the half of the volume segment s for the 

upper and lower reservoir respectively when using a discretization of N = 5 . This 
allows to have the same reference points as unit of measure and enables a more 
proper comparison between the different discretization combinations. Clearly, the 
higher the number of discretization points N is, the finer the water volumes seg-
ments �s

h,N
 will be. The same trend regards the effectiveness of the interpolation 

procedure.
Figure 19 indicates the results obtained from Eq. (33) considering all the T  weeks 

simulated. The box and whisker plots illustrate the variability of the PI character-
izing the different combinations. As expected, the variation of the PI and the median 
values over the T  stages considered decrease with a finer discretization of the reser-
voir volumes.

(33)PI =

⎡⎢⎢⎣
�
h
×

�s

h,N=5

2
+ �h ×

�s
h,N=5

2

�s

h,N=5

2
+

�s
h,N=5

2

⎤⎥⎥⎦

Fig. 18   Graphical representation of v
h,k

 and of the corresponding discretized volume segment s
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Finally, Fig. 20 indicates the computational time—expressed in hours—required 
to solve the SDP-FS algorithms for the different combinations of discretization. The 
graph clearly demonstrates that the computational time increases with a finer dis-
cretization of the reservoir volumes. However, it must be noted that these results 
are obtained with a processor with average computational capabilities (Sect.  5.1). 
Although the underline trend would be confirmed, the computational time could 
decrease by using a processor with higher performances.

Fig. 19   Performance index for different discretization points
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Fig. 20   Computational time for the different discretization combinations
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6 � Conclusions

This paper presents a SDP-based approach to solve the hydropower scheduling of 
a hydropower system composed by a PSHP connected to a traditional HPP. More 
specifically, the model is an extension of a medium-term scheduling model origi-
nally developed for a cascade system of two traditional hydropower plants subject 
to state-dependent constraints on maximum discharge [20]. The implementation 
of a pumping system with the relative technical constraints and the introduction 
of two additional environmental constraints—the minimum environmental flow 
and the ramping constraints—allows the model to consider a pumped-storage 
hydropower plant connected to a traditional hydropower plant subject to the three 
environmental constraints all together at the same time. The optimization prob-
lem is formulated for a planning horizon of one year with weekly stages and it is 
solved by using a stochastic dynamic programming algorithm, allowing for the 
representation of the stochastic variables and the resolution of the non-convex 
objective function.

The model has been tested on the Rosskrepp-Kvinen hydropower system located 
in south of Norway. In this context, the paper aims to investigate the potential incre-
ment in energy production and annual revenues when operating the system with the 
addition of a pumping unit and/or in the presence of ramping constraints.

Regardless the implementation of ramping constraints, the results show that 
the system with a pump unit has a higher total energy production and higher total 
revenues if compared to the traditional system. For the Ns scenarios simulated, the 
annual median energy production increases up to +9.34% for a pumped storage sys-
tem compared to a traditional system, while the increase in the annual median rev-
enue can reach the +2.35%. This increment in energy production is further validated 
by the cumulative water volume variations evaluated along the planning period. As 
expected, these are higher with a PSHP with respect to a traditional HPP: the addi-
tional water inflows due to the pumping system lead to a higher availability of water 
inside the reservoir. Consequently, the system operates the turbine more frequently, 
resulting in higher increments in energy production and therefore in annual reve-
nues. In fact, the hydropower systems with a PSHP may increase the revenues by 
effectively operating the plant in turbine mode when the wholesale prices reach high 
values. As explained, the results pertain the operational revenues of the hydropower 
system and may serve as input, in future work, to run a full investment analysis on 
the financial viability of upgrading a traditional HPP into a PSHP. This assessment 
will also have to consider the costs for civil works and for the purchase of the rela-
tive machineries.

Moreover, the results demonstrate how ramping constraints can effectively influ-
ence the operational scheduling of the system and its economics. For the traditional 
hydropower plant both the energy production and in the annual revenues decrease 
(with −0.08% and −1.01% respectively) when the ramping constraints are imposed, 
suggesting the redistribution of energy production along periods of low energy 
prices. Still, even though the ramping constraints were found to reduce the energy 
production and the total revenue, there was an increase in the energy production 
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of +6.74% and an increase in the annual revenues of +0.47% for pumped-storage 
systems with ramping constraints compared to the traditional system without the 
constraint.

For what concerns the water levels inside the reservoirs, systems operating with-
out the restriction of ramping constraints tend to have higher variations, with incre-
ments and decrements higher than 0.15 m in the 3-hour interval. In systems where 
ramping constraints are imposed instead, the water level variations tend to stay in 
between the required range for most of the time. However, there are some cases 
in which this limitation cannot be fully satisfied because of high water inflows or 
because of an inaccurate choice of the right water volume variations in the optimiza-
tion problem.

Secondly, the results obtained from the case study with resolution on the stages 
in the forward simulation, demonstrated how the use of a medium-term model might 
underestimate the effect of constraints and overestimate some technical considera-
tions and thereby the economic performance of the power system. For this particular 
case study, the results show that a more accurate knowledge of the state variables 
and therefore a more accurate implementation of the state-dependent constraints, 
leads to a global decrease both in the energy production and in the total revenues. 
Furthermore, the analysis regarding the discretization level of the water volumes 
clearly demonstrated how the effectiveness of the interpolation procedure used for 
the evaluation for the water volumes increases with an increasing number of discre-
tization points, but at a higher computational cost.

The results presented in this paper suggest further pathways for further develop-
ment. First, the additional revenues stemming from the introduction of a pumping 
unit should contribute to a full investment analysis considering the related invest-
ment cost. In addition, the benefits of a pumping functionality should be assessed in 
a competitive market framework where the PSHP is treated as a price-maker agent. 
Concerning the modelling exemptions of the PSHP, future studies will refine this 
analysis by incorporating more detailed description of the relevant technologies of 
the main electrical machines and components (e.g., converters) and their impact 
on the outcomes of the analysis. This would allow to acknowledge the flexibility of 
fully-fed or doubly-fed electrical machines with respect to more traditional fixed-
speed pumps. Finally, the optimal operation of the PSHP should consider additional 
revenue streams such as availability fees for frequency response or other ancillary 
services. This of course would require an extension of the modelling formulation to 
account for technical related constraints.
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