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Abstract—State estimation is critical for the monitoring and
control of power systems. The conventional approach for state
estimation is based on quasi static models for the power systems
and as such neglects relevant dynamic effects. These dynamic
characteristics are accounted in what are referred as dynamic
state estimators (DSE). Several implementations for DSEs have
been proposed in literature but mostly focusing on the modelling
and numerical aspects. In this paper a laboratory assessment of
a DSE for estimating the internal variables of a generation plant
is presented. The assessment is conducted with a Hardware in
the Loop approach in a laboratory configuration that includes
a PDC, real phasor measurement units (PMUs) operating with
IEC 61850 sampled values and a real time model of the nordic
power system. Experimental results show the behaviour and root
mean square error of the estimator for a few different hardware
implementations. Thus, it is assessed if the utilization of the
IEC 61850 standard may have an impact on performance of
the dynamic state estimation and it is quantified the effect on
the accuracy.

Index Terms—Dynamic state estimation, IED, PMU, cyber-
physical system, wide area monitoring and control.

I. INTRODUCTION

The future power systems are expected to pose more
challenges for their operation and control due to the present
trends affecting both power generation and consumption. In
order to comply to commitments in reducing fossil fuels
emission, power generation is gradually shifting towards a
larger integration of renewables primarily by adding inverter
interfaced generation units like wind turbines or photovoltaic
panels. This is introducing more variability in the production
due to the stochastic characteristics of these sources but also
leading to a reduction of the overall power system inertia.
Moreover, the decarbonization of industrial and transport sec-
tors are contributing to an increase in the demand of electrical
power leading the power systems to operate closer to their
capacity limits. These expected operation challenges demand
for improving the capabilities to monitor the power system
and to implement faster and more effective control actions.

State estimators are implemented to monitor the power
systems based on voltage and current measurements in several
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nodes [1]. The conventional approach is based on measure-
ments from SCADA based Energy Management Systems
(SCADA-EMS) but there are limitations in the bandwidth and
in the time accuracy. Transmission system operators (TSO)
have been actively improving their monitoring capabilities by
adding PMUs in their power systems since these can offer a
significant increase of a few orders of magnitude in the update
rates and highly accurate timing due to GPS synchronization.
Faster and more accurate measurements can improve the
quality of the state estimation and increasing the coverage
with PMUs could eventually allow also more computationally
efficient implementations like linear state estimators. However,
a common characteristics of the classical state estimators
is that the underlying power system model is quasi static
and neglects relevant dynamic characteristics. For example,
the generation from power plants is modelled as active and
reactive power injection.

A more recent approach in state estimations is represented
by dynamic state estimators (DSE) [2] that explicitly account
for dynamic characteristics of the power systems. DSE can
offer several advantages in control and protection, especially
in mitigating oscillatory and unstable behaviors. Dynamic state
estimation has a great advantage over static state estimation,
especially for security assessment. While static state estimation
provides information only about the current system state, with
DSE it is possible to develop computational tools that predict
the short term dynamic states. This can represent a significant
advantage as it allows more time for the operator to react
and implement actions [3]. In addition, DSE can be used
to identify and calibrate particular parameters in protection
systems by testing consistency between PMU measurements
and the dynamic model [2], [4].

DSE is used with the extended Kalman filter (EKF) in [5] to-
gether with trajectory sensitivity for parameters tuning. Hence,
the parameters of a generator model were calibrated from
deviations. Another approach where the mathematical model
is compared with the measurements via DSE is the so-called
Dynamic State Estimated Based Protection, also referred as
(EBP). Inspired by the concept of differential protection, the
basic idea is to compare the measurements with the quantities
that the dynamic model of the device to be protected would
provide. A systematical method to implement this is via a DSE
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[6] to compare the measurements with the mathematic model.
In the field of system protection, an application was shown in
[7] where a model-based and predictive out-of-step method is
proposed. A two-machine equivalent is extracted 60 times per
second that describes the investigated plant in the first machine
and the rest of the system in the second machine. This fast
model-building process relies on a dynamic state estimator.
The approach predicts, based on Lyapunov’s direct method, if
the plant has to be disconnected or not.

The main focus in technical literature has been in the math-
ematical formulation and in the numerical implementation of
DSEs [2], [8]–[11]. Aspects related to the possible effects on
the DSEs from PMU hardware and from the communication
infrastructure have been less investigated.

This paper presents an experimental assessment of a DSE
for estimating the state of a generation power plant with a
hardware-in-the-Loop approach (HIL). The laboratory config-
uration includes real PMUs and a PDC. A real time simulator
runs a real time model of the european nordic power system
while the DSE is executed in a client computer. Besides, IEC
61850 sampled values are used to stream data to the PMUs
that generate the phasors.

The aim of the paper is to estimate the accuracy of dy-
namic state estimation with PMUs that receive streamed data
according to the IEC 61850 sampled values standard. This
work is motivated by the fact that new digital substations use
IEC 61850 standard to connect the measurement devices with
the processing units and relays and this also applies to PMUs.
It becomes then relevant to assess if the utilization of this
communication standard may have an impact on performance
of the dynamic state estimation and to quantify the effect on
the accuracy.

This paper is organized as follows: Section II shows the de-
centralized DSE modeling. Section III presents the laboratory
setup developed for validating the DSE and the transmission
system network used for the validation. Experimental results
are presented and analysed in section IV. Finally, the conclu-
sions are highlighted in section V.

II. DECENTRALIZED DYNAMIC STATE ESTIMATOR

A DSE can be implemented in a centralized or decentralized
form [8]. In centralized DSE the system is assumed
observable by PMUs and Kron reduction is applied to
simplify the network to the nodes of the generators. On
the other hand decentralized DSE uses local area PMU
measurements and PMUs are located at generators buses.
Hence, decentralized assumes that the node of the component
under test is monitored by the local PMU and dynamic
states are observable from the PMU and input measurements.
Moreover, as a disadvantage centralized needs accurate
knowledge of the system [2], [8]. Hence, decentralized
appears as a valuable solution to estimate locally the dynamic
states of generation units without adding high computational
load.

A. Mathematical model of the generation plant

The DSE requires a state space dynamic model of the
generation plant. This subsection describes the differential
equations of the model for the generation system and the
model of outputs. The differential equations of the plant follow
the model ẋ = F (x, u) described in (1)-(7) [12]. The model is
written in the local synchronous frame of the generator that is
oriented with the mechanical position of the shaft. The global
frame is assumed to be oriented to the slack bus voltage.
The states are xT = (ω,Eq, Ed, δ, Efd, Rf , Vr). Rotational
speed of the generator is defined as ω, Ed, Eq , are transient
field winding voltages at d, q reference frame, δ is the angle
between the global and the local frame, Efd is the field
voltage. Rf is the stabilizing feedback and Vr is the scaled
output of the exciter. The terminal constraints are Id, Iq and
Vin is the magnitude of the terminal voltage. The inputs to this
model are uT = (Tm, Vref ). Tm is the mechanical torque and
Vref is the voltage reference of the voltage regulator system
[12].

ω̇ =
ωs

2H

(
Tm − EdId − EqIq − (Xqp1 −Xdp1)IdIq (1)

−D(ω − ωs)
)

Ėq =
1

Td1
(−Eq − (Xd −Xdp1)Id + Efd) (2)

Ėd =
1

Tq1
(−Ed + (Xq −Xqp1)Iq) (3)

δ̇ = ω − ωs (4)

Ėfd =
1

Te

(
(−Ke + Se)Efd + Vr

)
(5)

Ṙf =
1

Tf

(
−Rf +

Kf

Tf
Efd

)
(6)

V̇r =
1

Ta

(
KaRf − Vr −

KaKf

Tf
Efd +Ka(Vref − Vin)

)
(7)

where, ωs is the synchronous speed in electrical radians per
second. Td1, Tq1, Te, Tf , Ta are time constants. Ke,Kf ,Ka

are controller gains. Additional algebraic equations are de-
scribed in (8) and (9) representing the circuit of the generator
connected to the power system network. VD and VQ are
measurements from the PMU. Hence, (8) and (9) define the
outputs model z with z = H(x, u). The terminal voltages at
the global reference frame are VD and VQ and zT = (VD, VQ).

VD = cos(δ)(Eq −Xdp1Id) + sin(δ)(Ed +Xqp1Iq) (8)
VQ = −cos(δ)(Ed +Xqp1Iq) + sin(δ)(Eq −Xdp1Id) (9)

The currents measured by the PMU ID and IQ are in global
synchronous frame. Therefore, the currents in the local syn-
chronous frame Id and Iq can be calculated with (10) and
(11).

Id = IDsin(δ)− cos(δ)IQ (10)
Iq = IDcos(δ) + sin(δ)IQ (11)
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B. Realization of the extended Kalman filter

A discrete non-linear model of the generation unit is used
for the practical implementation of dynamic state estima-
tor based on Kalman Filter. For applications with PMUs a
sampling time = 20 ms is used on the discretization of the
model. Therefore, (12) and (13) are used for an extended
Kalman filter with process and observation noise wk and vk,
respectively [13]. Noises covariance are Q and R for wk

and vk, respectively. Hence, xk and zk are discrete variables
corresponding to x and z.

xk = f(xk−1, uk) + wk (12)
zk = h(xk, uk) + vk (13)

The discrete model (12) is obtained following Euler integration
of (1) to (7). xk ∈ ℜ7. Finally, the observations model (13)
is based on (8) and (9) with zk ∈ ℜ2.

Estimated states x̂k|m represents the estimate of x at time k
given observations up to time m. The EKF has the following
steps:

a) State Prediction:

x̂k|k−1 =f(xk−1, uk) (14)

Pk|k−1 =FkPk−1F
T
k +Qk (15)

where, (14) calculates the predicted state estimate x̂k|k−1,
(15) calculates the predicted covariance estimate Pk|k−1 and
Fk is state transition defined by the Jacobian ∂f

∂x evaluated
with x̂k−1, uk.

b) State Correction:

ỹk =zk − h(x̂k|k−1, uk) (16)

Sk =HkPk|k−1H
T
k +Rk (17)

Kk =Pk|k−1H
T
k S

−1
k (18)

x̂k|k =x̂k|k−1 +Kkỹk (19)
Pk =(I −KkHk)Pk|k−1 (20)

where, ỹ is the measurement residual, Sk is the innovation
covariance, Kk is Kalman gain, x̂k|k is the updated state
estimate, I identity matrix, Pk|k is the updated covariance
estimate and Hk is the observation matrix defined by the
Jacobian ∂h

∂x evaluated at x̂k|k−1.

III. LABORATORY IMPLEMENTATION

The DSE based on the extended Kalman filter is imple-
mented for real time execution and integrated in an exper-
imental setup to assess perfomance. The section contains a
description of the laboratory configuration for HIL testing and
of the grid model that is executed in real time.

A. Laboratory setup

A schematic overview of the laboratory configuration is
shown in Fig. 1 highlighting the interconnection between the
components including the real time simulator where the grid
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Fig. 1. Connectrions of laboratory setup. PMU 1: virtual PMU, PMU 2:
ABB, PMU 3: SIEMENS.

model is executed, the physical PMUs, the PDC and the unit
where the DSE is implemented.

A picture of the laboratory configuration is presented in Fig.
2 showing the real-time simulator OPAL-RT (1), the satellite
synchronized network clock SEL-2488 (2), the communication
switches MOXA PT-7728 used in power system substations
(3), the PMU from ABB (4), the PMU from SIEMENS (5)
and the configuration computers for PDC and for DSE (6).

1

2

3

5

4

6

Fig. 2. View of laboratory and devices. 1: Real-time simulator, 2: GPS master
clock, 3: power system substation communication switches, 4: PMU 2, 5:
PMU 3, 6: Computers for PDC and Control centre DSE.

The communication between the units follows the com-
munication protocols used on wide area monitoring, control
and digital substations. The protocol C37.118 communicates
with real field PMU devices or a commercial phasor data
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concentrator (PDC). Besides, the RT uses standard IEC 61850
sampled values to stream three phase sinusoidal voltages
and currents to the PMU devices. This testbed uses as field
devices an industrial intelligent electronic devices with PMU
functionalities of class M, a grand master clock with network
precision time protocol (PTP) based on GPS synchronization,
power system communication switches, a configuration PC for
implementing state estimator scripts or network monitoring.

The laboratory configuration contains one virtual PMU that
uses directly the voltage and current phasors of the selected
node of N44 where the generator is connected. Additionally,
the virtual PMU is generated from the RT simulator using its
C37.118 server application. Besides, Fig. 1 shows the multicast
traffic based on standard IEC 61850 sampled values (SV) of
the voltage and current from the node at N44. This node at
N44 is the generator’s connection bus. The SV packets are
taken by the physical PMUs PMU 2 and PMU 3 and each
device computes their phasors. Blue line is used for traffic
from PDC to a PDC client at the laboratory’s control centre.

B. The Nordic 44 power system model

This paper uses an openly available test model called Nordic
44 or, in short, N44. It can be downloaded online [14] and its
objective is to emulate the dynamic response of the Nordic
transmission system. Figure 3 shows the buses location and
lines of the N44. This current version is the result of several
iterations of test models representing the Nordic transmission
network and has been extended over many years. There are
different models between an NTNU and a KTH for the
versions of the N44, both versions being extensions of the
N23 model. The Norwegian version has emphasis on the
Norwegian transmission system.

The N44 model has been used for stability assessments as
well as market studies [14]. As the name implies, there are
44 nodes with a nominal voltage of 420 kV or 300 kV. The
Norwegian part includes eight areas, Sweden four, and Finland
two [15]. Additionally, there is one bus representing Denmark.
The Swedish part mainly describes the large power flows from
north to south where the load centers are located as well as the
nuclear power plants. The Norwegian part mainly represents
a large number of hydropower plants in the southwest, the
power flows to the load centers around Oslo, and the transit
to southern Sweden. The model includes 43 loads and 61
synchronous generators (12 in Finland, 20 in Norway and 29
in Sweden). The total power generation is of 53 GW. This is
comparable to the real nordic system [16].

The N44 power system is simulated in real-time including
electromechanical transient dynamics. The real-time simulator
is used as a MU for the voltage and currents at the selected
node of the N44.

IV. EXPERIMENTAL RESULTS

Three sources of PMUs have been tested in this paper as
shown in Fig. 1 for node 5600 voltage and current phasors
in the N44 network. PMU 1 uses the phasors directly taken

300 kV
420 kV

Fig. 3. Nordic 44-bus power system.

from the electromechanical RT-simulation. Therefore, PMU 1
defines the simplest and fastest PMU path to the DSE. Physical
PMU 2 and PMU 3 use the sampled values of three phase
voltages and currents for node 5600 in the N44. Hence, PMUs
2 and 3 calculate the phasors with the respective vendor’s
software.

The tests of each PMU signal for the generator at node
5600 follow the same pattern as shown in Fig. 4. The two
inputs of the generation unit have been changed with the
aim of exciting the different dynamic states. Initially at t
= 0 s a step was applied on the mechanical torque (Tm)
with an increment of 0.1 p.u (see Fig. 4 top). The step of
Tm produces a transient that excites the performance of the
dynamic state estimation with the three different PMUs. The
step was removed at t = 32.62 s. After step of Tm a step
on the generator’s reference voltage (Vref ) was applied at t
= 72.62 s and it was removed at t = 92.62 s. Moreover,
Fig. 4 shows the rectangular form of voltage VD, VQ and
current ID, IQ phasors of the electromechanical RT-simulation
at node 5600 in the N44. It is shown the current changes
from t = 0 s produced by the Tm step and at t = 72.62 s
IQ and ID increase the magnitudes as a result of the change
of Vref . The RT-simulator is PMU 1 defined with sub-index
opal. PMU 2 is defined with sub-index abb. Finally, PMU 3 is
defined with sub-index sie. True generator states are denoted
with x ∈ {Vr, Rf , Ed, Eq, δ, Ef , ω} and estimated values are
denoted with x̂.

The behaviour of PMU 1, 2 and 3 for estimating states
Vr and Rf are shown in Fig. 4 bottom. States Vr and Rf

are sensitive to step change of Vref . Root mean square errors
(RMSE) for the estimation of Vr and Rf are shown in Table
I. PMU 1 generates the lowest RMSE fro estimation of Vr

and Rf . Figure 5 shows the estimation for the states Eq , Ed,
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δ, Ef and ω. State Eq is sensitive to a step on Vref . Fig. 5
top shows the behaviour of estimation Eq with the different
PMUs. Estimations for Eq show a smooth transition. Besides,
the RMSE errors for this state are very close for all the PMUs
as shown in Table I. PMU 3 estimation shows the lowest
RMSE for Eq . Ed is a state that stays close to zero as shown
in Fig. 5. Fig. 5 shows the estimation of δ. State δ is highly
excited by Tm changes. Figure 5 and Table I show the largest
estimation error and RMSE of δ with PMU 1. Estimations
of Efd are shown in Fig. 5, the behaviour of estimations are
similar to Eq . RMSE are similar for PMU 2 and PMU 3. PMU
1 produces the lowest RMSE of Efd. Finally, Fig. 5 bottom
shows the estimation of ω. Changes of Tm excites oscillation
of ω. RMSEs from the three different PMUs is very similar
(see Table I). However, PMU 1 produces the lowest RMSE.
Finally, results present a maximum RMSE of 1.65 % on states
with p.u. values and a maximum RMSE 0.0141 rad of state
δ.
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Fig. 4. DSE inputs Tm, Vref , states Vr and Rf .
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Fig. 5. DSE of states Eq , Ed, δ, Efd and ω.

TABLE I
ROOT MEAN SQUARE ERROR FOR DSE WITH PMUS

State PMU type
PMU 1: opal PMU 2: abb PMU 3: sie

Vr 0.00122534 0.0016823 0.00167742
Rf 0.007255 0.0138511 0.01557030
Eq 0.016427 0.01595 0.01469
Ed 3.5130 ×10−5 3.7217 ×10−5 3.1254 ×10−5

δ 0.014149 0.012066 0.011597
Efd 0.00902104 0.0152296 0.0164983
ω 0.00052668 0.0008533 0.00071267
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V. CONCLUSIONS

The paper has assessed the performance of a dynamic state
estimator for estimating the state of a generation power plant
connect to a transmission grid. The assessment is conducting
on an experimental configuration with an hardware-in-the-
loop approach. It is shown the performance of an extended
Kalman filter for a dynamic state estimator with multiple PMU
sources. The first PMU (PMU 1) source gives the ideal path
without any recalculation of the phasors by the PMU devices.
PMU 2 and PMU 3 used a realistic environment with IEC
61850 sampled values applied to get three phase sinusoidal
current and voltages. Hence, PMU 2 and PMU 3 calculate
the phasors and send them to the system operator’s PDC.
Estimation with physical devices showed good performance
based on the analysis of results of section IV. RMSE of states
Ed and δ are better with physical PMUs than RMSE with
the ideal PMU path. The estimation of ω shows comparable
RMSE for all the PMUs. Estimated values followed the profile
of the real states with a small offset, with a maximum RMSE
of 1.65 % on states with p.u. values and maximum RMSE
0.0141 rad for δ. Hence, the environment produces reliable
values that can be used on applications like protection systems.
Moreover, it has been obtained a degree of accuracy for DSE in
new digital substations that comply with IEC 61850 standard.

REFERENCES

[1] J. Zhao, “Power system dynamic state estimation considering measure-
ment correlations,” IEEE Transactions on Energy Conversion, vol. 32,
no. 4, pp. 1630–1632, 2017.
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