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Abstract 10 

Carbon Capture and Storage (CCS) using chemical absorption is a viable method to significantly cut CO2 11 

emissions in the industrial and energy sectors. However, further development of improved absorbents is 12 

necessary to reduce the costs and environmental impact of current CCS technologies. To design the process 13 

and quantify energy consumption and costs through process simulation, it is necessary to implement an 14 

accurate and robust thermodynamic model. This article describes in details how to develop, regress, and 15 

validate a VLE model using ELECNRTL model in Aspen Plus V11 for the novel HS3 solvent, a blend of 3-amino-16 

1-propanol and 1-(2-hydroxyethyl) pyrrolidine, which is currently being characterized in Realise (H2020-17 

funded project). The VLE model is validated over a wide range of temperatures and loadings. The proposed 18 

procedure to regress ELECNRTL parameters can be used as a general guideline for implementing VLE models 19 

in Aspen Plus for generic amine blends or electrolyte solutions.   20 

 21 

Highlights 22 

• Aspen Plus VLE model implementation approach for AP-PRLD blend for CO2 capture  23 

• The methodology is general and applicable for developing ELECNRTL models 24 

• Experimental validation using quality in-house VLE data 25 

• Accurate estimation of absorption heat and reasonable speciation plots are obtained 26 

• Estimation of physical properties of the blend 27 

 28 

Keywords: amine blends, CO2 capture, ELECNRTL Aspen Plus, equilibrium model, model validation, chemical 29 

absorption. 30 

 31 

1. INTRODUCTION 32 

Carbon capture and storage (CCS) is considered a key technology in reducing global carbon dioxide emissions. 33 

Considering that industrial sources account for about 16% of the worldwide CO2 emissions (epa.gov, 2022), 34 

installing CO2 removal facilities to treat the flue gas from those production plants, such as refineries and 35 

cement plants, can play a key role in mitigating climate changes. However, the current implementation of 36 

CCS technologies at the industrial level is limited, mainly due to high costs (Yamada, 2021). The significant 37 

thermal duties required to regenerate conventional amine solvents, such as mono-ethanolamine (MEA) and 38 

methyl-diethanolamine (MDEA) may therefore be a limitation for global implementation and deployment. It 39 

is, therefore, essential to further improve the efficiency of the overall process by developing innovative 40 

solvents with improved capture capacity and lower environmental impact compared to traditional amines 41 
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used for CO2 absorption (Pellegrini et al., 2021). A new aqueous amine blend (the HS3 solvent) which is made 42 

up of a primary polyamine (3-amino-1-propanol, named AP) at 15 wt%, and a tertiary amine (1-(2-43 

hydroxyethyl) pyrrolidine, named PRLD) at 40 wt% concentration, has been characterized as part of the 44 

Realise project funded by the European Community (Realise, 2022). The experimental tests carried out so far 45 

have shown that the CO2 cyclic capacity of HS3 can be significantly higher than that of 30 wt% MEA. 46 

Preliminary analysis indicates that the solvent has a significantly lower regeneration duty compared to the 47 

benchmark MEA solvent. An elaborate pilot campaign is also currently being carried out at the Tiller plant 48 

(September 2022 - January 2023 in Trondheim, Norway). 49 

The development and validation of first-principle models are essential to accurately model and simulate 50 

advanced chemical processes. Such simulation models are used as an important tool for energy-, cost- and 51 

design calculations in several fields of chemical- and energy engineering (Bisotti et al., 2022, 2021; Kucka et 52 

al., 2003; Liu et al., 2016; Svendsen et al., 2011).  53 

This article presents a procedure to develop and validate an eNRTL (ELECNRTL) VLE model of the Realise HS3 54 

solvent, implemented in Aspen Plus V11 (Aspen Plus®, 2019; Liu et al., 2016). Ancillary models that describe 55 

physical properties such as density, viscosity, and heat capacity are provided, as well as the definition of the 56 

chemical reaction scheme during CO2 absorption together with the temperature-dependent equilibrium 57 

constants. The developed model has been validated in the temperature range from 40 to 120°C, and for 58 

solvent CO2 loadings from 0.01 up to 1 mol/mol. Uncertainty analysis has been conducted, investigating the 59 

model's accuracy against the measured VLE data. 60 

The proposed approach provides a general methodology of implementation, which has not been published 61 

earlier. The proposed general approach can, be applied to any ELECNRTL activity coefficients model. The 62 

authors would like to remark that the VLE correct representation and prediction is at the base of any capture 63 

system, and it affects the design of the two main units (i.e., absorber and regenerator), as well as all other 64 

units that require the calculation of the phase equilibrium (i.e., flashes). Details concerning physical property 65 

models available in Aspen Plus V11 and the way they are referred to and named in the process simulator are 66 

highlighted so that the article can be considered as a detailed implementation guideline to construct an 67 

ELECNRTL model in Aspen Plus for reactive liquid-gas systems, such as amine blends used to capture CO2. 68 

The supplemental solvent physical properties and the corresponding models describing these properties are 69 

reported in the Supplementary Material. 70 

 71 

2. METHODS 72 

An ELECNRTL model is exploited to describe the interactions in the liquid phase in HS3 solvent, while the gas 73 

phase is simply modelled as an ideal gas (Antoine equation), in accordance with the theoretical background 74 

paragraph (Aspen Plus®, 2019). This approach has already been implemented with successful results for 75 

many standard amine-based solvents and it is still the most widely used commercial suite for simulating 76 

processes based on mono-ethanolamine (MEA) and methyl-diethanolamine (MDEA). The main steps 77 

required to build an ELECNRTL model for a new blend are represented in the flowchart of Figure 1. More 78 

specifically, molecule-molecule interactions are firstly described disregarding the formation of ions; in a 79 

further step, molecule-ions intercations are described based on the implemented elementary reaction 80 

scheme by fitting dedicated ELECNRTL coefficients to VLE data for complete system (amine-H2O-CO2).   81 

Finally, the obtained VLE model must be tested to check its reliability, accuracy and stability. This diagram 82 

also clarifies which are the experimental data exploited in each progressive step. 83 

Table 1 gathers and lists all the parameters that should be implemented to properly define the VLE for 84 

amine(s) blends. Moreover, the same table reports the references used to get experimental data and/or 85 



3 
 

models for some of the parameters implemented in Aspen Plus. For physical properties, please refer to the 86 

Supplementary Material. 87 

 88 

 89 

 90 
 91 
Figure 1. Flowchart summarizing the procedure followed in this work for ELECNRTL model development and validation. 92 

 93 

Table 1. List of parameters and thermodynamic properties necessary to properly define ELECNRTL model in Aspen Plus 94 

Propert
y 

Model 
name in 
Aspen 

Parameters 
regressed in 
Aspen Plus 

(corresponding 
element in the 

equation)  

Model expression Data sources 
for fitting 

Activity 
coefficie
nt model 
(VLE 
model) 

NRTL 
(molecule-
molecule 
pairs) 
 

NRTL/1 (Aij) 
NRTL/1 (Aji) 
NRTL/2 (Bij) 
NRTL/2 (Bji) 
NRTL/3 (αij) 
 
 

ln(γi) =
∑ xj ⋅ τji ⋅ Gji

n
j=1

∑ xk ⋅ Gki
n
k=1

+ ∑
xj ⋅ Gij

∑ xk ⋅ Gkj
n
k=1

n

j=1

⋅ (τij

−
∑ xm ⋅ τmj ⋅ Gmj

n
m=1

∑ xk ⋅ Gkj
n
k=1

) 

 

Gji = exp(−αij ⋅ τij) 

 
αij = αji = non randomness factor 

αij = 0.1 (recommended default value in 

ELECNRTL) 
 

τij = Aij +
Bij

T
 

 

Binary AP-H2O 
VLE data by: 

• (Bernhardsen 
et al., 2019) 

GMELC 
(molecule-
ion and 
ion-
molecule 
pairs) 

GMELCC (Aij) 
GMELCC (Aji) 
GMELCD (Bij) 
GMELCD (Bji) 

AP-PRLD-CO2-H2O 
data (REALISE, 
2022 
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Vapor 
pressure 

Extended 
Antoine 

PLXANT (C1, C2, C3) 
ln (Psat[bar]) = C1 +

C2

T [K] + C3

 

 

AP:  

• (Green and 
Perry, 2007) 

PRLD: 

• (Bernhardsen 
et al., 2019) 

Henry’s 
constant 

Henry’s 
constant 

HENRY (Aij, Bij, Cij, 

Dij) 
ln(He [kPa]) = Aij +

Bij

T
+ Cij ⋅ ln(T) + Dij ⋅ T 

 

(REALISE, 2022) 

Reaction 
equilibri
um 
constant 

 A 
B 
C 
D 

ln(Ki) = A +
B

T
+ C ⋅ ln(T) + D ⋅ T 

 

AP: 

• (Dong et al., 
2010) 

PRLD: 

• (Li et al., 
2017) 

 95 

2.1 Henry constant 96 

In order to estimate the physical solubility of the pure i-th components, i.e, the CO2, a Henry correlation (Hi) 97 

is used. Therefore, the solubility is part of the requirement of fulfilling the vapor-liquid equilibria relationship 98 

between the liquid species and fugacities (fi
V), see section 2.4.1. For the CO2, it is important to define this 99 

parameter since the affinity between CO2 and the pure amines and their blends depends on the amines 100 

features, which affects both the physical (VLE) and the chemical equilibrium (amines speciation and amount 101 

of dissolved CO2 into the liquid).  102 

   
Since CO2 reacts as it contacts an amine, N2O analogy is the only possible way to estimate the solubility 103 

constants as in (1). This approach is widely adopted in the literature (Aronu et al., 2011; Bishnoi and Rochelle, 104 

2000; Sada et al., 1977).  105 

 HCO2−amine=

HN2O−amine ⋅ HCO2−H2O

HN2O−H2O
 (1) 

 106 

N2O solubility data in water, AP and PRLD have been collected within the Realise project in a temperature 107 

range between 15°C and 80°C with a step of 5°C. Then, expression (1) was adopted to estimate the Henry 108 

constant for CO2-AP and CO2-PRLD at every temperature. Finally, Henry’s constant temperature dependence 109 

is defined according to correlation (2) used in Aspen Plus.  110 

 ln(He [kPa]) = A +
B

T
+ C ⋅ ln(T) + D ⋅ T (2) 

 111 

The values of parameters A, B, C, and D resulting from the minimization of the relative square deviations 112 

between the solubility were calculated based on the experimental solubility data and the model predictions.  113 

 114 

 115 

 116 
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2.2 Vapor pressure 117 

The vapor pressure describes the phase equilibrium between the aqueous solution, namely water and the 118 

amine(s), and the corresponding vapor phase allowing the prediction of the amine concentration of amines 119 

in the vapor phase. Correct description of varpo pressure is also important in design of the water washing 120 

section abating the amine traces in the treated gas. The vapor pressure of pure AP and PRLD can be modelled 121 

in Aspen Plus exploiting the extended Antoine equation, reported in (3). 122 

 ln (Psat[bar]) = C1 +
C2

T [K] + C3
+ C4 ⋅ ln(T [K]) + C5 ⋅ T (3) 

 123 

For simplicity, a standard Antoine equation expression (4) can be be adopted without losing accuracy. For 124 

the sake of knowledge, the SRK equation has also been tested. The observed relative differences between 125 

the partial pressure of CO2 at given loading and operating temperature obtained with SRK and ideal gas 126 

model remained always below 1%. 127 

 ln (Psat[bar]) = C1 +
C2

T [K] + C3
 (4) 

 128 

The coefficients in Antoine expression can be available in the literature or refitted from experimental data. 129 

For what specifically concerns HS3, Antoine coefficients are already available in the literature for AP (Green 130 

and Perry, 2007), while the coefficients for PRLD have been fitted to the vapor pressure data collected in 131 

Berhardsen (Bernhardsen et al., 2019). 132 

 133 

2.3 Elementary reaction schemes and equilibrium constants 134 

Amines react with the absorbed CO2 following well-established elementary chemical reactions. Primary 135 

amine (such as AP) can speciate into the protonate form according to reaction r4 or turn into their carbamate 136 

form as in r5. In the latter reaction, the CO2 is fixed into the bicarbonate ion whose formation is described in 137 

reaction r2. Tertiary amine (such as PRLD) can only protonate or deprotonate as in r6. The scheme of 138 

elementary reactions is complete with the self-ionization of water (r1) and the carbonate formation (r3). This 139 

elementary scheme has already been implemented to characterize several amine blends in Aspen Plus 140 

(Dutcher et al., 2015; Kucka et al., 2003; Liu et al., 2016; Yamada, 2021). 141 

Dissociation of water (r1) 2H2O ⇌ H3O+ + OH− (5) 
Hydrolysis of carbon dioxide (r2) 2H2O + CO2 ⇌ H3O+ + HCO3

− (6) 
Dissociation of bicarbonate ion (r3) HCO3

− + H2O ⇌ H3O+ + CO3
2− (7) 

Protonation of AP (r4) APH+ + H2O ⇌ AP + H3O+ (8) 
Carbamate formation (r5) APCOO− + H2O ⇌ AP + HCO3

− (9) 
Protonation of PRLD (r6) PRLDH+ + H2O ⇌ PRLD + H3O+ (10) 

 142 

The equilibrium constant can be expressed as a function of the temperature as in equation (11): 143 

 ln(Ki) = A +
B

T
+ C ⋅ ln(T) + D ⋅ T (11) 

 144 

For reactions r1 to r3, which are not dependent on the specific solvent under investigation, the temperature 145 

dependence of the equilibrium constant has been expressed considering literature coefficients (Posey and 146 

Rochelle, 1997). For reaction r4 the coefficients A to D have been regressed starting from the expression 147 
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provided in a contribution by Dong et al., 2010, where the equilibrium constant is defined as a function of 148 

both temperature and CO2 loading. Reaction r5 is the difference between the global reaction for AP rglob1 in 149 

(12) and reaction r2 in (6).  150 

Global AP forward reaction (rglob1) 3A1P + CO2 + H2O → 3A1PCOO− + H3O+ (12) 
 151 

Due to the properties of logarithms, the equilibrium constant of reaction r5 is simply given by (13): 152 

 ln (Keqr5) = ln (Keqglob1) − ln (Keqr2) (13) 

 153 

The temperature dependence of the rglob1 reaction equilibrium constant has already been investigated by 154 

Dong et al. (Dong et al., 2010), thus we directly exploited their results. Finally, for reaction r6, parameters for 155 

Keq according to expression (11) have been calculated based on experimental data by (Li et al., 2017) 156 

reporting the amine protonation constant at different temperatures.  157 

   
2.4 Theoretical background of activity-based VLE models 158 

A thermodynamic VLE model is essential to define interactions between the constituents of a mixture under 159 

vapour-liquid equilibrium conditions. The selection of the most suitable model is strongly dependent on the 160 

specific system under investigation. Amine-based solvents are characterized by a strongly non-ideal liquid 161 

phase behavior, mainly due to the formation of several interacting cationic and anionic species. Conversely, 162 

the interactions in the gas phase can be neglected (i.e., ideal gas behavior and ideal gas mixture) unless the 163 

system is highly pressurized (P > 10 bar). The cation-anions interactions are negligible as well in the gas phase 164 

since charged molecules do not vaporize. Under these assumptions, the gas phase can be assumed close to 165 

ideal conditions, thus, a cubic equation of state, or even, the ideal gas models, are suitable for characterizing 166 

the vapor phase in equilibrium with its liquid mixture. Binary interactions in the liquid phase for a strongly 167 

non-ideal system, such as CO2, can be adequately described through the so-called Non-Random-Two-Liquid 168 

(NRTL) model. 169 

2.4.1 Chemical and phase equilibria  170 

Chemical and phase equilibria model involves solving both chemical equilibria of the reactions in the liquid 171 

phase, as well as the multi-component phase equilibria. Amine systems involve both molecular species and 172 

a range of ionic species, which can make the numerical solution complex. The description of chemical 173 

reactions occurring in the system under investigation is described in section 2.3. In addition to the reaction 174 

speciation in the liquid phase, the vapor-liquid equilibria must be solved through the fundamental 175 

equilibrium criterion, which minimizes the Gibbs energy of the solution at phase equilibrium. Phase 176 

equilibrium is reached as the chemical potential (μ) of a certain species is equal in both phases (see equation 177 

(14)). Since the chemical potential can be directly linked to fugacity according to expression (15), the 178 

equilibrium can also be expressed by the equality of the fugacities (f) in the liquid and vapur phase. As a 179 

result, vapor-liquid equilibrium of a particular species i can be defined according to expression (16), when 180 

the Poynting correction factor and the non-idealities in the gas-phase are disregarded. Models based on 181 

expression (16) are called activity coefficient models since γi is the correction factor that is introduced to 182 

account for the molecular and cationic-anionic interactions occurring in the system. 183 

 𝜇𝑖
𝑣𝑎𝑝

= 𝜇𝑖
𝑙𝑖𝑞

 (14) 

 𝑑 (n 𝑓𝑖) =
𝑑𝜇

𝑅𝑇
 (15) 

 𝑃 ⋅ 𝑦𝑖 = 𝛼 ⋅ 𝑥𝑖 ⋅ 𝛾𝑖  (16) 
 184 
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Where the parameter α is defined in different ways according to  the single species. It corresponds to the 185 

Henry (Hi) coefficients for the CO2 since it is highly diluted in the liquid phase, whereas it is the vapor pressure 186 

for all the other species that can be present in the gas phase (amines and water). For the gas phase the ideal 187 

gas behavior has been adopted since the estimates of the critical properties and Pizter factor may contain 188 

large deviations affecting the predictions for the cubic equation of state. Since the equilibrium is reached at 189 

a given temperature and pressure, when the Gibbs free energy of the system is minimized, the optimal set 190 

of activity coefficients to characterize the liquid phase composition is calculated numerically by minimization 191 

following chosen reference states. When all activity coefficients approach the unity, it means that the system 192 

behaves as an ideal mixture. The higher the deviation of the system from ideality, the furthest from unity are 193 

the corresponding activity coefficient values. An adequate estimation of the activity coefficients (γi) is 194 

essential to define the composition of the liquid (including the forming cations and ions) in chemical and 195 

physical (global) equilibrium with the corresponding gaseous phase. 196 

 197 

2.4.2 The e-NRTL activity coefficient model 198 

The NRTL model is an activity coefficient model that correlates the activity coefficients of a compound with 199 

its mole fractions in the liquid phase (Renon and Prausnitz, 1969, 1968). It is based on the hypothesis of 200 

Wilson that the local concentration around a molecule is different from the bulk concentration, which is 201 

caused by a difference between the interaction energy of the central molecule with the molecules of its own 202 

kind and that with the molecules of the other components that are present in the system. The energy 203 

difference also introduces a non-randomness at the local molecular level, which is expressed by the 204 

parameter called non-randomness factor α. 205 

The general expression of the NRTL model for determining the activity coefficient γi of the i-th generic species 206 

in a multicomponent mixture of n components is reported in the expressions (17) to (19) here below (Renon 207 

and Prausnitz, 1969, 1968), where τij are the temperature-dependent parameters describing the interaction 208 

between a molecule or the ion i with another molecule or the ion j and αij is the non-randomness factor 209 

associated to the interaction of component i with component j. By definition, αij is symmetric, meaning that 210 

αij is equal to αji. 211 

 
ln(γi) =

∑ xj ⋅ τji ⋅ Gji
n
j=1

∑ xk ⋅ Gki
n
k=1

+ ∑
xj ⋅ Gij

∑ xk ⋅ Gkj
n
k=1

⋅ (τij −
∑ xm ⋅ τmj ⋅ Gmj

n
m=1

∑ xk ⋅ Gkj
n
k=1

)
n

j=1
 

 

(17) 

 
Gji = exp(−αij ⋅ τij) 

 
(18) 

 τij = Aij +
Bij

T
 (19) 

 212 

The NRTL method has been extended to account for cation-anion pairs with neutral molecules inside mixed 213 

solvent electrolyte systems in a wide temperature range (Chen and Song, 2004; Hartono et al., 2021; Lin et 214 

al., 2022). The ELECNRTL model is based on the same theoretical framework as the generic NRTL model, but 215 

the expression is modified compared to the original Renon and Prausnitz NRTL model. This modification 216 

introduces the like-ion repulsion and local electroneutrality assumptions (Lin et al., 2010) to provide a more 217 

representative picture of the electrical charge effects, which play a key role in amine solutions. The resulting 218 

model succeeds in characterizing both short- and long-range interactions in the presence of electrical charges 219 

utilizing additional interaction parameters. 220 

The excess Gibbs free energy (GE) NRTL expression modified for electrolyte systems is reported in the 221 

equation (20), where m stands for the generic neutral molecular species, c for cations, and a for anions. The 222 
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Xi (capital X) is defined in expression (21) as the product of the molar fraction of the generic species i (xi) 223 

times a coefficient Ci which is assumed equal to unity for neutral molecules and to the absolute value of the 224 

charge for the ions (Lin et al., 2010). We remark that expressions (18) and (19) of the general NRTL model are 225 

still valid for electrolyte systems, and the parameters Aij and Bij in  the equation (19) are called GMELCC and 226 

GMELCD parameters in Aspen Plus, respectively. The latter ones define the temperature dependence for 227 

anion/cation - molecule pairs interactions. 228 

 

GE

RT
= ∑ Xm ⋅

∑ Xm ⋅ Gjm ⋅ τjmj

∑ Xk ⋅ Gjkk
m

+ ∑ Xc

c

⋅ ∑
Xa′⋅ ∑ Gjc,a′c ⋅j τjc,a′c

(∑ Xa′′a′′ ) ⋅ ∑ Xk ⋅k Gkc,a′c
a′

+ ∑ Xa ⋅ ∑
Xc′⋅ ∑ Gja,c′a ⋅j τja,c′a

(∑ Xc′′c′′ ) ⋅ ∑ Xk ⋅k Gka,c′a
c′a

 

 
 

(20) 

 Xi = xi ⋅ Ci (21) 
   

2.4.3 System speciation 229 

Differently from soft models, which typically deal only with neutral molecules (amines, water and CO2) and 230 

cannot distinguish between an amine and its protonated form, the ELECNRTL model is a true composition 231 

model since it is able to fully describe the composition of the system in the liquid phase including the single 232 

cationic and ionic species, the so-called speciation. The characterization of the liquid composition is provided 233 

by means of reaction equilibrium constants and the activity coefficients (see section 2.4.1). Such an increased 234 

level of detail allows a better understanding of the system, in particular the estimation of the relative content 235 

of bicarbonate and carbamate, which are forming as a result of two competitive reactions, and the 236 

thermodynamic behavior in solution (Richner and Puxty, 2012). Furthermore, by monitoring the speciation 237 

in CO2 absorption/desorption processes, information on amine structure relationships, reaction mechanisms, 238 

influences of process operating conditions, and a deeper understanding of the absorption kinetics of the 239 

blend can be gathered (Perinu et al., 2018).  240 

For chemical absorption of CO2 by aqueous amine solvents, the most widely adopted technique to identify 241 

and quantify the species formed as a result of interactions between the unloaded solution and CO2 is NMR 242 

spectroscopy (Chen et al., 2022). For the HS3 blend, no speciation data have been collected so far, meaning 243 

that a direct comparison between experimental liquid speciation and liquid speciation predicted by the VLE 244 

model is not possible. Anyway, the HS3 speciation as predicted by the new ELECNRTL model is presented in 245 

section 3.7 together with a list of considerations based on the published literature on AP and PRLD and in-246 

house absorption heat data for HS3 that justify the observed behavior, at least from a qualitative point of 247 

view. 248 

2.5 Physical properties 249 

A proper carbon capture process design requires the characterization of the fluidodynamics of the reacting 250 

systems, the correct estimation of the CO2 capture plant energy requirements as well as the kinetics of 251 

absorption and desorption (Guo et al., 2019). Physical properties such as density, viscosity and heat capacity 252 

of both pure components and their blend have a not negligible influence. More specifically, some authors 253 

remark that the liquid-film coefficients for mass transfer and vapor liquid equilibrium depend on the solution 254 

density, viscosity, and surface tension. In turn, this influences also the mass transfer rates inside both the 255 
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absorber and the regenerator (Balchandani et al., 2022). Additionally, the pumping costs associated with 256 

amine solvent are significantly influenced by the viscosity of the solvents. Finally, an incorrect estimate of 257 

the amine heat capacities directly results in a inaccurate estimation of the contribution to the reboiler duty 258 

given by the sensible heat required to heat the rich-solvent up to the bottom reboiler temperature. For all 259 

these reasons, it is fundamental to properly fix density, viscosity and specific heat of all the molecules 260 

involved in the system before proceeding with the regression of the VLE interaction parameters. 261 

Aspen Plus V11.0 allows fitting temperature dependent density, viscosity and heat capacity models for pure 262 

component and both temperature and loading-dependent expressions based on dedicated mixing rules to 263 

characterise amine-water mixtures (Aspen Plus®, 2019). In this work, liteature data  have been exploited to 264 

regress dedicated density, viscosity and specific heat polynomials for pure AP and PRLD (Hartono and 265 

Knuutia, 2023; Idris and Eimer, 2016; Idris et al., 2018; Mundhwa and Henni, A., 2007). Moreover,  density 266 

and viscosity observations for AP-water and PRLD-water solutions at different temperatures and 267 

progressively increasing amine concentrations have been exploited to characterize amine densities and 268 

viscosities at different molarities. 269 

The density, viscosity and specific heat models obtained in this work and a comparison between the model 270 

prediction and the corresponding experimental data are described in the Supplementary Material. 271 

 272 

2.6 General methodology to regress NRTL and ELECNRTL coefficients  273 

 274 

2.6.1 NRTL VLE model: molecule-molecule interaction parameters 275 

Before moving to the definition and estimation of the ELECNRTL coefficients, it is important to fix the 276 

equilibrium parameters for the uncharged blend, namely the equilibrium condition in the absence of CO2. 277 

Since the CO2 is not dissolved into the solvent and no charged molecules are generated (except for water 278 

self-ionization), the molecule-molecule interactions are the most relevant to describe the phase equilibria 279 

established between the liquid and corresponding vapour. In general, the PRLD-H2O and AP-H2O interaction 280 

parameters should be regressed using Aspen Plus V11 Regression toolbox with the "maximum likelihood" 281 

algorithm starting from binary VLE experimental data. The regression is repeated using each time as a guess 282 

value for the results of the previous iteration until the difference between two consecutive iterations is lower 283 

than 0.1% for each parameter. The aim of this iterative procedure is to find the global optimum instead of 284 

just a local minimum of the Sum of Square Errors (SSE) between each experimental datum and its model 285 

predictionIn case of no or a few experimental data may be available for the amine-water system,it is worth 286 

observing that the amine-water system equilibria are also present when CO2 is dissolved. Thus, the amine-287 

CO2-H2O data can be used to get the NRTL coefficients as well. 288 

For what concerns specifically the HS3 blend, the NRTL parameters had already been fitted on PRLD-H2O VLE 289 

data by Bernhardsen (Bernhardsen et al., 2019) and on AP-H2O data by Bunevska (Bunevska, 2021). No 290 

parameters accounting for AP-PRLD interactions have been considered since amine-amine interactions can 291 

be neglected to increase the model robustness in accordance with all the other template ELECNRTL models 292 

for amine blends proposed by AspenTach (Aspen Plus®, 2019). Amine-amine-water interaction parameters 293 

could be regressed if blend-water equilibria data for unloaded solution are available. However, this kind of 294 

data was not available for this system. 295 

 296 

2.6.2 ELECNRTL VLE model: ion-molecule interaction parameters 297 

The ELECNRTL package accounts for both long- and short-range interactions among molecules and pairs of 298 

cations and anions. The electrostatic interactions are relevant in the liquid phase since the physical 299 
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entanglement between the different charged and uncharged molecules affects the activity of each species. 300 

The regression of the ion-molecule interaction parameters has been carried out using experimental 301 

measurements of the CO2 partial pressure (PCO2) at different loading [molCO2/molamine] data for the HS3 blend, 302 

which is a quaternary system (AP-PRLD-H2O-CO2). In principle, AP-H2O molecule-ion intercation coefficients 303 

should be regressed starting from ternary AP-H2O-CO2 VLE data and the corresponding PRLD-H2O interaction 304 

from ternary VLE-H2O-CO2 data, while quaternary data should be used only to tune the AP-PRLD molecule-305 

ions interactions. This procedure would lead to a general model, valid for whatever relative content of AP, 306 

PRLD and H2O. Despite the advantage of getting a general model, this could lead to significantly higher errors 307 

in the VLE prediction at the specific HS3 solvent composition. Since the main aim of this work is the 308 

development of an accurate model to represent the HS3 solvent, the fitting has been done directly using only 309 

quaternary HS3 data. This lead to a more accurate and reliable model for the considered blend. On the other 310 

hand, there is no reliability in extrapolating the model for other amine concentration, which is underlined as 311 

a limitation.  312 

The general approach described in this section aims at providing a standard procedure to regress the 313 

ELECNRTL parameters by reducing their amount to shorten and speed up calculations. The latter feature is 314 

crucial since many regressed parameters guarantee numerical accuracy, whereas it may lead to convergence 315 

issues when simulating an entire distillation/absorption column due to heavy computational efforts and high 316 

potential correlation among the ELECNRTL parameters. Thus, a balanced trade-off between accuracy and the 317 

number of parameters is required. The interaction parameters are classified in temperature non-dependent 318 

parameters, denoted in Aspen Plus as GMELCC, corresponding to Aij in Equation (19), and temperature-319 

dependent parameters, corresponding to GMELCD in Aspen and Bij in Equation (19). To make the system as 320 

simple as possible, it is worth  looking first  into the GMELCC, disregarding any temperature dependence. The 321 

temperature dependence can be investigated separately. The best algorithm for the regression of the 322 

ELECNRTL is the “maximum likelihood” (ML), which minimizes the gap between experimental observations 323 

and model predictions changing the GMELCC (and GMELCD) parameters without fixing any variable 324 

(temperature, pressure, liquid, and vapor composition). In other words, a multi-dimensional minimization 325 

problem is solved. The experimental dataset should cover the entire range of temperatures and loading for 326 

the domain of interest. 327 

The complete procedure to regress the ELECNRTL parameter is here described: 328 

1. As the first attempt, only the GMELCC (Aij) are considered for the regression, and they are initially set 329 

equal to their default values (Britt et al., 1982; Mouhoubi et al., 2020) (ACO2,ca=15, Aca,CO2= −8, Aamine,ca= 8, 330 

Aca,amine= −4, AH2O,ca= 8, Aca,H2O= −4, where c and a stand for a generic cation and anion, respectively). To 331 

simplify the system, all the interactions of CO2 as molecular species with the carbamate and the two 332 

protonated amines are set equal to zero. Moreover, due to their low concentration (thus, negligible 333 

molar fraction), any GMELCC parameters accounting for any interaction with H3O+ as cation or OH- and 334 

CO3
--as anion are not included in the regression procedure and they are fixed to the corresponding default 335 

value when describing the interactions with water and equal to zero for the interactions with the two 336 

amines. The proposed assumption is acceptable since the molar fraction of H3O+ as cation or OH- and 337 

CO3—species is very low in amine systems, meaning that their impact on the activity coefficients in 338 

equation (20) is negligible (Frailie et al., 2011; Li et al., 2014). The VLE model developed for HS3 confirms 339 

this assumption, since the predicted mole fractions of the three mentioned ions ranges 10-4 – 10-9. As a 340 

matter of fact, these species are diluted into the solvent and, according to the NRTL model, the activity 341 

coefficient γi → 1 (ideal liquid condition) and the VLE conditions are described by the Raoult model.The 342 

remaining GMELCC are then regressed with the ML algorithm.  343 

2. The regression procedure is repeated several times to try to ensure that a real optimum was found 344 

instead of just a local minimum. More in detail, the regression procedure is repeated until further 345 

iterative steps would result in negligible changes of all interaction parameters with respect to the 346 
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previous iteration (maximum relative discrepancy of 5% is accepted as a threshold). The resulting 347 

required number of iterations according to the mentioned criterion is 10. The results of each iteration 348 

are exploited as new guess starting values for the following one. The set of parameters with minimum 349 

square error and variance of the GMELCC is considered the optimal solution. 350 

3. To improve the prediction capacity of the ELECNRTL model at high temperature, it is possible to include 351 

the GMELCD (Bij) parameters which account for the temperature effect. Before starting, all the GMELCD 352 

to be regressed are set equal to zero (default value), and the GMELCC coefficients have been also reset 353 

to their default values.In the current work, we considered all the possible GMELCD parameters with a 354 

corresponding GMELCC regressed at point [1]. In other words, GMELCD considering H3O+ as cation or OH- 355 

and CO3
-- as anion in combination with the two amines were still disregarded.  356 

4. To avoid overfitting and a vast number of ELECNRTL parameters, all GMELCD < 50.0 (in absolute value) 357 

after three iterations have been removed and fixed to zero. 358 

5. Before the last regression, the remaining GMELCC and GMELCD parameters were reset to their default 359 

values. The ML algorithm has been applied ten times, and the solution showing the minimum sum of 360 

errors and variance has been chosen as the best. 361 

Once the final model has been obtained, a point-to-point evaluation analysis using Aspen Plus V11 regression 362 

tool (in estimation mode) with the “ordinary least square” (OLS) algorithm has been performed to verify the 363 

experimental data matching and the accuracy of the model. This algorithm calculates the model prediction 364 

in terms of total pressure and vapour phase composition at fixed temperature and liquid composition. The 365 

statistical indicators, the average Relative Error (RE) and Average Absolute Error (AE) are are used to assess 366 

the accuracy and the precision of the model. The accuracy is referred to the ability of a model to lie close to 367 

the experimental points, and the index of this feature is RE. The precision is related to the dispersion of the 368 

model and how much the results are distributed around the experimental observations (i.e., the precision of 369 

the model). The AE directly estimates this. The mean relative error (RE) is calculated according to Equation 370 

(22), where z stands for the variable on which the error is calculated (for example the pressure and molar 371 

fraction of water and PRLD in the vapor phase), i stands for the generic experimental point and n for the total 372 

number of measurements. 373 

 RE =  
1

n
⋅ ∑ |

zi,exp − zi,mod

zi,exp
|

n

I=1

 (22) 

 374 

The overall absolute error (AE) is instead defined according to Equation (23): 375 

 𝐴E = √∑
(zi,exp − zi,mod)

2

n

n

i=1

 (23) 

 376 

It is remarkable that for an amine blend the maximum number of possible ELECNRTL parameters is 377 

 
3nM!

nM − 2
+ 5nMnCnA (24) 

   
where nM, nC, and nA are the number of molecules, cations, and anions, respectively. Thus, for an amine blend 378 

made up of a primary amine and a tertiary amine, it is possible to define up to 276 coefficients (considering 379 

both GMELCC and GMELCD and neglecting pair cation-anion interactions). Such a high number of parameters 380 

results in overfitting and could lead to high correlation among the parameters. The suggested numerical 381 

procedure reduces by almost 88% the number of ELECNRTL regressed coefficients without appreciable loss 382 
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in accuracy. For instance, for the HS3 blend, we defined globally 34 ELECNRTL parameters subdivided into 24 383 

GMELCC and 10 GMELCD. Thus, the proposed approach intrinsically helps define a codified procedure 384 

reducing the number of parameters and focusing on the most relevant parameters. 385 

 386 

2.7 CO2SIM soft model (comparative model) 387 

Finally, we compared the VLE equilibrium results from the ELECNRTL model implemented in Aspen Plus V11 388 

with the ones obtained from CO2SIM, for the specific blend. CO2SIM is a standalone software developed in 389 

SINTEF Industry – Process Technology department to generate and simulate amine-based capture plants. The 390 

CO2SIM software has been successfully implemented and validated over several pure amine and amine 391 

blends (Lindqvist et al., 2014; Majeed and Svendsen, 2018; Pinto et al., 2014; Tobiesen et al., 2018, 2008, 392 

2007). Differently from the Aspen Plus suite, CO2SIM for this particular solvent describes the VLE adopting 393 

soft model approach (Brúder et al., 2012), in a so-called non-rigorous manner. In CO2SIM's chosen soft 394 

equilibrium model, the partial pressure of the CO2 in the gas phase (PCO2) in equilibrium with the liquid solvent 395 

is defined as a function of the solvent loading (α) and temperature. The soft model structure has been largely 396 

discussed and presented in previously cited works. Concerning the general structure, the soft model has 397 

some adaptative coefficients (k-parameters, B, and C) which are fitted to the experimental data for an 398 

assigned blend: 399 

 ln(PCO2
[kPa]) = B ⋅ ln(α) + A1 +

C

1 + A2 ⋅ exp[−A3 ⋅ ln(α)]
 (25) 

   
   

Despite the absence of a true thermodynamic framework, the soft model ensures good accuracy without any 400 

numerical effort. Although speciation models are available in CO2SIM, the  main advantage of the much used 401 

soft models lies in the possibility to easily get fast calculations and to catch the main dependence of the 402 

dependent variable (i.e., the partial pressure of free CO2 in the gas phase) just considering the main system 403 

variables as the solution loading and the temperature. Thus, the soft VLE model is empirically based on a 404 

loading- and temperature-dependent terms, and it represents a smart short-cut for a fast representation of 405 

experimental VLE data and interpretation of the amine/blend performance. The limited validity range (i.e., 406 

unfeasible extrapolation of the model outside the regression domain) represents the main drawback of the 407 

soft model. Moreover, this soft model defines the HS3 as a pseudo component, thus, it is not able to 408 

distinguish between the two single amine constituents. These limitations are related to the absence of a real 409 

phenomenological and physics-based model, like the ELECNRTL theory.  410 

2.8 Heat of absorption 411 

The reaction between CO2 and an amine solution is an exothermic process, thus it is associated with the 412 

release of a certain quantity of heat, resulting in a system temperature increase. The amount of heat released 413 

during the CO2 absorption process is called the heat of absorption. This thermal energy depends on the 414 

solvent formulation, the CO2 loading and the temperature. A correct estimation of the heat of absorption for 415 

acid gases (mainly CO2 and H2S) in aqueous amines solutions is of prime importance for designing unit 416 

operations of acid gas removal, because it directly affects the steam requirements associated with  amine 417 

regeneration and its connection to the temperature dependency of the CO2 equilibrium (Kim and Svendsen, 418 

2011). On the one hand it is advisable to keep the absorption enthalpy as low as possible, as the steam cost 419 

often accounts for over half the operating cost of the plant. On the other hand, this may negatively affect the 420 

capture performance within the absorber. Even if the temperature dependency of the heat of absorption is 421 

sometimes neglected assuming a constant value both for absorber and desorber conditions (Kohl and 422 

Nielsen, 1997), experimental observations show that differences between the reaction heat estimate at 40°C 423 
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and at 120°C can reach 25–30% (Kim and Svendsen, 2011). Furthermore, accounting also for the dependency 424 

on the loading can lead to improvements in the correct optimal design of a CO2 capture facility. Based on 425 

these considerations, it is essential for models to be implemented in process simulators to correctly predict 426 

absorption heat in the whole temperature and loading ranges of interest in order to guarantee a reasonable 427 

estimation of the energy requirements of the CO2 capture plant and, as a consequence, of the operating 428 

costs. 429 

The absorption heat associated with the reaction between CO2 and the HS3 blend has been determined in a 430 

temperature range between 40°C and 100°C and in a CO2 loading range between 0.03 and 0.81 employing a 431 

reaction calorimeter (Hartono et al.).  432 

In this work, the available experimental observations for the primary and tertiary amine protonation heat 433 

and carbamate formation have been used to  tune the Aspen ELECNRTL model to get an accurate estimation 434 

of the HS3 absorption heat. A comparison between the experimental data and the resulting model prediction 435 

is shown in section 3.8 to verify the reliability of the new proposed model. The following sub-paragraph 436 

provides an overview of the theoretical framework followed by Aspen Plus to estimate the reaction heat 437 

starting from the enthalpy of formation and the ideal gas, liquid, and diluted aqueous phase heat capacities 438 

of each molecular and ionic species involved in the reacting system. This section also describes the procedure 439 

that can be followed to estimate enthalpy of formation or heat capacity data for which no experimental 440 

observations are available, starting from the heat of absorption data. The proposed approach is applicable 441 

for the characterization of absorption heat in whatever blend. 442 

2.8.1 Enthalpy calculations in Aspen Plus 443 

In a default ELECNRTL package, the enthalpy of a particular species at a given temperature (T) is calculated 444 

according to expression (26) for a neutral molecule (Hmolecule) and according to expression (27) for ions (Hion), 445 

where the liquid (cPliq) and aqueous (cPaq) heat capacities are defined as a function of the temperature 446 

through expressions (28) and (29), respectively. 447 

 Hmolecule(T) = ∆Hf
0

gas
(298.15K) − ΔHev(298.15K) + ∫ cPliq ⋅ dT

T

298.15 K

 (26) 

 448 

 Hion(T) = ∆Hf (298.15K)aq  
0 + ∫ cpaqueousdT

T

298.15 K 

 (27) 

 449 

cPliq = A + B ⋅ T + CT2 + D ⋅ T3 +
E

T2
 (28) 

 450 

cPaq = A + B ⋅ T 

 
(29) 

In absence of specific calorimetric data on ionic species heat capacity, the aqueous heat capacity of 451 

protonated amines can be set equal to the corresponding pure amine liquid heat capacity to simplify 452 

calculations. Pure amines liquid heat capacities have been fitted to published experimental data for both AP 453 

and PRLD (see Supplementary Material). The ideal gas enthalpy of formation of CO2 and H2O as well as the 454 

aqueous enthalpy of formation of CO3
--, HCO3

-, H3O+ and OH- are available in the Aspen database and have 455 

been used successfully to characterize many amine systems (Aspen Plus®, 2019). Therefore, the only 456 

unknown parameters in expressions (26) to (29) are the enthalpies of the formation of pure and protonated 457 

AP and PRLD as well as the carbamate formation enthalpy. The formation enthalpy of AP and PRLD can be 458 

approximately estimated by means of Gani group contribution method (Constantinou and Gani, 1994). The 459 
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estimated values are comparable to those reported in the MEA-MDEA Aspen Plus V11.0 framework. The 460 

remaining formation enthalpies of APH+, APCOO- and PRLDH+ can be regressed from absorption heat data at 461 

a fixed temperature (no loading dependence). Considering the definition of reaction heat reported in 462 

expression (30), where θ is the stoichiometric coefficient, a minimization problem is solved to calculate the 463 

optimal ∆𝐻𝑓
0, 𝐴𝑃𝐻+ from the AP protonation (r4) reaction heat (Bunevska, 2021), ∆𝐻𝑓

0, 𝐴𝑃𝐻𝐶𝑂𝑂− 464 

and ∆𝐻𝑓
0, 𝑃𝑅𝐿𝐷𝐻+ from global CO2 absorption reactions (31) and (32), respectively, starting from in-house 465 

absorption heat data determined for pure AP and pure PRLD-based solvents, respectively. 466 

∆𝐻𝑅(𝑇) = ∑ ∆𝐻𝑓
0, 𝑖(𝑇) ⋅ 𝜗𝑖

𝑁𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑖=1

− ∑ ∆𝐻𝑓
0, 𝑗(𝑇) ⋅ 𝜗𝑗

𝑁𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠

𝑗=1

 

 

(30) 

 467 

AP + CO2 ⇌ APH+ + 𝐴𝑃𝐶𝑂𝑂− 
 

 
(31) 

PRLD + H2O +  CO2 ⇌ PRLDH+ + 𝐻𝐶𝑂3
− 

 
 

(32) 

 468 

3 RESULTS AND DISCUSSION 469 

In this section, we present the results obtained by applying the guidelines proposed in the Methods 470 

paragraph. 471 

3.1 Henry constants 472 

Table 2 lists the values of parameters A, B, C and D for the Henry constant (He) of CO2 in both pure amines 473 

as in Equation (2). Their values result from the minimization of the relative square deviations between the 474 

solubility calculated based on the experimental solubility data and the model predictions. Figure 2 shows the 475 

graphical comparison of the CO2 solubility data rescaled according to the N2O solubility analogy. The model 476 

proves accurate in the whole temperature range of interest and the model has a reasonable shape also at 477 

high temperatures where there is no experimental data available.  478 

 479 

 480 

Table 2. Henry law constant coefficients defining CO2 physical solubility in AP and PRLD regressed in this work. 481 

Parameter CO2 - AP CO2 - PRLD 

A -54.6317 10.9911 

B -2.0334 0.3802 

C 12.1097 -1.1906 

D -0.0213 0.0130 

 482 
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 483 

Figure 2. Henry law constant defining CO2 physical solubility in AP and PRLD: model (solid line) and experimental data (dots). 484 

 485 

3.2 Vapor pressure  486 

Antoine equation parameters C1, C2 and C3 (refer to Equation (4)) are already available in the literature for 487 

AP (Green and Perry, 2007), but they have been refitted in order to get an expression where coefficients are 488 

compliant with the unit of measure implemented in Aspen Plus and reported in Equation (4). Conversely, the 489 

coefficients of the PRLD have been fitted in this work to the vapor pressure data collected in Berhardsen 490 

(Bernhardsen et al., 2019). A sum of relative square errors of only 0.7% is obtained. Antoine equation 491 

parameters regressed in this contribution and a comparison between the experimental PRLD vapor pressure 492 

data collected in the literature and the model prediction are provided in Table 3 and Figure 3, respectively. 493 

 494 

Table 3. Antoine coefficients for AP and PRLD vapor pressures fitted (vapor pressure in [bar] and temperature in [K]). 495 

Parameter AP PRLD 

C1 11.9628 20.3877 

C2 -4482.90 -12733.55 

C3 -85.50 171.53 

 496 
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 497 

Figure 3. PRLD vapor pressure: experimental data (Bernhardsen et al., 2019) and predictions using Antoine model. 498 

 499 

3.3 Equilibrium constants of the elementary reactions scheme 500 

The equilibrium constants for the elementary reactions (5) - (10) have been taken from the literature. For the 501 

AP protonation and AP global reaction with CO2 (expressions (8) and (9)), Dong et al. (Dong et al., 2010) 502 

provided a loading-dependent equilibrium constant expression. This has been reformulated and regressed 503 

into the Aspen Plus complaint form reported in Equation (11). Table 4 lists the coefficients for equilibrium 504 

constants of the elementary reactions adopted to describe the CO2 capture using the HS3 blend as solvent.  505 

 506 

 507 

 508 

 509 

 510 

Table 4. Coefficients for molar fraction-based equilibrium constants according to expression (11). 511 

 r1 
Equation (5) 

r2 
Equation (6) 

r3 
Equation (7) 

r4 
Equation (8) 

r5 
Equation (9) 

r6 
Equation (10) 

A 132.899 231.465 216.049 -106.105 1.21526 -10.4165 

B -13445.9 -12092.1 -12431.7 -4134.2 -1068.67 -4234.98 

C -22.4773 -36.7816 -35.4819 16.2313 - - 

D - - -  - - 

Source (Posey and 
Rochelle, 

1997) 

(Posey and 
Rochelle, 

1997) 

(Posey and 
Rochelle, 

1997) 

Refitted 
from Dong 

(Dong et al., 
2010) 

Refitted 
from Dong 

(Dong et al., 
2010) and 
Rochelle 

(Posey and 
Rochelle, 

1997) 

Calculated 
from Li et al., 

2017 

 512 

3.4 NRTL model coefficients (molecule-molecule interactions 513 
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Table 5 gathers the NRTL coefficients for the H2O-AP and H2O-PRLD interactions as available in the literature.  514 

 515 

Table 5. NRTL parameters implemented in Aspen Plus for the molecule - molecule interactions 516 

Aspen Plus 
NRTL coefficient 

Parameters in 
expressions 
(18) and (19) 

Component i Component j Value (SI units) 
Source of 

experimental 
values 

NRTL/1 Aij H2O AP 5.3843 

(Bunevska, 2021) 

NRTL/2 Bij H2O AP -0.9199 

NRTL/1 Aji AP H2O -989.213 

NRTL/2 Bji AP H2O -440.101 

NRTL/3 αij = αji H2O AP 0.2 

NRTL/1 Aij H2O PRLD 1.1755 

(Bernhardsen et 
al., 2019) 

NRTL/2 Bij H2O PRLD -0.1156 

NRTL/1 Aji PRLD H2O -1103.81 

NRTL/2 Bji PRLD H2O 1715.89 

NRTL/3 αij = αji H2O PRLD 0.2 

 517 

3.5 ELECNRTL model coefficients (molecule - anion/cation pairs interactions) 518 

Table 6 gathers the values for the regressed ELECNRTL model (both GMELCC and GMELCD). The coefficients 519 

missing in this list are set to their default values or to zero, as mentioned in the methodology proposed in 520 

Section 2.6.2.  521 

 522 

 523 

Table 6. ELECNRTL coefficients (GMELCC and GMELCD) implemented in Aspen Plus to characterize pure amines and the HS3 blend. 524 
The table reports only the coefficients which are not set to default values. 525 

ELECNRTL 
coefficient 

Aspen Plus name 
Element i Element j Value (SI units) 

GMELCC H2O (PRLDH+,HCO3
-) 13.6961 

GMELCC (PRLDH+,HCO3
-) H2O -5.4276 

GMELCC PRLD (PRLDH+,HCO3
-) 29.0442 

GMELCC (PRLDH+,HCO3
-) PRLD 8.7717 

GMELCC H2O (APH+,HCO3
-) 12.6182 

GMELCC (APH+,HCO3
-) H2O -5.5317 

GMELCC H2O (APH+,APCOO-) 10.5229 

GMELCC (APH+, APCOO-) H2O -6.9975 

GMELCC AP (APH+, HCO3
-) 87.2557 

GMELCC (APH+, HCO3
-) AP 60.3790 

GMELCC AP (APH+, APCOO-) 20.7888 

GMELCC (APH+, APCOO-) AP 34.8014 

GMELCC H2O (PRLDH+, APCOO-) 10.9464 

GMELCC (PRLDH+, APCOO-) H2O -5.1289 

GMELCC AP (PRLDH+, HCO3
-) 52.3316 

GMELCC (PRLDH+, HCO3
-) AP 35.0286 

GMELCC AP (PRLDH+, APCOO-) 4.5923 
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GMELCC (PRLDH+, APCOO-) AP -1.3794 

GMELCC PRLD (PRLDH+, APCOO-) 12.5491 

GMELCC (PRLDH+, APCOO-) PRLD 2.8911 

GMELCC PRLD (APH+, HCO3
-) 11.6230 

GMELCC (APH+, HCO3
-) PRLD 0.1155 

GMELCC PRLD (APH+, APCOO-) 7.4596 

GMELCC (APH+, APCOO-) PRLD 19.9230 

GMELCD PRLD (PRLDH+, HCO3
-) 888.2463 

GMELCD (PRLDH+, HCO3
-) PRLD 8810.9267 

GMELCD AP (APH+, HCO3
-) 1959.2531 

GMELCD (APH+, HCO3
-) AP 1514.6851 

GMELCD AP (APH+, APCOO-) -259.7171 

GMELCD (APH+, APCOO-) AP 432.8310 

GMELCD AP (PRLDH+, APCOO-) 530.2970 

GMELCD (PRLDH+, APCOO-) AP -789.5392 

GMELCD PRLD (PRLDH+, APCOO-) -2337.3930 

GMELCD (PRLDH+, APCOO-) PRLD -66.6320 

 526 

Finally, the authors performed a statistical analysis of the results over the different datasets we used for the 527 

regression of the ELECNRTL coefficients. Table 7 resumes the performance of the regression for the data 528 

clusters. The statistical analysis neglects the amines partial pressure due to its low numerical value which is 529 

not relevant to the present discussion. Thus, the error analysis is limited to CO2 and water vapor partial 530 

pressure, which represent the main components present in the vapor phase. Overall, the statistical analysis 531 

shows good accuracy and precision of the model, since the average relative errors are below 20% and the 532 

absolute deviations are close to 7 kPa. Such results confirm the reliability of the regression procedure 533 

presented in this contribution. The largest deviations are registered for the predictions of the CO2 partial 534 

pressure data. These deviations are enhanced by the fact that a significant number of experimental data 535 

report a very low measured partial pressure of CO2. Thus, even though the absolute value may be close to 536 

the experimental one (as shown by looking at the average AE), the relative error increases. For this reason, 537 

the relative error on CO2 partial pressure calculated accounting only for the data associated with a CO2 partial 538 

pressure higher than 1 kPa is also included in the statistical analysis. The results demonstrate that it is possible 539 

to build up an ELECNRTL model from scratch even though one or more components making up the blend are 540 

missing in the defaults Aspen Plus database.   541 

 542 

Table 7. Average AE and RE of CO2 and water partial pressure predictions for the ELECNRTL and CO2SIM models for HS3 developed 543 
in this work and corresponding experimental data available in the literature for the AP-PRLD-H2O-CO2 system (HS3 blend). 544 

   RE [%] as in Equation 
(22) 

AE [bar] as in Equation 
(23) 

Model Data source 
Chart 

(PCO2 vs loading) 
PCO2 PH2O PCO2 PH2O 

ELECNRTL  Hartono et al. Figure 4 17.84 17.00 0.0712 0.0705 

ELECNRTL 
Hartono et al. 
only data with 

PCO2 > 1 kPa 
Figure 4 14.81 - - - 

CO2SIM Hartono et al. Figure S8 and S9 14.29 - 0.214 - 

 545 

 546 
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Figure 4 depicts the VLE curves for the HS3 blend over different loading at different temperatures, which are 547 

the most relevant for CCS plant. The Aspen Plus ELECNRTL model shows good accuracy in representing the 548 

equilibrium conditions in the whole temperature (40°C-120°C) and loading (0.1 – 0.5) range of interest for 549 

both absorption and solvent regeneration (Dutcher et al., 2015; Liu et al., 2016; Mangalapally and Hasse, 550 

2011; Rao and Rubin, 2002; Rochelle, 2009). Moreover, it is possible to claim that the model can be 551 

extrapolated since the profiles are smooth and no abnormal trends are registered. For a comparison between 552 

ELECNRTL model and the soft model developed in CO2SIM, please refer to the following paragraph. 553 

 554 

 555 

Figure 4. Comparison between the ELECNRTL model predictions (solid lines) and the experimental data (dots) for the HS3 blend at 556 
different temperatures: 40°C (red), 60°C (light blue), 80°C (green), 100°C (yellow), and 120°C (grey). The plot is proposed both in 557 
normal scale (A - top) and logarithmic (B - bottom). Data by Hartono (Hartono et al.). 558 

 559 

3.6 Comparison of the Aspen Plus ELECNRTL model with the CO2SIM soft model 560 

We compared the ELECNRTL model with the soft model implemented in the in-house CO2SIM process 561 

simulator. The necessity to verify the reliability of the ELECNRTL model drives the choice of comparing two 562 

different models, one theory-based (Aspen ELECNRTL) and one empirical (CO2SIM soft model). We 563 

considered the CO2SIM model as a benchmark since previous works (Brúder et al., 2011) proved that CO2SIM 564 

soft model represents accuracately and with precision amine(s) VLE as already mentioned in Section 2.7. The 565 

coefficients  of the empirical CO2SIM soft VLE model have been regressed to define the CO2  partial pressure’s 566 

dependency on loading and temperature  for the HS3 blend allowing a comparison of two models for the HS3 567 

A 

B 
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blend. A graphical comparison between the ELECNRTL and the CO2SIM model can be found in the  568 

Supplementary Material. The ELECNRTL model is associated with a slightly higher relative error but also with 569 

(Brúder et al., 2011)a significantly lower (-66%) absolute error (Table 7). This result is in someway expected, 570 

considering that the algorithm exploited for the regression procedure in Aspen Plus V11.0 is based on the 571 

minimization of the absolute deviations between the experimental data and the model prediction. The 572 

CO2SIM soft VLE model looks smoother, but only the Aspen ELECNRTL model can differentiate between the 573 

two amine constituents (AP and PRLD), while the soft model deals with a pseudo component including both 574 

amines together. Therefore, under proper validation with additional experimental data, the Aspen ELECNRTL 575 

model can be extended to describe not only the specific HS3 blend composition but also whatever solvent 576 

composition between pure ternary AP-H2O-CO2 and pure PRLD-H2O-CO2 systems. Finally, conversely to the 577 

soft model, which does not take into account the formation of cations and anions in the system, the ELECNRTL 578 

model provides details concerning the composition of the liquid phase at equilibrium (speciation).   579 

 580 

3.7 Speciation in the liquid phase 581 

The speciation of the reacting system in the liquid phase as predicted by the VLE model obtained within this 582 

article is shown in Figure 5 at a temperature of 40°C and 120°C as a function of the CO2 loading. These 583 

temperatures have been selected since they represent the operating conditions typical of the two most 584 

important unit operations in the CO2 capture process, namely CO2 absorption and solvent regeneration, 585 

respectively. In the absence of experimental data, it is possible only to make some qualitative considerations 586 

on the obtained speciation plots and to compare the results with the corresponding speciation provided by 587 

Aspen Plus for another primary-tertiary amine blend, namely MEA-MDEA (Figure 6), at the same weight 588 

solvent composition (15 wt% primary amine, 40 wt% tertiary amine). 589 

 590 

Figure 5. Speciation in the liquid phase predicted by the Aspen Plus ELECNRTL model for HS3 as a function of loading at 40°C (A) 591 
and 120°C (B): AP (grey), PRLD (black), APH+ (red), APCOO- (light blue), PRLDH+ (green) and HCO3- (yellow).  592 

 593 

 594 
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  595 

Figure 6. Speciation in the liquid phase predicted by the Aspen Plus ELECNRTL default model as a function of loading at 40°C (A) 596 
and 120°C (B) for the MEA-MDEA blend: MEA (grey), MDEA (black), MEAH+ (red), MEACOO- (light blue), MDEAH+ (green) and 597 
HCO3- (yellow). 598 

 599 

As expected, the primary amine is more reactive than the tertiary amine at low loadings (<0.2), thus it is 600 

consumed faster. At higher loadings, PRLD becomes more active than the primary amine, which is associated 601 

with an increase in the overall CO2 absorption capacity of the system. As the tertiary amines reacts, PRLDH+ 602 

and HCO3
- are progressively formed, while the products of AP conversion are APH+ and APCOO-. Differently 603 

from common primary amines such as MEA, which tends to easily form carbamate rather than being 604 

protonated, for the HS3 blend amine protonation seems to be favored, thus limiting carbamate formation. 605 

In both systems, the carbamate formation reaches a peak at intermediate loadings at low temperature, while 606 

it increases until it reaches a steady state value at 120°C. In addition, differently from MDEA, the tertiary 607 

amine selected for this blend formulation (PRLD) is very reactive also at high temperature, which is an 608 

additional reason for the quite rapid increase in the bicarbonate formation observed both at 40°C and at 609 

120°C. These observations can be justified in light of the outcomes of published experimental work. 610 

(Benamor et al., 2015) have demonstrated that AP equilibrium protonation constant is almost 6% higher with 611 

respect to the corresponding MEA protonation constant. Moreover, the experimental PRLD protonation 612 

constant determined by Liu et al., 2016 is, on average, 5.6 times higher with respect to the MDEA protonation 613 

constant, and the discrepancy becomes more pronounced at increasing temperatures, which is a 614 

confirmation of the higher reactivity of PRLD with respect to benchmark tertiary amines. As for the reaction 615 

heat, a value close to 100 kJ/mole CO2 which remains constant when the loading lies between 0 and 0.4 is 616 

observed for pure AP solution (Bunevska, 2021), while the absorption heat for PRLD is 34 kJ/mol (Liu et al., 617 

2016). In systems where the primary amine is much more reactive than the tertiary one, a quite flat 618 

absorption heat profile at low loadings is also observed for the blend (for example in the MEA-MDEA system). 619 

In other words, when the carbamate formation dominates over the bicarbonate formation the heat of 620 

absorption remains almost constant with the loading, while this is not the case when the most significant 621 

contribution is associated with bicarbonate formation. The sudden decrease observed for HS3 absorption 622 

heat data at low loadings may thus be motivated by the fact that in this system the bicarbonate formation, 623 

in which PRLD plays the key role, becomes competitive even at low loadings, meaning that carbamate 624 

formation is not favoured. This behaviour may explain the observed differences in the HS3 speciation plots 625 

with respect to the ones associated with the MEA-MDEA reference system. 626 

 627 

Heat of absorption 628 

Table 8 gathers the formation enthalpies for AP, PRLD and their corresponding ionic species estimated within 629 

this work following the methodology highlighted in section 2.8.1.  630 
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By adding those input data to the Aspen model, enthalpy calculations can be performed. Indeed, Aspen Plus 631 

calculates the specific enthalpy of a mixture of n components (Hmix) as the sum of an ideal mixture term, 632 

where xi is the mole fraction and Hi the pure component specific enthalpy, and an enthalpy departure term 633 

(HE
mix), whose value is calculated from the activity coefficient (see expression (33). 634 

Hmix = ∑ 𝑥𝑖 ⋅ 𝐻𝑖

𝑛

𝑖=1

+ 𝐻𝑚𝑖𝑥
𝐸  

 

(33) 

The reliability of the energy calculations is checked in Figure 7 by comparing the experimental heat of 635 

absorption of CO2 data for HS3 with the corresponding absorption heat predicted by the model in the whole 636 

temperature and CO2 loading range of interest. 637 

 638 

 639 

Table 8. Enthalpy of formation of amines, protonated amines and AP carbamate estimated within this work. 640 

Species ∆𝑯𝒇
𝟎 [kJ/mol] Phase 

AP -225.172 Ideal gas 

PRLD -223.147 Ideal gas 

APH+ -313.002 Aqueous 

APCOO- -732.771 Aqueous 

PRLDH+ -300.003 Aqueous 

 641 

     642 

    643 

Figure 7. Comparison between the Aspen Plus ELECNRTL model predictions (solid lines) and the experimental data (dots) for the 644 
HS3 blend absorption heat at different temperatures: 40°C (A), 60°C (B), 80°C (C) and 100°C (D). Data by Hartono (Hartono et al.). 645 

The model provides a very accurate estimation of the heat of absorption of CO2 at 40°C (operating conditions 646 

of interest for the absorber) in the entire investigated loading range. When the temperature increases, the 647 

ELECNRTL model is still accurate in predicting the heat of absorption at low CO2 loading (0.1 – 0.4), while at 648 

A B 
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higher loadings an apparent underestimation is observed. However, a trend showing a progressive 649 

monotonic reduction of the absorption heat at high loadings, as the one shown by the model, is more realistic 650 

and compatible with similar trends observed for other amine systems (Kim et al., 2014, 2009). The only 651 

reasonable explanation for an absorption heat trend with a double peak like the one in Figure 7 B) to D) is 652 

the presence of a region at intermediate loadings where some precipitation occurs (Kim and Svendsen, 2011). 653 

Since precipitation would not be expected in any of the experimental campaigns carried out at NTNU and 654 

SINTEF Industry with HS3, the uncommon trend in experimental heat of absorption at high loadings may be 655 

associated with experimental inaccuracies, while the trend predicted by the model remains physically 656 

meaningful in the whole investigated temperature and loading range. 657 

 658 

 659 

3.8 Statistics of the regression in Aspen Plus (correlation coefficients analysis) 660 

Finally, we also performed a statistical analysis on the regressed ELECNRTL parameters (GMELCC and 661 

GMELCD) to estimate the correlations among these coefficients. The values of the Correlation Coefficients 662 

(CoCos) have been directly obtained using the Aspen Plus regression tool. The results are plotted in Figure 8. 663 

The CoCos matrix (Figure 8A) enables identifying any potential correlations between the regressed 664 

parameters. Linear correlation negatively affects the regression, and it would lead to an overfitting problem 665 

which is reflected in stability issues of the ELECNRTL model while solving VLE calculations in flash and 666 

absorber/stripper. The CoCos matrix is symmetric and, for this reason, only the left-hand side is reported. 667 

The matrix considers all the possible combinations of the ELECNTRL coefficients (both GMELCC and GMELCD) 668 

among the 34 coefficients listed in Table 6. All the elements on the diagonal are self-coupled elements, thus 669 

by definition, their CoCos are equal to one. However, the elements on the main diagonal are not relevant to 670 

the statistical analysis. All the relevant CoCos lie out of the diagonal. When the value of the CoCo approaches 671 

the unit, the two parameters are fully linearly dependent, meaning that there is a strong mutual dependence. 672 

When CoCo is close to -1, the two coefficients are perfectly anti-correlated, but also in this case there is a 673 

strong mutual influence between the two. As a rule of thumb, low values for the CoCos are desired (i.e., close 674 

to zero). There is no clear standard indication of which threshold values for the CoCo have been defined to 675 

state the correlation between a couple of regressed parameters. The Kirk-Othmer encyclopaedia (Buzzi-676 

Ferraris and Manenti, 2011) just reports some general guidelines (not values), and in the literature, there are 677 

no published works suggesting how to handle the CoCo matrix. Further details are reported on websites 678 

dedicated to statistical analysis (Andrews.edu, accessed November 2022). 679 

The statistical analysis of the CoCos matrix is reported both in Figure 8B and  680 

Table 9. The results show that the CoCos are normally distributed around the expected null value, and only 681 

a few are strongly correlated or anti-correlated. This means that the proposed refit procedure avoids 682 

potential correlation issues which may lead to model instabilities. Furtherly, according to the statistical 683 

analysis, 94.5% of the coefficients are |CoCo| < 0.5, which represents the threshold value to define a weak 684 

and almost negligible correlation. In case a more conservative range is considered, 88.8% and 82.2% of the 685 

coefficients still lies within the domain |CoCo| < 0.4 and |CoCo| < 0.3, respectively. These results furtherly 686 

confirm the previous comments and point out that correlation does not represent any relevant issue for the 687 

proposed model.  688 



24 
 

 689 

Table 9 – Results of the statistical analysis on the CoCo 690 

Range Occurrence Frequency 

from -1.00 to -0.90 6 1.07% 

from -0.90 to -0.80 2 0.36% 

from -0.80 to -0.70 5 0.89% 

from -0.70 to -0.60 0 0.00% 

from -0.60 to -0.50 7 1.25% 

from -0.50 to -0.40 14 2.50% 

from -0.40 to -0.30 16 2.85% 

from -0.30 to -0.20 58 10.34% 

from -0.20 to -0.10 70 12.48% 

from -0.10 to -0.00 112 19.96% 

from 0.00 to 0.10 119 21.21% 

from 0.10 to 0.20 70 12.48% 

from 0.20 to 0.30 32 5.70% 

from 0.30 to 0.40 21 3.74% 

from 0.40 to 0.50 15 2.67% 

from 0.50 to 0.60 6 1.07% 

from 0.60 to 0.70 0 0.00% 

from 0.70 to 0.80 0 0.00% 

from 0.80 to 0.90 2 0.36% 

from 0.90 to 1.00 6 1.07% 
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 691 

Figure 8.  Results of the correlation analysis of the regressed parameters: triangular correlation matrix and relative colour bar scale 692 
(A) and the distribution of the correlation coefficients (B).  693 

 694 
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4 Conclusions 695 

A detailed general procedure to be followed for the implementation of a new amine-blend model in Aspen 696 

Plus® has been presented. Thus, the proposed approach can be applied to any system where the NRTL and 697 

ELECNRTL parameters for the activity coefficient should be defined and regressed using experimental data.  698 

Physical CO2 solubility in an aqueous AP and PRLD blend has been modelled by means of the Henry’s constant, 699 

which has been fitted to experimental data collected by exploiting the N2O analogy. The reaction scheme 700 

characterizing the primary and tertiary amine interactions with water and CO2 are defined in compliance with 701 

previous models available in Aspen Plus for similar amine blends, while the corresponding equilibrium 702 

constants are collected from the literature. ELECNRTL interaction parameters are fitted to in-house VLE data 703 

for the HS3 solvent.  704 

The comparison with the experimental data shows that the proposed ELECNRTL model enables predicting 705 

VLE with good accuracy. In particular, the new model can predict CO2 partial pressure with an average relative 706 

deviation lower than 18% with respect to all VLE data and lower than 15% if considering the data with partial 707 

pressure of CO2 higher than 1 kPa. The average absolute deviation is limited to 7 kPa. The ELECNRTL model 708 

here proposed turns out to be valid under a wide range of temperatures and CO2 loading, which covers the 709 

whole range of operating conditions of interest for both CO2 absorption and amine regeneration. The 710 

proposed model is reliable, providing also insights into the  liquid speciation. Furthermore, the Aspen model 711 

can be extended to handle both pure amines and their blends since each amine is fully defined as a real 712 

component.  713 

The proposed model can predict with high accuracy the absorption heat in the whole investigated 714 

temperature (40°C to 100°C) and CO2 loading (0.03 to 0.7) ranges. This means that the model can be exploited 715 

to reasonably estimate the energy requirements and the operating costs of a CO2 capture plant based on 716 

HS3. In addition, the regressed Aspen model provides a reasonable liquid phase speciation which is in line 717 

with the observations arising from previous experimental studies carried out with AP and PRLD systems as 718 

well as with the HS3 absorption heat in-house data. Finally, a statistical analysis of the correlation coefficients 719 

among the interaction parameters demonstrates that no relevant overfitting issues occur, which is important 720 

to guarantee the stability of the obtained model.  721 

Dedicated physical property model parameters have been regressed to allow a proper description of the 722 

main AP and PRLD properties such as density, viscosity, and specific heat in the liquid phase (see 723 

Supplementary Material). Where possible, the fitting procedure is based on both in-house and published 724 

data. Interactions between water and amines have also been considered in the regression of water-amine 725 

mixtures density and viscosity models. All the property models show appreciable accuracy at all investigated 726 

temperatures and compositions.  727 
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