
Received 1 September 2023, accepted 23 September 2023, date of publication 2 October 2023, date of current version 12 October 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3321320

Digital Twins in Wind Energy: Emerging
Technologies and Industry-Informed
Future Directions
FLORIAN STADTMANN 1, ADIL RASHEED 2,3, TROND KVAMSDAL 3,4,
KJETIL ANDRÉ JOHANNESSEN5, OMER SAN6, KONSTANZE KÖLLE7,
JOHN OLAV TANDE 7, IDAR BARSTAD8, ALEXIS BENHAMOU 9, THOMAS BRATHAUG10,
TORE CHRISTIANSEN11, ANOUK-LETIZIA FIRLE12, ALEXANDER FJELDLY13, LARS FRØYD 14,
ALEXANDER GLEIM 15, ALEXANDER HØIBERGET 16, CATHERINE MEISSNER17,
GUTTORM NYGÅRD18, JØRGEN OLSEN19, HÅVARD PAULSHUS20, TORE RASMUSSEN21,
ELLING RISHOFF11, FRANCESCO SCIBILIA22, AND JOHN OLAV SKOGÅS23
1Norwegian University of Science and Technology, 7034 Trondheim, Norway
2Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7034 Trondheim, Norway
3Mathematics and Cybernetics, SINTEF Digital, 7037 Trondheim, Norway
4Department of Mathematical Sciences, Norwegian University of Science and Technology, 7034 Trondheim, Norway
5SINTEF Digital, 7037 Trondheim, Norway
6Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA
7SINTEF Energy Research, 7465 Trondheim, Norway
8Norconsult, 1338 Sandvika, Norway
9TotalEnergies, 92078 Paris La Défense, France
10Vard, 6008 Ålesund, Norway
11DNV, 1363 Høvik, Norway
12Sustainable Energy Catapult Center, 5412 Stord, Norway
13FORCE Technology, 1395 Hvalstad, Norway
144subsea, 1383 Asker, Norway
15Cognite, 1366 Lysaker, Norway
16EIDEL, 2080 Eisvoll, Norway
17Mainstream Renewable Power, 1366 Lysaker, Norway
18Store Norske, 9171 Longyearbyen, Norway
19Statkraft, 0216 Oslo, Norway
20Kongsberg Digital, 1366 Lysaker, Norway
21ANEO, 7031 Trondheim, Norway
22Equinor ASA, Rotvoll, 7005 Trondheim, Norway
23Kongsberg Maritime, 7005 Trondheim, Norway

Corresponding author: Adil Rasheed (adil.rasheed@ntnu.no)

This work was supported in part by the Norwegian Research Centre on Wind Energy (NorthWind) co-financed by the Research Council of
Norway, Industry, and Research Partners (www.northwindresearch.no) under Project 321954.

ABSTRACT This article presents a comprehensive overview of the digital twin technology and its capability
levels, with a specific focus on its applications in the wind energy industry. It consolidates the definitions
of digital twin and its capability levels on a scale from 0-5; 0-standalone, 1-descriptive, 2-diagnostic,
3-predictive, 4-prescriptive, 5-autonomous. It then, from an industrial perspective, identifies the current state
of the art and research needs in the wind energy sector. It is concluded that the main challenges hindering the
realization of highly capable digital twins fall into one of the four categories; standards-related, data-related,
model-related, and industrial acceptance related. The article proposes approaches to the identified challenges
from the perspective of research institutes and offers a set of recommendations for various stakeholders
to facilitate the acceptance of the technology. The contribution of this article lies in its synthesis of the
current state of knowledge and its identification of future research needs and challenges from an industry
perspective, ultimately providing a roadmap for future research and development in the field of digital twin
and its applications in the wind energy industry.

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

110762

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0003-5155-0870
https://orcid.org/0000-0003-2690-983X
https://orcid.org/0000-0002-1615-7649
https://orcid.org/0000-0003-1562-8928
https://orcid.org/0000-0001-8566-2932
https://orcid.org/0009-0006-1126-0600
https://orcid.org/0009-0001-9893-0614
https://orcid.org/0009-0005-1901-1310
https://orcid.org/0000-0002-0945-2674


F. Stadtmann et al.: DTs in Wind Energy: Emerging Technologies and Industry-Informed Future Directions

INDEX TERMS Artificial intelligence, digital twin, machine learning, hybrid analysis and modeling, wind energy.

NOMENCLATURE

AE Autoencoder.
AI Artificial Intelligence.
AIM Asset Information Model.
AR Augmented Reality.
CAD Computer Aided Design.
CFD Computational Fluid Dynamics.
CM Condition Monitoring.
CNN Convolutional Neural Network.
CoSTA Corrective Source Term Approach.
DAE Denoising Auto Encoder.
DDM Data-driven Modeling.
DNN Deep Neural Networks.
DT Digital Twin.
FOM Full Order Model.
GAN Generative Adversarial Network.
HAM Hybrid Modeling and Analysis.
HDM High Dimensional Model.
IIoT Industrial Internet of Things.
IoT Internet of Things.
LDM Low Dimensional Model.
LIDAR Light Detection and Ranging.
ML Machine Learning.
MR Mixed Reality.
NN Neural Network.
O&G Oil and Gas.
O&M Operation and Maintenance.
ODE Ordinary Differential Equation.
OEM Original Equipment Manufacturers.
PBM Physics-based Modeling.
PCA Principal Component Analysis.
PDE Partial Differential Equation.
PGAI Physics Guided Artificial Intelligence.
PGML Physics Guided Machine Learning.
PGNN Physics Guided Neural Networks.
PINN Physics Informed Neural Networks.
RDS Reference Designation System.
RDL Reference Data Library.
RNN Recurrent Neural Network.
ROM Reduced Order Modeling.
RUL Remaining Useful Lifetime.
SARIMA Seasonal Auto-regressive Integrated

Moving Average.
SCADA Supervisory Control and Data Acquisition.
VR Virtual Reality.
XR Extended Reality

I. INTRODUCTION
Wind energy is expected to play an important role in limiting
global warming to the recommended preindustrial levels [1].
In terms of greenhouse gas emissions, wind electricity
can compete well with low-emission hydro- and photovoltaic

electricity, and offshore wind energy can outperform both
in the use of land [2]. Wind energy has been one of the
fastest-growing energy sources globally, with a 53 percent
year-on-year increase in 2020 [3]. The EU’s vision aims at
a climate-neutral EU by 2050 [4]. According to [5], 51-
56% of the power production is planned to come from the
wind in 2050 and 26% in 2030. Following [6], up to 30%
of the European electricity demand is planned to be met by
offshore wind in 2050. This is estimated to equal 450 GW.
Worldwide, the wind energy electricity generation capacity
is estimated to grow by a factor of 8 until 2050, to 5 TW [7].
The technical potential of offshore wind in 2019 was already
at 48 TW, which was 18 times more than the global demand
for electricity at that time [8].

Reducing both the cost and environmental footprint of
wind energy is crucial to realize a zero-emission wind-
powered future [5]. However, the cost reduction of wind
energy in the last decades happened together with a signif-
icant increase in turbine size, but without new innovations,
up-sizing might not yield further benefits [9], [10]. With
cheaper sensors and computational resources, the benefits
of gathering, recording, and analyzing data are growing as
well. Through digitalization, the efficiency of wind farms
during the whole life-cycle is increased, from design [10]
and siting [11], over construction [12] and operation [13],
to maintenance [14] and decommissioning [15]. If we take
into account the current fleet of wind turbines throughout
the world, a 1% increase in overall energy would result
in more than 30 terawatt hours of additional electricity
each year, which is roughly similar to adding an additional
3,600 wind turbines for free [16]. This would result in an
additional $1 billion in revenue annually for the owners
of wind farms. This increases sustainability not only by
reducing the levelized cost of electricity (LCOE), thereby
increasing the competitiveness of wind energy with fossil
energy, but it also reduces the number of resources needed
per energy produced, thus increasing the sustainability of
wind energy itself. Simulations and recorded data from
operational wind farms and prototypes aid in optimizing
the wind turbine design for future turbine generations.
Simulations and wind measurements allow identifying the
optimal farm- and turbine-site [11], as well as the optimal
turbine configuration for each site [17]. Digitalization also
helps in planning and optimizing production steps for smooth
assembly, transportation, and commissioning [12]. Two of
the most requested digital solutions are condition-based
and predictive maintenance. About 30-34% of the levelized
cost of electricity in wind power is estimated to stem
fromOperation andMaintenance (O&M), where catastrophic
O&M events are not even included yet [18]. The O&M cost
can increase by up to 95% [19] of the investment cost, which
presents a high risk for operators. In addition, offshore wind
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farms are often located in remote and hazardous locations
that are difficult to access. Condition-based maintenance
reduces the number of maintenance jobs on site. Predictive
maintenance goes a long way in eliminating unexpected
downtime and preventing catastrophic failures by taking
action before small faults can get out of hand [14].
Weather forecasts are based on digital tools and are

used, for example, for power prediction [20]. Manual and
automated control is relevant not only for optimizing revenue
but also for increasing the wind-farm lifetime [13]. Condition
monitoring could also help during decommissioning. The
recorded data can help in identifying the wear of each
component of the wind farm and thereby optimizing the recy-
cling process. Furthermore, the decommissioning scheduling
happens digitally [15].

Digital Twins (DT) combine all the previously mentioned
trends and more into a single framework at scale [21],
[22]. The DT accompanies the physical asset through its
entire life cycle, from design to decommissioning, and can
be used even afterward for recycling and the design of
future assets. The combination of big data and physically
accurate simulations into a real-time updated virtual system
allows applying all previously mentioned techniques with
maximum information through large available data sets and
in a single interface with optimal visualization. Therefore,
such a holistic DT is at the core of digitalization and
builds the keystone for a successful digital future. One
of the challenges with digital solutions is that they are
fragmented [23]. DT, which has become very effective in
other fields like meteorology and the manufacturing industry,
seems to address many of the challenges faced during
digitalization in the context of wind energy. The term DT
has been around for two decades , and the concept started
out from product lifecycle management [24], [25]. A decade
ago, it was first applied to high value assets such as aerospace
vehicles, [26], [27], [28]. During recent years DTs have
been utilized by various industries such as manufacturing,
healthcare, aviation, automotive transportation, infrastructure
planning, and energy production including wind energy
(compare Table 1 in [29] and [30]), but not to its full capacity,
and many challenges remain [31]. Especially in the context of
wind power, DTs are greatly under-utilized [32].
In this paper, we analyze the industry’s perspective and

state-of-the-art of DT. We perform a survey with 15 com-
panies operational in the Norwegian and international wind
power sectors and summarize each individual answer into a
short paragraph. On the basis of the survey, we investigate the
benefits the wind industry is expecting from DT technology,
as well as the challenges that are encountered and anticipated
while developing and applying DT technology. We build a
definition and taxonomy for DT based on both industrial
and academic needs. To this end, we present a taxonomy
based on the capability of DT, which is inspired by the value
generated from a DT at each milestone during the technology
development. Furthermore, we propose solutions for the
challenges raised in the industry survey. Topics include data

generation, gathering, and sharing, visualization, physics-
based, data-driven, and hybrid-modeling, forecasting, what-
if ?-scenario analysis, manual and automated control, and
industrial acceptance.

More concretely, the current article attempts to:

• Consolidate the definition of DT and its capability levels
from an industrial perspective in the context of wind
energy.

• Identify the current state of the art in the industries active
in the wind energy business and research.

• Identify the research needs and challenges that should
be prioritized from an industry perspective.

• Propose approaches to each of the identified challenges
from the perspective of research institutes.

• Define a set of recommendations for the diverse class
of stakeholders to facilitate the acceptance of the
technology.

To the best of our knowledge, this is the first work in
which multiple industry players active in digital-twin-related
activities have been brought together to provide concrete
insight into some of the most pressing challenges and their
potential solutions.

In Section II, we present a definition and taxonomy for DT
that is used in this paper and that all authors, coauthors, and
industrial partners of this paper have agreed upon. Section III
presents the results of a survey with 15 companies that
work in the Norwegian and international wind sectors. Here,
we analyze the industry’s perspective on which values are
most desired and which challenges have to be addressed
before establishing a DT. In section IV, we give an overview
of state-of-the-art technologies and trends relevant to realize
a DT that addresses all industrial needs. Topics include
data generation, gathering, and sharing, visualization, fast
physically accurate modeling, and control. Section IV gives
recommendations to all stakeholders on how to facilitate
DT development and the acceptance of the technology.
Finally, in Section V we conclude the article with some
recommendations for moving forward.

II. COMMONLY USED TERMINOLOGIES
Since this work involves a wide spectrum of industry and
research partners as well as the targeted audience, we first
present a brief description of the terms that have been used in
the current work.

A. DIGITAL TWIN, DIGITAL SIBLING, AND DIGITAL
THREAD
The number of definitions for the termDT is vast and varies in
length. Here, we start by quoting the most popular definitions
and make an attempt to redefine a long and a short concise
version of the definitions.

• Gartner A DT is a digital representation of a real-
world entity or system. The implementation of a DT is
an encapsulated software object or model that mirrors
a unique physical object, process, organization, person,
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or other abstraction. Data from multiple digital twins
can be aggregated for a composite view across a number
of real-world entities, such as a power plant or a city,
and their related processes [35].

• NVIDIA A digital twin is a virtual representation
synchronized with physical things, people, or pro-
cesses [36].

• IBM A digital twin is a virtual representation of an
object or system that spans its lifecycle, is updated from
real-time data, and uses simulation, machine learning,
and reasoning to help decision-making [37].

• DNV A digital twin is a virtual representation of
a system or asset, that calculates system states and
makes system information available, through integrated
models and data, with the purpose of providing decision
support, over its life cycle [38].

• GE Digital Digital Twin is most commonly defined as
a software representation of a physical asset, system,
or process designed to detect, prevent, predict, and
optimize through real-time analytics to deliver business
value [39].

• Siemens A digital twin is a virtual representation of
a physical product or process, used to understand
and predict the physical counterpart’s performance
characteristics. Digital twins are used throughout the
product lifecycle to simulate, predict, and optimize
the product and production system before investing in
physical prototypes and assets [40].

• Oracle A digital twin is the digital proxy of a physical
asset or device [41]. Alternatively, a digital twin is a
digital representation of a physical asset that’s updated
with operational data and is created for one asset or a
fleet of assets to help in maximizing their performance.
A digital twin can be built by combining real-time
operational data with a physics-based model of a system
or by using historical data to algorithmically determine
the system’s expected behavior. Digital twins can be
used for various purposes: They can provide more
virtual sensor information to supplement the measured
signals, help determine anomalous behavior, provide
corrective actions when such behaviors occur, and even
give insights to prevent anomalies from occurring in
the first place. A digital twin can be created for a
specific business objective across a fleet of assets, such
as predictive maintenance, or for a specific piece of
equipment, such as a gearbox within a larger wind
turbine [42].

• Microsoft A digital twin is an exact replica of an object
in the physical world that can be studied and changed to
help improve the real-life version [43].

• Digital Twin Consortium A digital twin is a virtual
representation of real-world entities and processes, syn-
chronized at a specified frequency and fidelity. Digital
twin systems transform business by accelerating holistic
understanding, optimal decision-making, and effective

action. Digital twins use real-time and historical data
to represent the past and present and simulate predicted
futures. Digital twins are motivated by outcomes,
tailored to use cases, powered by integration, built on
data, guided by domain knowledge, and implemented in
IT/OT systems [44].

• Trauer et al. A Digital Twin is a virtual dynamic
representation of a physical system, which is connected
to it over the entire lifecycle for bidirectional data
exchange [45].

• Grieves, Vickers The Digital Twin is a set of virtual
information constructs that fully describes a potential
or actual physical manufactured product from the micro
atomic level to the macro geometrical level. At its
optimum, any information that could be obtained from
inspecting a physical manufactured product can be
obtained from its Digital Twin. Digital Twins are of two
types: Digital Twin Prototype (DTP) and Digital Twin
Instance (DTI). DT’s are operated on in a Digital Twin
Environment (DTE) [24].

• Industrial Digital TwinAssociationDigital Twin: Dig-
ital representation, sufficient to meet the requirements
of a set of use cases. Note: In this context, the entity
in the definition of digital representation is typically an
asset [46].

More definitions can be found, for example, in [47]. Here,
we adopt our own original definitions from [33].

A digital twin is defined as a virtual representation
of a physical asset or a process enabled through data
and simulators for real-time prediction, optimization,
monitoring, control, and informed decision-making.

The concept can be described using Figure 1a. On the top
right side of the figure, we have the physical asset /process
we want to build a DT of. The asset is equipped with a
diverse class of sensors that provide big data in real-time.
These data have a very coarse spatio-temporal resolution
and do not describe the future state of the asset. Therefore,
to complement the measurement data, models are utilized
to bring physical realism to the digital representation of the
asset. Provided that the same information can be gained
from the DT as it can be from the physical asset, it can
be utilized for more informed decision-making and optimal
control of the asset. All the green arrows in the figure
represent real-time data exchange and analysis. However, one
might be interested in risk assessment, what-if ? analysis,
uncertainty quantification, and process optimization. These
can be realized by running the DT in an offline setting for
scenario analysis. The concept is then known as a digital
sibling. The box and the blue arrows represent the digital
sibling. Additionally, the DT predictions can be archived
during the lifetime of the asset and can be used for designing
the next generation of assets, in which case the concept is
referred to as digital threads.
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FIGURE 1. Digital twin and its capability levels.

B. CAPABILITY OF DIGITAL TWINS
As mentioned earlier, the concept of DTs has been around
for a few decades. However, the usage of the term can
be misleading. Some focus on the visual 3D component,
others on the data stream between a physical asset and its
digital counterpart, and others on modeling and analysis
techniques. In [48] DTs are described as ‘‘boundary objects,’’
entailing that the term DT has a different meaning for dif-
ferent stakeholders. Commonly used scales for technological
progress, such as the widely known Technology Readiness
Level scale (see IV-D), are not sufficient to classify DTs.
While such scales describe the technology’s maturity, they
do not address the features included in the technology. To this
end, attempts have been made to find a scale for categorizing
DTs. Grieves and Vickers [24] separates between Digital

Twin Prototype, and Digital Twin Instance, where the former
describes a product and the latter an instance of a product.
In [49] they use the term ‘‘True’’ DT and introduce sub-stages
for model implementation. An 8-dimensional taxonomy
based on 233 DT-related publications is presented in [50].
In contrast, a distinction based on the level of automated
data exchange between physical and digital objects is made
in [51]. There, a digital object without automated data
exchange is called a Digital Model, and a digital object that
only receives data is called a Digital Shadow. Thus, when
applying the taxonomies to the state-of-the-art, it becomes
evident that taxonomies are often either only focusing
on a single aspect like data connection, or introducing a
new dimension for each additional feature. However, these
features are often dependent on each other: A data connection
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between an asset and its digital counterpart can only exist
if the asset exists, and a bidirectional data connection only
makes sense if the DT has feedback/control to provide
to the asset. Therefore, we do not use any of the above
classification attempts. Instead, we expand on the capability
level scale as used in [38], [52], and [53]. A one-dimensional
capability-based scale brings several advantages. It uses
milestones, allowing for a clear distinction between levels
based on whether the milestone is reached or not and
providing an improvement over empirical classifications.
Each level expands on the capability of lower levels by
adding new features. The levels are structured so that
with each level new values can be unlocked. The scale is
particularly helpful during the development stage of DTs, as it
presents a progression plan and can be used simultaneously
to categorize the state-of-the-art. The exact requirements
for data streaming, visualization, modeling, analysis, and
control depend on the DT’s capability level. The scale ranges
from 0 to 5 (0-standalone, 1-descriptive, 2-diagnostic, 3-
predictive, 4-prescriptive, 5-autonomous) (see Figure 1b) and
is elaborated in the following sections.

1) LEVEL 0: STANDALONE
A standalone DT is defined as a DT even before the physical
asset comes into existence. The value of a standalone DT,
in addition to being used for design purposes, is that it can
be used for a preliminary cost-benefit analysis of the asset
before it is built.

In the concrete case of wind farms, a standalone DT can be
used for wind farm siting, wind turbine micro-siting, wind
availability studies, or long-term climate studies. Another
application is explored in a project by GE, where turbine
components for each turbine are configured based on its
site [17].

2) LEVEL 1: DESCRIPTIVE
When geometric computer-aided design (CAD) models are
in place and a live sensor data stream is established, it can
be referred to as the descriptive DT, which can provide
insight into the inner workings of the asset at the required
granularity. Additionally, it provides a powerful interface.
Numbers can be shown where relevant, critical components
can be highlighted through color, rendering priority enables
X-ray vision, and heat-map overlays allow visualization
of parameters like stress, temperature, or component wear.
Sensor data is typically only available at specific positions
and times. Physically accurate models can help to interpolate
data to areas of interest. Some physical assets or components
thereof are challenging to access. The physical asset might
be too expensive, dangerous, or inaccessible for humans.
A descriptive DTmirrors the physical asset’s current state and
can be easily explored remotely.

A descriptive wind farm DT can be used to remotely
monitor the wind farm, which is especially beneficial for
wind farms in remote locations such as offshore wind farms

and farms in arctic regions. In contrast to a common SCADA
system, it can provide a 3D visualization of all relevant
data collected from the wind farm, allowing experts to
interpret the data faster and enabling non-technical staff to
understand it.

3) LEVEL 2: DIAGNOSTIC
At a capability level of 2, data analysis tools are applied
to the data for sanity-checks of sensors and data, condition
monitoring and fault diagnosis. The DT is referred to as
the diagnostic DT. Based on the current state of the DT,
diagnostic tools such as vibration detection can be employed
to detect irregularities in the DT even before they cause
failures. Experts can then use the information provided by the
diagnostic DT to make adjustments before minor faults result
in more significant consequences.

The diagnostic DT is especially interesting for high-value
assets such as wind farms, as it allows the detection of
irregularities in the turbine before the irregularities can cause
faults or unexpected downtimes of the turbine. Additionally,
it reduces the need for on-site inspections, especially in
remote locations.

4) LEVEL 3: PREDICTIVE
It should be noted that standalone-, descriptive- and
diagnostic-DTs do not give any insight into the future.
Predictive DT, as the name suggests, starts exploiting models
to project the current and past states into the future. The
prediction is continuously updated based on the real-time data
stream from the physical asset. With the constant update of
the asset state, there is no risk of diverging too far from the
physical asset over time.

The predictive DT has several applications in the context of
wind farms. Short-term wind, weather, and power forecasts
allow for the optimization of turbine settings. Mid-term
forecasts are required for energy trading on the day-ahead
energy market. Long-term forecasts aid by estimating
revenue or even predicting the impact of climate change.
Furthermore, the predictive DT can be used to forecast
component wear and estimate the remaining useful lifetime
of components throughout the wind farm, thus alleviating
unexpected downtimes. Combining weather forecasts and
predictive maintenance allows scheduling inspections and
maintenance when there is no wind, thereby further reducing
the effective downtime of the wind turbines.

5) LEVEL 4: PRESCRIPTIVE
For optimal control of the asset, prescriptive DTs come in
handy as they can make recommendations based on what-if
? / risk assessment and uncertainty quantification. This aspect
is highly desirable for decision support systems, providing
recommendations to experts who then decide how to act upon
them.

In the context of wind farms, the prescriptive DT can
improve on the diagnostic and predictive features not only
to provide data with which good maintenance schedules
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can be developed, but directly explore what-if ? scenarios
to provide optimal maintenance schedules. Furthermore,
it includes uncertainty estimates to indicate how reliable the
recommendations are. Additionally, the prescriptive DT can
provide recommendations for turbine settings at the farm
level to prolong component and turbine lifetime.

6) LEVEL 5: AUTONOMOUS
Finally, the DT and the digital asset start bidirectional
communication where the physical asset updates its DT in
real-time, and in return, the DT controls the asset to push
it towards an optimal set point. Decisions can be made on
much shorter timescales than with human involvement. This
autonomous DT represents the fifth level. A high level of
maturity is needed in order to use autonomous DT in critical
components or systems like e.g., autonomous vehicles.

The autonomous wind farm DT allows for closing the
loop in the wind farm operation. It can continuously adjust
the turbine settings at the farm level to optimize turbine
efficiency while taking into account current and future
weather, wind speed, wind direction, electricity prices, wake
effects, component wear, and the remaining useful lifetime
of components. With sufficient maturity, it can furthermore
schedule maintenance autonomously. By exploring the use
of autonomous drones and underwater vehicles, autonomous
DT can eventually repair minor damage on its own.

C. INFORMED DECISION MAKING AND PUBLIC OPINION
Decision-making is the act or process of deciding something,
especially with a group of people. A decision is an
informed decision when the decision takes into account
knowledge about the potential consequences of the decision
and their probabilities. While in theory all decisions should
be informed decisions, there are many situations where a
lack of information, time, or expertise impedes informed
decision-making. This poses serious challenges in industrial
and political contexts, where decisions can have far-reaching
consequences.

Public opinion is understood as an aggregate of individual
attitudes or beliefs about a particular topic or issue held
by a significant proportion of the total population. Public
opinion has a strong influence on decisions in society on
all scales, from the behavior of individual citizens to global
politics. However, public opinions can be based on prejudice,
misconceptions, and false facts, as often only a small fraction
of the population possesses expertise in a topic. An informed
public opinion is a public opinion that takes into account a
significant amount of correct information and no incorrect
information that could change the opinion. In order for
public opinions to be informed, correct information needs
to be easily available for a sufficiently large fraction of
the population, and false information has to be identifiable
as such. In many cases, this requires technical information
to be understandable for individuals without a technical
background in the corresponding topic.

III. INDUSTRIAL PERSPECTIVE
To understand the industry needs, research challenges, and
potential value that can be generated from DT, industry
partners of the FME NorthWind research center were
familiarized with the terminologies discussed in Section II.
NorthWind - Norwegian Research Centre onWind Energy - is
a strategic precompetitive research cooperation co-financed
by the Research Council of Norway, industry, and research
partners. The primary objective of NorthWind is to bring
forward outstanding research and innovation to reduce the
cost of wind power and facilitate its sustainable development.
This will grow exports and create new jobs.

The survey to understand challenges (Figure 2), state-of-
the-art, and recommendations (Figure 3) was split into four
stages. In the first stage, 15 industry partners anonymously
answered a series of questions that can be found in the
appendix. In stage two, the answers were summarized and
reviewed internally by industry partners. In stage three,
a paragraph for each industry partner was compiled together
with a representative from the industry partner. The resulting
paragraphs are presented in Section III-A. In the final stage,
the commonly reported challenges that must be addressed
for digital twins to be applied commercially are reported in
Section III-B.

A. INDIVIDUAL FEEDBACK
1) 4SUBSEA
4subsea offers decision support services to energy providers
based on data analytics and digital services. 4subsea’s short-
term goals for DT focus on lifetime estimate and extension
of all components of the wind farm. Long-term goals shift
to operational decision support for optimized uptime and
productivity. 4subsea argues that modeling only parts of the
turbine is usually not sufficient, as the global loads are of
main interest. Therefore, it might be sufficient to start with a
complete but less detailed DT. Enhancing the asset with more
sensors is required, but existing sensors should be utilized
as much as possible. 4subsea already extracts value from a
level 0 DT (standalone) to level 4 (predictive). 4subsea has
a one-degree-of-freedom DT already running to capture the
tower base strain of an onshore wind farm. 4subsea is able
to perform lifetime estimates at different locations of the
tower, even at places without sensors. However, it is agreed
that a similar DT for an offshore wind farm would be much
more complex. For offshore oil and gas (O&G) 4subsea has
operated DT models up to Level 4 for several years to make
short-term predictions and decision support for wellhead
fatigue during drilling and workover operations using subsea
motion sensors on the blowout preventer. The system is
fully commercialized under the name SWIM. 4subsea also
has DT of 3 jacket platforms in the North Sea with a
focus on integrity monitoring and anomaly detection and
DT of a floating production storage and offloading in Brazil
with a focus on riser fatigue integrity. 4subsea implements
the DT by creating a structural model in OrcaFlex and
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running it in the platform 4insight.io on Azure but comments
that a polished interface between OrcaFlex and insight.io
is lacking right now. They also utilize machine learning
models to make future predictions. The reason 4subsea’s DT
are not more complex yet are a lack of time and effort in
system identification and model tuning of the DT based on
measurements.

2) ANEO
Aneo is a Norwegian energy company within upstream
renewable energy production and downstream green energy
consumption. Aneo will use the new opportunities DTs
offer to reduce the cost of renewable power production
within wind, hydro, hydrogen, biogas, and solar. The most
significant benefits of DTs for wind power production
are expected to come from the reduction of downtime
and increase in the technical availability of the assets.
Additionally, DTs will give insight into the decisions of
prolonging the lifetime of wind farms. Aneo generates value
from diagnostic (level 2) DTs onward. Nonetheless, they
also focus on implementing 3D visualization to simplify
the communication between analysts and operators and to
improve the planning process of maintenance. In addition
to the development of DTs, Aneo puts a lot of effort into
the robustness of data management and bundling as these
are essentials to achieve reliable results. Aneo has developed
DTs with predictive capabilities for the main components
in the drive train of wind turbines. Aneo is interested in
autonomous DTs, but they still believe in some human
input before a final maintenance decision is taken. They
assume that DTs will aid the workforce by reducing the
time troubleshooting takes inside the wind turbine. From
their perspective, the biggest challenge is to build a system
that provides confidence-inspiring results in daily operations.
Aneo recommends academic research to focus on integrating
what-if ? scenarios in predictive analysis. One key factor
for success is to extend research on real data and in close
collaboration with the industry to verify the results.

3) COGNITE
Cognite is a global industrial SaaS company driving the
full-scale digital transformation of asset-heavy industries by
providing simple access to trustworthy and contextualized
data. Cognite’s flagship product, Cognite Data Fusion,
leverages DTs to empower anyone to use data to solve
industrial problems with speed and ease by combining data
in simulations and predictions for improved decision-making.
The most important features of a DT are what-if ? scenario
analysis and autonomous decision making. Modeling only
parts of the asset is disfavoured, as the focus should be
on a holistic assessment. Cognite expects that additional
sensors, e.g. strain gauges for analysis of structural loadings,
will have to be installed on the asset in addition to the
already implemented sensors. According to Cognite, they
have an operational predictive DT (level 3). The DT generates
value from level 0 (standalone) onward. Cognite’s current

challenge is in developing and improving the what-if ?
scenario analysis. Furthermore, there is interest in the data
querying schemes of industrial partners. Convincing original
equipment manufacturers to override the control parameters
through a DT is what Cognite anticipates as the biggest
challenge for the future.

4) DNV MARITIME
DNVMaritime is part of DNV, a classification society. DNV
Maritime’s main interest in DT is in the class status of ships
but they want to digitalize oil, gas, and offshore wind as well.
The most important aspects of the DT are 3D visualization
and condition monitoring to improve class recommendations
for customers and obtain a better holistic overview of the
asset status. DNV Maritime can already extract value from
a standalone DT, and in some cases, it is sufficient to model
only parts of the asset. It is expected that additional hardware
is required in the future. DNV Maritime is already using
a DT as part of the class production for safety at sea.
About 5-10 full-time equivalents are working on this DT.
The DT includes simulations and what-if ? scenarios but
has no real-time capabilities yet. A real-time initiative is in
development. DNV Maritime expects the biggest challenge
to be end-to-end value chain support, and the existing DT is
limited by a lack of business and operating models. The most
important standard is considered to be ISO 15946 and a lot
of value is expected from other companies’ DT if assuming
good standardization. DNV Maritime’s recommendation for
academic research is to establish an overview of applicable
technologies, standards, and emerging execution platforms
in relevant industries (especially offshore wind). For the
future DNVMaritime predicts the workforce to focus less on
modeling and more on monitoring and learning.

5) DNV ENERGY SYSTEMS
DNV Energy Systems is part of DNV, an energy consulting
company. DNV Energy’s goal for DT is to digitalize wind
turbines for conditionmonitoring and future prediction. Value
is expected to be generatedwith aDT from level 3 (predictive)
onward. DNV Energy uses DNV’s Forecaster platform to
predict energy production based on historic and live data
for wind and solar power as well as power demand. The
biggest challenge is expected to be the development and
the capability to respond to customer requests during the
initial phase. DNV Energy recommends putting less focus on
the algorithms but instead focusing on the implementation,
including software development, and intermittently and
inconsistent data, which requires significant investment.

6) EIDEL
EIDEL is a designer and supplier of rugged electronics
and systems with requirements to operate under harsh
environments in remote and inaccessible areas. EIDEL’s
areas of expertise are remote sensing, telemetry/data acqui-
sition, remote control, and secure communication (including
encryption). Their customers are within the defense and space
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sector, in addition to the marine and offshore industries.
EIDEL’s main motivation and interest in DT is to adapt its
existing Data Acquisition System (designed for the defense
sector), to meet the needs and requirements for remote
sensing, digitizing, and data acquisition in offshore wind
assets and infrastructure. EIDEL argues that accurate time
between different measurement/data points is critical for
event correlation and is generally one of the most important
factors and data quality dimensions in the Industrial Internet
of Things (IIoT). In addition, monitoring should be done
not only on the asset in question and its critical parts
(including structures, gears, blades, and mooring lines), but
also on external environments. This is to better understand the
cause and effect, both in real-time and over time, especially
for predictive maintenance (a topic which is supported
by [54]). EIDEL’s goal is to provide higher data quality and
provide new insights for the optimization of asset design,
optimized operational settings, better profitability, prevented
downtime, and reduced maintenance trips. The descriptive
DT (level 1) is the minimum level to generate value with
the data acquisition system for EIDEL, but collaboration
partners, lab facilities for equipment tests, and a list of
requirements to meet are currently missing. EIDEL does not
aim at building a complete DT alone, but is committed to
providing the hardware and software for data acquisition so
that partners can build their DT upon it. Tasks that need to
be addressed are collaboration, specifically, forming research
and development partnerships, and aligning on mutual goals.
The requirements for offshore environments and condition
monitoring have to be defined. Data acquisition-specific
challenges include producing and configuring hardware and
software, and determining requirements for adaption to
existing systems. Furthermore, EIDEL comments that the
integration of new systems within existing systems might
collide with proprietary information.

7) FORCE TECHNOLOGY NORWAY
FORCETechnology Norway is a consulting and service com-
pany. FORCE Technology Norway expects many advantages
through DT technology, including increased precision in
calculations, reduced inspection and maintenance costs, opti-
mized service intervals, and a single, complete, and digital
hierarchical asset structure that collects all information. The
key features of all DT levels are considered equally important.
It is expected to extract value from a descriptive DT (level 1)
onward. FORCE Technology Norway is able to run manual
predictions and what-if ? scenarios for several assets in Oil
and Gas, but are not based on a real-time data stream yet.
Microsoft Azure and Google Cloud are used for data transfer
and Ansys, Orcaflex, Sesam, and in-house Python code for
analysis. The accuracy and reliability of automated finite
element approaches and autonomous data processing are
seen as the biggest challenges in the development of DT.
According to FORCE Technology, academic research should
focus on automated hybrid modeling and analysis.

8) KONGSBERG DIGITAL
Kongsberg Digital is part of the Kongsberg Group and
provides software and digital solutions. Kongsberg Digital
builds a DT for marine oil and gas on the Kognitwin platform
with capability level 3 (predictive), which is not limited to
any cloud vendor and is implemented for multiple plants.
Kongsberg Digital wants to use that knowledge to build a DT
of a wind farm, including the turbine, structure, operations,
and environment. While further equipment is needed to
extract key data for predictive maintenance, value is already
seen in utilizing existing data and integrating insights from
different source systems. Kongsberg Digital is interested in
optimizing maintenance planning and sees additional value
in using DT for induction and training, as witnessed in oil
and gas DT. The biggest challenge is anticipated to be the
interaction between original equipment manufacturer (OEM)
and operator, as well as accessing real-time high-resolution
data and 3rd party sensoring. Furthermore, the interaction of
the DT with the turbine and the software will be challenging.
Kongsberg Digital’s recommendation for academic research
is to focus on data standardization and autonomy in DT.

9) KONGSBERG MARITIME
Kongsberg Maritime is part of the Kongsberg Group with
a focus on marine technology. Kongsberg Maritime focuses
on condition monitoring and condition-based maintenance of
rotating parts and electric health, but highlights predictive
capabilities as the most important technology. The goal is to
prevent unexpected and long-lasting downtime for customers.
With the sister company Kongsberg Digital, Kognitwin is
Kongsberg Maritime’s preferred choice as a DT platform.
While there are knowledge and resources available from
the sister company, more knowledge is required to build a
DT. Additional limitations exist in the budget. Digitalizing
the assets will require additional investment in hardware
instrumentation. Kongsberg Maritime anticipates the biggest
challenge to be acceptance in the industry, market, class
societies, and insurance companies.

10) MAINSTREAM RENEWABLE POWER
Mainstream Renewable Power, which is part of the Aker
group of companies, is a leading pure-play renewable
energy company, with offshore and onshore wind and
solar assets across global markets, including in Europe, the
Americas, Africa, and Asia-Pacific. Mainstream’s goal is to
establish a DT of a floating offshore wind installation to
enable continuous improvements in production and O&M
optimization and lower the LCoE of operating floating
wind farm assets. One important aspect is to monitor the
environmental impacts of floating offshore wind farms and
find effective mitigation strategies. While DT from levels 0-3
already exist in various forms in the industry but are often
named differently, the real value of a new DT generation
would be to achieve levels 4 and 5 which is very challenging.
The biggest challenge here is the accuracy and speed of the
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data-driven and physical-based modeling which is needed
to build valuable DTs from level 3 onward. Together with
Cognite, Mainstream Renewable Power is developing a DT
in the research project NextWind funded by the Californian
Energy Commission.

11) NORCONSULT
Norconsult is the largest consulting company in Norway
and has many different departments involved in wind
energy topics: wind resources, construction, environment,
and electric grid, to mention a few. They are mainly
involved in the preconstruction phase and will typically
provide advice on cost-effective solutions based on best
practices. To this end, they are dependent on digital models,
mainly physics based. The abstraction level of the model
depends on the task at hand. To obtain more cost-efficient
solutions across disciplines, Norconsult envisions individual
models to propagate uncertainties associated with data and
model abstraction level, from input environmental data to
bankable financial analysis output. In this way, unnecessary
and costly over-capacity will be removed, and risk will be
managed in a coherent way. Norconsult’s models tend to be
computationally heavy and popular methods of propagation
of uncertainties through integrated complex systems rely
on ‘‘the law of big numbers’’ (Monte Carlo simulations).
This requires a suitable abstraction level and fast codes.
High license-prizing prevents collaborations, and free soft-
ware supported by big governmental institutions become
increasingly popular. Norconsult’s suggestion for academic
research is to further develop model components at different
abstraction levels, making sure that these can ‘‘talk’’ to other
components in generic, module-based integrated models. The
models should also be formulated so that uncertainties can
propagate through the systemswhere correct uncertainties are
assigned to individual process. It is thus paramount that the
model systems digest data in someway and preferably correct
and update themselves. Clever data gathering will utilize
model information to determine data parameter, location, and
temporal resolution of sensors.

12) SNSK
Store Norske Spitsbergen Kulkompani is interested in DT
for hybrid energy systems in remote Arctic and Antarctic
locations, where the DT is an important tool to be used in
an operation center that supports local personnel. SNSK’s
focus is on improving component lifetime and planned
maintenance through condition monitoring and what-if ?
scenario analysis. Therefore, SNSK starts to generate value
through a DT from level 2 (diagnostic) onward. SNSK
monitors assets through Datavaktmesteren with a real-time
data stream, and autonomous decisions are made, but no
predictions or what-if ? analyses are included. SNSK would
like research to focus on integrating wind turbines with other
power producing units and energy storage and distribution
systems.

13) STATKRAFT
Statkraft is Europe’s largest renewable energy producer and
a global company in energy market operations. Statkraft is
interested in using DT for optimizing the O&M of renewable
energies through condition monitoring, what-if ? scenarios,
and autonomous decision-making. what-if ? analysis is
highlighted as themost interesting aspect of DT to analyze the
consequences of parameter changes and asset modifications.
Statkraft already has a large real-time data stream and the
infrastructure to feed DT models. Statkraft is interested in all
capability levels of DT but the descriptive and diagnostic are
the most interesting ones. The biggest challenge is expected
to be developing and distributing the knowledge of building
a physical model and developing and maintaining a secure
software system to run DTs. Statkraft’s recommendation for
academic research is to focus more on the earlier steps of
realizing DT.

14) TotalEnergies
TotalEnergies is a multi-energy company that produces and
markets fuels, natural gas, and electricity. TotalEnergies
wants to use DT for operation and maintenance optimization,
specifically for condition monitoring. Furthermore, value
is expected from utilizing the extracted data for future
design improvements. It is desired to model the whole wind
farm with wind, drivetrain, electricity production, structural
fatigue, and mooring tension. Modeling only parts of an
asset is not sufficient. The minimum DT level to extract
value is descriptive (level 1), but TotalEnergies aims for
prescriptive DT (level 4) to optimizemaintenance and prevent
downtimes by supporting decision-making for O&M teams.
TotalEnergies believes that the sensors in existing turbines
are sufficient for building a DT, but sensors at other places
might be required for e.g. structural integrity monitoring.
TotalEnergies anticipates the biggest challenge to be the
integration of all data from the wind farm into a single unified
system but also highlights the value of standardization of
data streams and storage. However, academic research should
focus on how to combine numerical modeling and measured
data, on how to limit the number of sensors and optimize their
position, on how to generate value from the collected data,
and on how to ease the decision process for inspection and
maintenance.

15) VARD
Vard builds ships as part of Fincantieri. Through DT
technology Vard aims at improving the design and increasing
the operability of vessels. Vard’s focus is on the digitalization
of important parts and their components, modeling the whole
vessel is not required. Vard sees forecasts and what-if ?
scenario analysis during the operation and design phase as
the most important features of DT. Only a few new sensors
will have to be installed on the vessel, however, a platform
for data streaming and remote control is under development.
Vard expects the current lack of a common ontology for fully
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integrated windfarms as the biggest challenge. Furthermore,
research should focus on developing accurate forecasts.

16) EQUINOR
Equinor is an international energy company committed to
long-term value creation in a low-carbon future. Equinor’s
portfolio of projects encompasses oil and gas, renewables,
and low-carbon solutions, with ambitions to take a leading
role in the energy transition and become a net-zero energy
company by 2050. Equinor recognizes its strong ability to
apply new technologies and digital solutions as a competitive
advantage. Digital technology is a key enabler for Equinor
to deliver on its ambitions. Equinor views the digital twin
as a digital representation of a physical asset that fulfills
the requirements of specific use cases. During the asset
design and engineering phases, Equinor envisions utilizing
the digital twin to effectively monitor and manage the asset
development process. This involves conducting consistency
checks, verifying the engineering design, and managing the
master engineering data. In the asset operational phase,
Equinor envisions leveraging the DT to optimize mainte-
nance, modification, and operational performance, thereby
increasing production and reducing costs associated with the
assets. This entails activities such as condition monitoring,
predictive maintenance, planning, continuous optimization,
as well as simulation and scenario testing to explore potential
scenarios. From Equinor’s perspective, the concept of an
overall asset DT involves a network of interconnected DTs
that support different use cases, perform different functions,
and involve various services (both internal and external).
For Equinor, a fundamental aspect of the DT concept is
the capability to evolve to follow the asset needs during
its entire lifecycle. The digital representation of the asset
should support the stages of asset design and engineering,
and continue to evolve to meet the needs of the operation
and maintenance phases, thus maximizing the asset’s value
potential over its entire lifespan. This is a collaborative effort
that entails the involvement of multiple industry stakeholders
such as OEM suppliers, EPCI contractors, IACS vendors,
and service providers, who contribute to the development
and evolution of the DT throughout the asset’s lifecycle.
For Equinor, in order to achieve the full value potential of
the DT concept, it is fundamental that DT development and
implementation adhere to open architectures and industry
standards. This ensures data and information interoperability,
facilitates standardized industry practices for data integra-
tion and machine-readable formats and enables seamless
machine-to-machine communication. In addition, Equinor
believes it crucial that DT solutions should ensure the
preservation of completeness, accuracy, trustworthiness, and
structure of the asset data and information.

B. COMMON IDENTIFIED CHALLENGES
It was realized that most of the industry partners can already
start generating value from standalone and descriptive DTs.
When it came to the desired features in DTs, condition

FIGURE 2. Word cloud with challenges of establishing digital twins that
the industry partners experience, have experienced, and anticipate
experiencing in the future. The cloud is compiled from the feedback
throughout all three stages of the industry survey. The font size scales
with a number of industry partners mentioning the same keywords. Data
connect the digital twin with the real asset, but data quality, sparsity,
security, and standardization all impact the realism of the digital twin.
Especially, proprietary rights present a challenge that requires
partnerships and collaboration between industry and academia as well
as between operators and original equipment manufacturers.
Spartio-temporal gaps need to be bridged by models, but complex
physics-based models cannot be executed in real-time. Data-driven
models, on the other hand, lack in terms of generalizability and reliability.
Hybrid models can bridge the gap, but more research and validation are
needed. Both data and models need to be integrated into a single system.
User cases need to demonstrate value to the industry for them to invest
time and money into digital twins, and documentation and
standardization are required for the industry to accept digital twins.
Finally, valid business and operating models must be in place for the
industry to commercialize digital twins.

monitoring was the obvious choice followed by predictive
maintenance, and what-if ? scenarios for the optimal
operation of the asset. It is noteworthy that for many
features the industry partners were also in favor of full
autonomy if safety and loss of revenue are not of concern
in the application. Only 6/14 industry partners highlighted
autonomous decision-making as one of their main priorities,
but 11/14 industry partners expressed general interest in
autonomous decision-making. All industry partners agreed
that at some point, additional sensors have to be installed
for optimal efficiency of the DT, but 5/14 industry partners
argued that the current installations are sufficient to build
a DT upon. Furthermore, more than half of the industry
partners reported that it is sufficient to model only parts of
the wind farm/turbine to generate value with a DT. From the
survey, the challenges (Figure2) identified can be put into
three broad categories explained in more detail below.

1) DATA
Developing a DT for wind energy requires real-time data
exchange between the physical asset and the DT. However,
various data-related challenges hinder the development of an
ideal DT.

• Data quality: To ensure the precise and accurate
behavior of the DT, data quality is a prerequisite.
However, duplicate, missing, ambiguous, inconsistent,
asynchronous, and inaccurate data create obstacles in
realizing an ideal DT.

• Data sharing: Data collection and distribution involve
multiple vendors who generate value from data and
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hence see data sharing as an advantage given to
their competitors. It is generally a tedious job to
reach a data-sharing agreement due to the involvement
of multiple players from the development through
operation to the decommissioning phase of wind farms.
In the survey, it was realized that wind farm owners
might not even have access to the data from their wind
farms. Furthermore, if the data owner wants to share
the data, they must revisit the original agreements with
multiple players involved to ensure that no clause in the
agreement is breached. This delays the timely extraction
of value from the data.

• Big Data issues: Data can be characterized by 10 Vs -
large volume, velocity, variety, veracity, value, validity,
variability, venue, vocabulary, and vagueness. This
implies that data size, generation rate, type, quality,
usefulness, governance, dynamic and evolving behavior,
heterogeneity, and semantics can pose challenges.

• Data silo and interoperability: DTs in the context
of wind energy can be developed at the wind farm
or individual component level, resulting in data silo
issues. Different vendors may use different proprietary
standards, data formats, and tools for acquiring and
accessing data, making it difficult for other vendors to
extract value from it. The data silo issues result in an
incomplete overview of the asset performance, hinder
collaboration, and lead to inefficiencies.

• Lack of systematic data collection: Although many
sensors are used to instrument different components of
a wind farm, very little thought is put into the optimal
placement of sensors. This results in either redundant
data being recorded or no data being recorded.

• Sparse data: Due to expensive instrumentation, data
recorded might be very sparse in time and space, and
a paradigm shift in the analysis is required to generate
value from the sparse data.

• Lack of centralized expertise, compute power, and
bandwidth to extract value from data: Even when all
the above data-related issues are resolved, the sheer
variety in data will require human resources trained in
a wide variety of expertise to generate insight from data.
Furthermore, huge computing power will be required in
one place.

• Data security: Ensuring data security is a major
challenge in data management for DTs.

• Choice for data management solutions: Choosing the
right data management solution is crucial for the
successful implementation of DTs for wind energy.

• Talent gap: The current lack of personnel trained
in developing DTs poses a significant challenge for
the wind energy industry to adopt DT technology
effectively.

2) MODELING
Data collected from an asset has a sparse resolution in
space and time. Moreover, they are available only for past

FIGURE 3. Recommendations from industry for academic research to
focus on. Focus on propositions on value generation from data through
combination with models has been the most frequent recommendation.
The application of such hybrid models spans forecasts, what-if ? scenario
analysis, decision support, inspection and maintenance applications, and
autonomous systems. It was mentioned that industrial partners should
be included to ensure validation of the results and that digital twins
should be built on real cases. Academic research should furthermore be
involved in the standardization of data and implementation. Finally,
overviews of applicable technologies have been requested.

and current situations, thus posing challenges in instilling
physical realism in a DT. Models can help improve the
resolution of the data and, at the same time, provide insight
into the future state of the asset. However, before the full
potential of any modeling approach can be exploited in the
context of DTs, some model-related challenges need to be
resolved. Based on the survey, we present some of the most
desirable characteristics of any modeling approach.

• Accuracy and certainty: Accuracy refers to a model’s
ability to model phenomena of interest as closely as
possible so that the observed state of the asset is indis-
tinguishable from the modeled state. However, accuracy
alone is not sufficient. For the models to be used
confidently, uncertainty quantification is also important.
The model’s accuracy and certainty can suffer in the
absence of a complete understanding of the underlying
cause driving a phenomenon, simplifications arising
from the need to make the models computationally
efficient, uncertainty in the physical parameters/input to
the models, and numerical errors. While in standalone,
descriptive, and diagnostic DTs, reliable measured data
can help improve the model’s accuracy and certainty, for
predictive, prescriptive, and autonomous DTs, a lack of
observed data complicates things further.

• Computational efficiency: This is the property of a
model that relates to the number of computational
resources (compute time and infrastructure) required
to produce accurate results with quantified uncertainty.
One can afford to run computationally demanding
models in a standalone DT. However, computational
efficiency is paramount at other capability levels to
keep the DT in sync with the asset. Also, the need
for real-time modeling in predictive DTs and the
need for better than real-time modeling for control
and optimization in prescriptive and autonomous DTs
makes computational efficiency even more desirable.
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Computationally efficient models will also be desirable
when running on standalone hardware like a portable
virtual reality set with limited computing power.

• Generalizability: A model’s generalizability refers to
its ability to solve a wide variety of problems without
any problem-specific fine-tuning. An asset encounters a
wide array of scenarios during its lifetime. Some of these
events might be rare, while others are persistent. Since
the DT is required to model all these phenomena to be
in sync with the asset, the models used should be able
to generalize its learning without any compromise on its
accuracy and computational efficiency.

• Ever-evolving: It refers to a model’s ability to learn
and evolve every time a previously unseen scenario
is encountered. A model that is specialized for a
narrow range of scenarios likely loses accuracy when
encountering new situations. This is especially relevant
in cases of exceptional circumstances like impending
hardware faults.

• Interpretability and trustworthiness: Amodel is consid-
ered interpretable when humans can readily understand
the reasoning behind predictions and decisions made
by the model. Trust and transparency of DT behavior
have been identified as one of the biggest challenges in
building a DT. Monitoring and controlling high-value
assets like wind farms with DTs requires trust in
the DT and therefore in the chosen models. With an
interpretable model, analysis output can be backtraced
all the way to the relevant sensor input. A black-box
model might detect a fault in a turbine, but it requires
an interpretable model to pinpoint the exact cause and
plan countermeasures.

• Robustness and stability: The robustness and stability of
a model are critical factors in determining its reliability.
A model that is robust and stable produces consistent
results even when subjected to perturbations. In contrast,
a model that is not robust may show significant
deterioration when faced with noisy inputs, while an
unstable model may fail for certain modes. Therefore,
the robustness and stability of a model are essential
requirements for ensuring its reliability.

Existing approaches can typically be grouped into three
categories: physics-based, data-driven, and hybrid modeling
and analysis. Each approach has its own benefits and
weaknesses. High-fidelity physics-based models (PBMs) are
typically associated with high computational effort, while
data-driven models often lack interpretability. In the survey,
it became evident that the industry needs to generate value
from data while still being able to utilize existing knowledge
to the maximum extent possible. To this end, multiple
companies argued in favor of hybrid analysis and modeling
to compensate for the weaknesses of both physics-based and
data-driven modeling and recommended academic research
to focus on this area.

In Section IV-C we give examples of physics-based,
data-driven, and hybrid analysis and modeling techniques,

their application within wind energy, and their strength and
weaknesses with respect to each other and with respect to
their applicability to DT.

3) INDUSTRIAL ACCEPTANCE AND TRUST FOR DIGITAL
TWINS
In order for DTs to be successful, it is important to gain
acceptance and trust from both the industry and the general
public. This can be achieved by raising awareness about DT
concepts and demonstrating the value that this technology can
generate. User cases are a valuable tool in supporting trust-
building.

However, there are several challenges that must be
addressed in order to gain industrial acceptance and trust
for DTs:

• Little consensus on the meaning of digital twin: There
is currently little consensus on what exactly constitutes
a DT, and this lack of a clear definition can lead to
confusion and mistrust among industry professionals
and the general public. It is important to establish a
common understanding of the term and its applications
in order to build trust and acceptance.

• Little awareness about the values that digital twins can
generate: Many industry professionals and members of
the public are not aware of the potential benefits that
DTs can offer, such as improved efficiency, reduced
downtime, and increased safety. It is important to
educate stakeholders on the value of DTs in order to
build trust and acceptance.

• Technology readiness level is insufficient. Sustainability
readiness level: Despite the potential benefits of DTs,
the technology readiness level (TRL) is not yet suffi-
cient for widespread adoption. In addition, there is a
lack of focus on sustainability readiness level (SRL)
which is necessary to ensure that the technology is
environmentally and socially responsible. Addressing
these concerns is crucial in gaining industry acceptance
and trust.

• Lack of appropriate business models: There is currently
a lack of appropriate businessmodels for DTs, which can
make it difficult for companies to justify the investment.
The development of viable business models will be key
to gaining industry acceptance and trust.

• Security and privacy: The use of DTs raises concerns
about security and privacy, especially in critical infras-
tructure such as energy, transportation, and healthcare.
It is important to develop robust security and privacy
protocols in order to gain industry acceptance and trust.

• Enabling twin projection: One of the key benefits of
DTs is the ability to project and simulate the behavior
of physical assets. However, this requires accurate
and reliable data, which may not always be available.
In order to gain industry acceptance and trust, it is
important to develop reliable methods for enabling twin
projection.
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In summary, DTs have the potential to revolutionize many
industries, but in order to gain acceptance and trust, it is
important to address the challenges related to consensus,
awareness, technology readiness, business models, security
and privacy, and enabling twin projection.

IV. EXISTING STATE OF THE ART TO ADDRESS THE
CHALLENGES AND INDUSTRY NEEDS
In the previous section, several challenges were discussed.
In this section, we address each challenge with potential
solutions.

A. STANDARDS AND ASSET INFORMATION MODEL
Standards are essential for sharing, scaling, and reusing
software structures as complex as DTs. It can be expected that
multiple companies are involved in a DT over its lifecycle:
component manufacturers can use data from previous DT
to improve the component design and may provide a
digital representation of that component. OEMs use their
overall Reference Designation Structure (RDS) together with
operational data from previous designs to provide an updated
and improved digital twin as basis for new design, sizing
construction, and logistics. Maintenance crews might be
employed by different companies. The energy distribution
industry benefits from increased reliability and may use fore-
casts to stabilize the grid. Other companies might be involved
during decommissioning. In addition, all involved companies
can generate value from the data recorded during the opera-
tion. Finally, industries might be interested in collaborations
to exchange data and DT structures for mutual benefits.

In this regard, the importance of a standardized Asset
Information Model (AIM) cannot be more stressed upon.
An AIM is a digital representation of an asset that contains all
relevant information throughout its lifecycle, from design and
construction to operation and maintenance. It is a structured
collection of data that captures all the necessary information
about an asset, including its physical and functional charac-
teristics, operational requirements, and maintenance history.
It also contains a wide range of information about an asset,
including its physical components, technical specifications,
maintenance schedules, and operating procedures. It may
also include information about the environment in which the
asset operates, such as weather patterns and local regulations.
The purpose of an AIM is to provide a comprehensive and
integrated view of an asset, enabling better decision-making
and more efficient operation and maintenance. By capturing
all relevant data in a single location, an AIM can help asset
owners and operators to optimize asset performance, reduce
maintenance costs, and extend asset lifespan. However,
despite the obvious value of the standardization of AIM, very
little work has been done so far in the context of wind energy.
We in the following section present some preliminary work
done in this direction by DNV. The structure and standards
proposed in the following paragraphs have been strongly
influenced by DNV’s FlowSite proposal in the NorthWind
project.

1) REFERENCE DESIGNATION SYSTEM
RDS provides a system for naming and structuring asset
and workflow components. ISO81346-10:2018, also called
RDS-PP, is an RDS for power systems [55]. RDSs are already
used in wind farms [56].

2) REFERENCE DATA LIBRARY
A Reference Data Library (RDL) contains, for the most part,
static or slow-changing data relevant to the system. As an
example, it could include conversion factors between units,
physical constants, or country codes. The Reference Data
Library ISO 15926-4 was primarily intended for oil and gas
but is also used for other areas.

3) SEMANTIC DATA MODEL
In a semantic data model, the meaning of instances is
described. There is a working draft for part 14 of ISO 15926.
It presents an ‘‘Industrial top-level ontology’’ based on five
years of experience from a Norwegian group of oil and gas
companies [57].

4) INFORMATION EXCHANGE AND APPLICATION
INTERFACES
Some standards relevant here include ISO 10303 for Product
data and exchange, which is also known as STEP, Standard
for the exchange of product model data. Included here is, e.g.
CAD model exchange [58]. In IEC 61970-3 the Common
Information Model (CIM) for the ‘‘semantics of information
exchange’’ is presented [59]. It is usable for application
program interfaces for energy management systems. IEC
61968 can be used to define information exchange between
electrical distribution systems but appears to be still in
development.

These standards can be partially adapted, but it can be
expected that extensions will have to be done for DTs,
especially with respect to the application interface.

5) DIGITAL TWIN ENVIRONMENT
Simulations for wind farms have been performed before,
but with DT technology, they need to handle large amounts
of input data and perform simulations in real-time. It has
to be assessed if existing platforms can be adapted to
this new situation or if specific DT environments have
to be created. An example of such a platform is the
Open Simulation Platform, which is being built by DNV,
Kongsberg, SINTEF, and NTNU [60]. During the survey,
Microsoft Azure DTs have been mentioned multiple times
for hosting DTs. However, there are more specific prod-
ucts, such as Kongsberg’s Kognitwin [61] or 4Subsea’s 4
insight [62].

6) REQUIRED STANDARDS
While the above-mentioned existing standards provide a
basis, DTs will require additional standards. This includes
standards for data compression, standardized connections
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between data, models, analysis tools, and interface, and
standards for interaction between DTs. Basing these stan-
dards on existing ones will improve industrial acceptance.

B. DATA ACQUISITION, COMMUNICATION, SHARING,
ARCHIVAL
In DTs, data from many sources are combined to build an
as-realistic-as-possible virtual representation of the physical
asset and its environment. Some information like architecture
and design is usually static and can be inserted manually.
Most information such as wind speed, temperature, wave
height, and loads are changing constantly and have to be
updated in real-time through sensor measurements. The col-
lected data are then compressed, augmented, and/or analyzed
with physics-based and/or data-driven models. PBMs make
use of domain knowledge, such as the fundamental laws
of nature. Data-driven models, on the other hand, are built
and trained with a large amount of data collected from
similar assets in the past. In this subsection, we address both
real-time and historical data.We discuss modeling techniques
in Section IV-C.

1) SENSORS
While the industry in general agreed that at some point
additional sensors will have to be installed, some companies
argued that the currently installed sensors can already be used
to build DTs, thereby reducing the monetary entry threshold
of DTs for wind farms. The variety of sensors usable in
wind farms is enormous. Heat can be measured through
temperature sensors and indirectly provides information on
friction on gears and bearings. Acceleration sensors allow
vibration measurements that can provide information on
component wear.Microphonesmeasure the vibration through
air. Tower loads and strains are measurable with correspond-
ing sensors. Oil quality can be monitored, air and water
corrosion can be tracked through air and water concentration
measurements, and precipitation measurements contribute to
blade damage estimation. Specifically interesting for wind
fields and therefore farm control are LIDAR systems (light
detection and ranging [63]) sensors. LIDARs use lasers
and the Doppler effect to measure wind speed. They can
be mounted on the nacelle [64] or on separate buoys [65]
and can be used to measure the speed of the incoming
wind [63] as well as to measure wake effects [66]. This
helps to model an accurate wind field around and within the
wind farm, which can then be used to improve the accuracy
of the wind impact on each turbine. With the success of
machine learning in image recognition, cameras provide a
valuable measurement technique. In [53] a combination of
dynamic mode decomposition and two NN-based models are
used to identify the movement and rotation of objects in
recorded images. The technique can be generalized to spot
environmental changes in the wind farm and its vicinity, be it
boats or buoys in offshore farms or agriculture or forestry in
onshore parks.

2) OPTIMAL SENSOR PLACEMENT
The sensor positions are the basis for accurate data acquisi-
tion. Through a sophisticated Design of Experiment (DoE),
the number of sensors can be minimized, while the measured
information is maximized. In a holistic level 1+ DT of a
wind farm, measurements for, e.g., fatigue loads at towers,
foundations, blades, and drivetrains have to be performed.
In [67] the Sequential Sensor Placement algorithm is used by
minimizing the information entropy of the relevant quantities.
They not only maximize the accuracy but also consider
the installation cost of sensor positions to determine the
strain time history and tower-, jacket support structure- and
soil-stiffness of an offshore wind turbine. The algorithm
has to be used differently for parameter estimation and
stain estimation. In [68] the authors investigate the optimal
positioning of sensors for fault analyses in turbine gearboxes
based on statistical features and data-driven methods. Their
algorithm is tested on a lab scale and they are able to
reduce the number and increase the fault detection accuracy
of sensors, but they note that their method needs further
investigation on different data sets. In [69] the optimal
placement of a given number of acceleration sensors for the
static modal analysis of the blades is determined using a
multibody approach. Three different algorithms were tested
on a 3MW onshore prototype by using the modal shape
matrix and testing the results with the Auto Modal Assurance
Criterion. A genetic algorithm with a weighted off-diagonal
criterion identified the sensor positions with the lowest linear
dependencies between measured modes.

3) REDUCING DATA SIZE
Through the number of sensors and high measurement
frequencies, the data stream between physical assets and DT
can be rather large. Compression and decompression of the
data can help to reduce the required bandwidth and storage
space. Compression techniques are applied before the data
transmission is performed and decompression is used before
using the data. Other techniques reduce the amount of sensor
data transmitted or the measurement frequency. Commonly
known lossless compression algorithmsmaking use of the file
string include LZMA (e.g. .7z), Deflate (e.g. .zip), or BWT.
They use features like, e.g. identifying identical strings and
replacing them with pointers, or rearranging the coding
(length) for symbols according to their frequency. LZMA
(Lempel-Ziv-Markov chain algorithm), Deflate, BZIP2, and
GRIB2 (General Regularly distributed Information in Binary
form: Edition 2) are tested for wind power and wind speed
data in [70], where they are combined with different pre-
processing schemes. Principal Component Analysis (PCA)
enables the reduction of the dimensionality of data to the
components with the highest variance.

Autoencoders perform NN-based compression. The input
and output layers have the size of the data, but at least one of
the intermediate layers is smaller in size. The NN is trained to
output the input data. Afterward, theNN is split at the smallest

110776 VOLUME 11, 2023



F. Stadtmann et al.: DTs in Wind Energy: Emerging Technologies and Industry-Informed Future Directions

layer, so that the first part can be used as an encoder and
the latter one as a decoder. Generative Adversarial Networks
are another type of NNs. A Generator tries to reconstruct
the original data, while a Discriminator tries to separate the
reconstructed data from the original data. By training both
against each other, even data with unknown compression
algorithms can be restored. The drawback of NN-based
methods is that they only perform well on the parameter
space on which they are trained. If sensors record unexpected
data for example from damage to the farm, they will not
be able to recover the data after compression. However,
this reconstruction error can be monitored by performing
decompression on the farm and comparing the accuracy of
the data. Fault detection is done with Autoencoders in [71]
and with Conditioned Variational Autoencoders in [72].
Compressed Sensing can be used for sparse signals, i.e.

signals for which there is a domain so that the signal is
only represented by a few non-zero components, to recover
the original signal from a reduced frequency of data points,
allowing for reduction of the sampling frequency and thereby
the data size. This can be combined with e.g. a fast Fourier
transformation for periodic signals. In [73] compressed
sensing is utilized to reduce the amount of transmitted
data by predicting sensor data and only requesting sensor
updates when a category of sensor data differs from the
predicted category. Under the assumption of frequency
compressibility of the periodic impulsive component, [74]
applies compressed sensing for the wind turbine gearbox to
recover the impulsive features from fewer data points than
conventionally required by the Shannon sampling theorem.

Virtual sensing is a technique used to infer the value that a
sensor would measure from data recorded with other physical
sensors. Physical sensors are therefore not required at points
of interest but can be placed at positions where they gain
maximum information. This not only allows for reducing the
total amount of sensors and inferring values at places where
sensors cannot be installed but also for inferring unmeasured
quantities. Note that a physically realistic model is required to
enable virtual sensing. The authors in [75] use PCA for virtual
sensing of strain estimations on an offshore tower using
temporary sensors for model calibration. A large number of
compression approaches and use cases outside of the wind
sector are listed in, e.g., [76].

4) DATA SECURITY
The gathered data has to be secure both in terms of validity
and privacy. Blockchain technology has applications not only
in cyber-currency. In a blockchain, data are chained together
in blocks through hashes. Each data block contains the hash
of the previous block, data, and a new hash generated from
both. If data or previous hash in a block is manipulated, it will
alter the hash of that block. Modifying a block would require
modification of all the following blocks to remain undetected.
In [77] the prospects of using blockchain to build a safe wind
farm information system are investigated.

5) DATA SHARING
Huge amounts of data are generated in every wind farm.
However, the amount of openly available data is puny [78].
Especially data from the Supervisory Control and Data
Acquisition (SCADA) system is not readily available [79].
This is partially attributed to the way proprietary rights are
handled in wind farms [80]. This became especially evident
in the industry survey conducted here. It was commented
on multiple times that the proprietary rights of the OEMs
are causing problems even for the operators of the wind
farms themselves. It was hinted that the OEMs are keeping
the proprietary rights to secure their designs and expand
their market to analysis and operating software. This heavily
influences both the development and application of DT and
related technologies such as predictive maintenance. The
future will show whether DT will cause increased data
sharing or if OEMs will be the only ones offering DT for their
assets.

C. MODELING AND ANALYSIS
1) PHYSICS-BASED MODELING (PBM)
This approach (Figure 4a) involves careful observation of
a physical phenomenon of interest, the development of its
partial understanding, the expression of the understanding
in the form of mathematical equations, and ultimately the
solution of these equations. A PBM is a representation
of the governing laws of nature. These laws of nature
are typically defined in the form of conservation and
constitutive laws, often based on theoretical development and
experimental validation. They are most often represented by
systems of differential equations that are approximated by
numerical methods and solved on computers. Wigner [81]
states that PBMing is powerful and effective because it
gives us a predictive window into the future based on
understanding, [82]. Categories of PBMs that are relevant
for wind energy, categorized (Figure 4b) by their areas of
application:

• Computational Fluid Dynamics (CFD): CFD is a branch
of fluid mechanics that uses numerical analysis and
algorithms to simulate and analyze the behavior of
fluids. In wind energy, CFDmodels can be used to study
the flow of air around wind turbines and predict their
aerodynamic performance.

• Computational Structural Dynamics (CSD): CSD mod-
els are used to study the behavior of structures under
dynamic loads. In wind energy, CSDmodels can be used
to study the response of wind turbines to turbulent wind
conditions, such as gusts and eddies.

• Aeroelasticity models: These models are used to study
the interaction between aerodynamic forces and the
structural response of a system. In [83], a holistic
simulation of wind turbines with fully aero-elastic and
electrical model is presented. A detailed review of
aeroelasticity in the context of a wind turbine is provided
in [84]. In wind energy, aeroelasticity models can be
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FIGURE 4. Physics-based modeling.

used to study the dynamic behavior of wind turbines,
including blade deflection and tower vibration.

• Wake models: Wake models are used to study the
behavior of the wind wake downstream of a wind
turbine [85], [86], [87]. In wind energy, wake models
can be used to predict the impact of wind turbines on
the surrounding environment, such as the effects of wind
turbines on nearby wind farms and on the local wind
resource.

• Electrical models: Electrical models [88], [89] are
used to study the electrical behavior of wind turbines,
including the generation, distribution, and storage of
power. In wind energy, electrical models can be used to
optimize the performance ofwind turbine generators and
to study the integration of wind energy into the electrical
grid.

• Degradation models: Degradation models (eg. [90],
[91]) are used to study the long-term performance of
systems, including the effects of wear and tear, aging,

and environmental factors on the system’s performance.
In wind energy, degradation models can be used to study
the aging and deterioration of wind turbine components,
such as the blades, gearbox, and bearings.

a: PBM IN STANDALONE DT
Standalone DTs are disconnected from the physical wind
farm. They do not need to be evaluated online, and therefore
the requirements for computational efficiency are less strict
than in other capability levels. PBM can be used in standalone
DT in the design and planning phases. One focus during the
design stage is blade optimization. In [92] the turbine blade
design is being optimized with CFD modeling software. The
authors in [93] use the Reynolds averaged Navier Stokes
technique to investigate geometric approximations of blade
segments on the aerodynamic performance of a wind turbine.
In [94] the authors investigate fluid-structure interaction
using isogeometric analysis and non-matching fluid-structure
interface discretization on an offshore reference wind turbine
rotor. Another important design aspect is the farm layout,
which depends on local wind resources and wake effects.
In [95] CFD methods are used to optimize the design of a
wind farm in complex terrain. Reference [96] validates an
offshore farm CFD model against data from an operational
site. The wake growth rate is investigated in [97] assuming a
Gaussian wake model.

b: PBM IN DESCRIPTIVE DT
The descriptive digital twin describes the current state of
the wind farm. Even with perfect initial conditions, any
PBM alone will inevitably drift away from the real state
over time due to approximations and external influences.
Data, on the other hand, are sparse in space and time and
will not describe the wind farm and its environment in
sufficient detail without models to interpolate in space and
time and to infer parameters that cannot be measured directly.
Therefore, both data and models need to be combined.
Deviations between PBM and reality can be alleviated by
measuring data and using them as input to the PBM for
boundary conditions and re-initialization of the PBM. This
strategy is already being used, for example, to nest wind
flow models into meteorological forecasts [98]. A critical
condition for using PBM in descriptive and higher capability
levels is the execution speed. Models that cannot be evaluated
in real-time cannot be used for digital twins above the
standalone level, since they cannot keep up to date with the
asset. Approximations can reduce computational efficiency
at the cost of accuracy. When choosing PBMs for digital
twin applications, a tradeoff between speed and detail is
imperative.

c: PBM IN DIAGNOSTIC DT
Using the real-time data and spatiotemporal resolution-
enhancing models from the descriptive DT, the condition
of a wind farm can be monitored and diagnosed. In the
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context of descriptive DT, PBMs are especially interesting
for degradation estimation for all wind turbine components
from blades and bearings over the drivetrain, gearbox, and
generator to the tower and foundation/substructure/floater.
The authors of [99] explore the feasibility of a novel
low-cost mechanical displacement indicator to continuously
monitor tower movement relative to the foundation base and
suggest that a combination of measurements and FEMwould
allow identifying foundation issues. In [100] a multiscale
progressive damage model was implemented by combin-
ing computational micromechanics and continuum damage
mechanics in a FEM to predict subcritical microscopic
damage evolution and stiffness degradation in turbine blades.
In [101] a DT condition monitoring approach for drivetrains
is implemented by estimating the RUL through online
measurements and fatigue damage estimation. It is clear that
due to the inherent weaknesses associated with the ignored
physics and uncertainty in input parameters, their diagnostic
characteristics cannot be relied upon.

d: PBM IN PREDICTIVE DT
The predictive DT can include predictions of wind, weather,
power output, turbine motion, temperature, loads, fatigue,
and other parameters whose prediction either brings direct
value to the user or can be used as input to estimate
other useful quantities. Reference [102] reviews wind power
forecasting models across multiple wind farms and countries.
In [103] a multiscale wind model is used to predict wind flow
on wind farms. In [104], the meteorological predictions of
the model are integrated into a DT to infer wind turbine and
farm power production and explain the predictions in a virtual
reality interface.

e: PBM IN PRESCRIPTIVE DT
On the prescriptive level, the demands on the execution
time of integrated models become even stronger, since
many what-if ? scenarios must be explored simultane-
ously to obtain uncertainty estimates and provide optimal
recommendations to the user. Even with parallelization,
computational efficiency remains a challenge for PBMs.
However, assuming sufficient speedup, models mentioned in
earlier sections can be used as input for optimization and
uncertainty estimates. The prescriptive digital twin can be
used for decision support in scenarios where human operators
have enough time to compare the value of the description
with their own domain knowledge and react. Maintenance
scheduling is one such example, where degradation and
damage propagation models are required to analyze the
risk and reward of timely or delayed maintenance while
taking into account weather conditions determined to identify
optimal maintenance windows. Therefore, fast diagnostic and
predictive models are required as input into the scenario
analysis of the prescriptive component. It is worth noting that
the tools that enable standalone, descriptive, diagnostic, and
predictive DT can be used in a presvcriptive setting too.

f: PBM IN AUTONOMOUS DT
The autonomous DT can be used for applications that require
continuous optimization or where human operators do not
have enough time to react, and for applications that require
continuous optimization. In some cases, model-free control
can be sufficient, but reliability in complex scenarios argues
in favor of model-based controllers. Like the prescriptive DT,
fast and reliable models are needed as input for these
controllers in order to optimize the control process.

Despite their utility, due to the partial understanding and
numerous assumptions along the steps from observation to
the solution of the equations, a large portion of the important
governing physics gets ignored in a PBM approach. Even
the applicability of high-fidelity simulators with minimal
assumptions has so far been limited to the offline design
phase only. Despite this major drawback, what makes
these models attractive are sound foundations from first
principles, interpretability, generalizability, and the existence
of robust theories for the analysis of stability and uncertainty.
Unfortunately, most of the accurate PBMs are generally
computationally expensive, do not automatically adapt to new
scenarios, and can be susceptible to numerical instabilities.

2) DATA-DRIVEN MODELING
With the abundant supply of big data, open-source cutting-
edge and easy-to-use machine learning libraries, cheap com-
putational infrastructure, and high-quality, readily available
training resources, data-driven modeling (Figure 5a) has
become very popular. Compared to the PBM approach,
these models thrive on the assumption that data are a
manifestation of both known and unknown physics and
hence when trained with an ample amount of data, the
data-driven models will learn the full physics on their own.
This approach, involving, in particular, deep learning, has
started achieving human-level performance in several tasks
that were until recently considered impossible for computers.
The data-driven models fall in one of the six categories
(Figure5b):

• Supervised linear models: These are linear models
that are trained using labeled data, where the target
variable is known. Examples include linear regression
and logistic regression. Linear models are simple and
efficient and can be used for tasks such as prediction,
classification, and feature selection.

• Unsupervised linear models: These are linear models
that are trained using unlabeled data where the tar-
get variable is unknown. Examples include principal
component analysis (PCA) and linear discriminant
analysis (LDA). Unsupervised linear models can be
used for tasks such as dimensionality reduction, feature
extraction, and clustering.

• Supervised non-linear models: These are non-linear
models that are trained using labeled data. Examples
include decision trees, support vector machines (SVMs),
and random forests. Non-linear models are more flexible
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FIGURE 5. Data-driven modeling.

than linear models and can capture complex relation-
ships between the features and the target variable.

• Unsupervised non-linear models: These are non-linear
models that are trained using unlabeled data. Examples
include self-organizing maps (SOMs) and autoencoders.
Unsupervised non-linear models can be used for
tasks such as clustering, anomaly detection, and data
compression.

• Supervised deep learning: These are deep learning
models that are trained using labeled data, typically with
large amounts of data and complex architectures. Exam-
ples include convolutional neural networks (CNNs) for
image recognition, recurrent neural networks (RNNs)
for natural language processing, and fully connected
deep neural networks for regression and classification
tasks. Deep learning models can achieve state-of-the-art
performance on many tasks and are highly flexible.

• Unsupervised deep learning: These are deep learning
models that are trained using unlabeled data, often with

large amounts of data and complex architectures. Exam-
ples include generative adversarial networks (GANs)
for image synthesis and unsupervised feature learning,
and autoencoders for data compression and anomaly
detection. Unsupervised deep learning models can be
used for tasks such as unsupervised feature learning,
anomaly detection, and generative modeling.

a: DDM IN STANDALONE DIGITAL TWINS
The Standalone DT does not have a data stream from
a physical asset but can be useful in the design phase
before the physical asset is built. In the wind energy
industry, the performance of wind turbines depends heavily
on their position and design [17], [105]. The placement
of a wind turbine requires consideration of various factors,
such as wind conditions, terrain, connectivity, and risk [105].
Wind conditions, such as wind density, wind speed shear,
turbulence intensity, and directional shear, play a crucial role
in the design and operation [106]. However, historical data
may not always be available and long-term measurements
may be infeasible. In such cases, machine learning techniques
can be used to estimate wind conditions. For example,
in [11], multilayer perceptrons are used to estimate the
annual average wind speed at sites with complex terrain
based on site-specific short-term data and data from nearby
stations. Similarly, [107] predicts the mean monthly wind
speed based on geographical and atmospheric data using
neural networks. In [108], a hybrid approach that combines
multilayer perceptrons with multi-criteria decision-making
is proposed for improved and adaptable wind farm siting.
Additionally, genetic algorithms have been used for farm
layout optimization in numerous studies, such as [109], [110],
and [111], while a dynastic optimization algorithm is applied
in [112] and yields results comparable to genetic algorithms.
Particle swarm optimization is used to improve wind farm
layout in [113], while a cyber swarm algorithm is employed
for micrositing in [114]. As a user-case example, GE has used
a Standalone DT to select the optimal turbine configuration
for a given site based on a modular turbine design [17]. The
Standalone DT is therefore useful for various wind energy-
related applications, particularly in the design phase, where
the optimization of turbine position and design can have a
significant impact on the overall performance of a wind farm.

b: DDM IN DESCRIPTIVE DT
TheDescriptive DT is connected to the physical asset through
a (real-time) data stream. As such, the data-driven methods
mentioned in Section IV-B (e.g. Principal Component
Analysis, Generative Adversarial Networks, Autoencoders)
are of interest for realizing a Descriptive DT. Sophisticated
Descriptive DT cannot just rely on sensor data, but have to
be able to estimate quantities between sensors and derived
quantities through models. Physics-based high-fidelity mod-
els require significantly larger computational resources and
are typically not able to run in real-time. This is especially
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true for fluid dynamics simulations with turbulence. It is
important to note that the Descriptive DT does not use
only simulations. Instead, simulations have to be applied to
enhance the measured data. An example of such a procedure
is the resolution enhancement of images through, e.g.
Generative Adversarial Networks. A significant drawback
of data-driven models is the lack of generalizability, i.e.
adaption to unanticipated situations. This is further addressed
in Section IV-C3.

c: DDM IN DIAGNOSTIC DT
Condition Monitoring and Condition based maintenance
are core features of the Diagnostic DT. This requires the
definition of conditions, i.e., parameter thresholds, at which
the DT triggers an alarm. In many cases, data-driven models
are employed to capture complex physical behavior. In the
context of wind power, [115] apply PCA and calculate
the test statistic and Hotelling’s T 2. If they become too
large, the reconstruction-based contributions are calculated to
identify the responsible parameters. Alternatively, they define
a normal operating class with Fisher Discriminant Analysis
and monitor deviations through test statistics. Furthermore,
neural-network-based techniques like Autoencoders and
specifically Denoising Autoencoders (DAE) are considered
for fault detection. Here, the assumption is that they are able
to capture complex connections between inputs that simpler
models cannot identify. In AE, the encoder compresses the
input information into a vector (layer) smaller than the input
and output vector. If the input is not covered by the training
set, i.e. the turbine data under usual, fault-free conditions,
there is a risk that the decoder is not able to reconstruct
the original data set. By defining a reconstruction error, the
amount of difference between input data and fault-free data
is quantified. Should this reconstruction error become too
high, a potential fault is detected. A DAE purposely corrupts
part of the input for higher accuracy. This approach is used
in e.g. [116] and [117] on SCADA data. Reference [118]
presents a Generative Adversarial Network (GAN) for
self-setting reconstruction error thresholds. In [119], GANs
and Siamese encoders (the data is encoded a second time and
the coded data is compared for the reconstruction error) are
used with a transfer layer to reduce the impact of ambiguous
training data.

d: DDM IN PREDICTIVE DT
The predictive DT performs forecasts by extrapolating
current and recorded data in time. Variables of interest could
be wind speed, direction, or turbulence, produced power,
remaining useful lifetime (RUL) of components, or even the
impact of climate change on the farm. As such time frames
can range from seconds to decades. In either case, forecasts
are frequently performed with data-driven models based on
a given time series. Some simpler data-driven models are,
e.g., auto-regressive (AR) andmoving-average (MA)models,
or a combination of those with exogenous variables (X),

seasonal effects (S), trend removal through differentiation and
integration (I), or prediction of multiple series simultaneously
through vector inputs (V). The ARIMAmodel, a combination
of the above-mentioned techniques, is used in [120] for
wind speed modeling. Reference [121] uses a SARIMA
and an NN-based model for daily wind power forecasting
for each next day over a year, and mentions that a pure
SARIMA model was not sufficient and outperformed by the
NN-based model. Again, NN-based models have been used
to include complex connections between data points. ES-
RNN [122], which combined statistical methods with NNs,
won the 4th Makridakis (forecasting) competition [123],
and in the 5th competition, all top-performing models were
pure NN models [124]. In [125], Multilayer Perceptrons,
Convolutional Neural Networks (CNN), Recurrent Neural
Networks (RNN), and k-NN are compared for wind speed
forecasts.

e: DDM IN PRESCRIPTIVE DT
The Prescriptive DT provides recommendations to human
operators. The DT does not automatically apply the recom-
mendation. Therefore, recommendations must be sufficiently
long-term oriented so that a human can react to them and
use the recommendations to make decisions. This could
include recommendations for when to perform maintenance
while considering the cost of a maintenance trip against the
likelihood and severity of a failure, or parameter optimization
during quasi-steady states. These types of recommendation
require control algorithms. Many control algorithms are
based on or supported by physical models. An advantage of
data-driven controllers is that they do not depend on a model
that can potentially be flawed. However, they typically take
longer to converge.

f: DDM IN AUTONOMOUS DT
The Autonomous DT resembles the Prescriptive DT, but
actions are performed immediately, without human interfer-
ence in the decision process. This allows making decisions
also on time scales much shorter and more frequently
than possible if waiting for human approval. Data-driven
control algorithms have been applied to, e.g., wind farm
wake steering in simulations. Examples include gradient
descent [126] and game theory [127].

While at earlier DT levels, there was always a human
confirmation required before the DT affects the physical
asset, this is removed in an autonomous DT. Therefore,
every decision must be absolutely safe and reliable. The
black-box nature of data-drivenmodels makes it very difficult
to guarantee the required reliability. Indeed, to the best
of our knowledge, there have been no proof-of-concept
tests with data-driven farm-level controllers on real wind
farms. However, a reinforcement learning NN has recently
been applied to a real hydrogen fusion reactor for plasma
balancing, which proves that data-driven controllers can be
operated even in safety-critical environments. Note that the
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reinforcement learning algorithm had previously undergone
extensive training on a high-quality physics model [128].
Some of the advantages of these models are online

learning capability, computational efficiency for inference,
and accuracy even for very challenging problems as far as
the training, validation, and test data are prepared properly.
However, due to their data-hungry and black-box nature,
poor generalizability, inherent bias, and lack of robust theory
for the analysis of model stability, their acceptability in
high-stakes applications like DTs and autonomous systems
is fairly limited. In fact, the numerous vulnerabilities of Deep
Neural Networks (DNNs) have been exposed beyond doubt
in several recent works [129], [130], [131].

3) HYBRID ANALYSIS AND MODELING
At the bare minimum, to instill physical realism in a DT, one
desires at least the following characteristics in any modeling
approach:

• accuracy
• computational efficiency
• trustworthiness
• generalizability
• self-evolution

A model’s generalizability refers to its ability to solve
a wide variety of problems without any problem-specific
fine-tuning. Trustworthiness refers to the extent to which
a model is explainable, while computational efficiency and
accuracy refer to the model’s ability to make real-time
predictions that match ground truth as closely as possible.
Lastly, a model is self-adapting if it can learn and evolve
when new situations are encountered. PBMs can achieve high
fidelity, but at a computational cost that is not available in
the DT context. Specifically for CFD, a detailed simulation
modeling a few seconds often requires weeks or even months
of computation time on high-power computing clusters.
Furthermore, PBMs are not self-evolving but fixed to the
pre-programmed models. Data-driven models are typically
much faster, but their complexity and black-box nature
lack the trustworthiness that is often required for industrial
applications, especially in safety-critical situations like fault
detection. Furthermore, data-driven models are typically
applied to a very specific task and, once trained, are not
able to generalize to new scenarios. Finally, while data-driven
models like Reinforcement Learning are self-evolving, they
are based on a trial-and-error approach that cannot be allowed
in a real environment. A brief comparison of the PBM and
DDM is given in Table 2. It can be concluded that neither of
the modeling approaches is an ideal candidate for usage in a
DT context.

Fortunately, a new paradigm in modeling called Hybrid
Analysis and Modeling (HAM), (Figure 6a)– which com-
bines the generalizability, interpretability, robust foundation,
and understanding of PBM with the accuracy, computational
efficiency, and automatic pattern-identification capabilities
of advanced DDM, in particular DNNs – is emerging. Grey

FIGURE 6. Hybrid analysis and modeling.

box models and hybrid semi-parametric models fall into
this category. While certain HAM approaches have been
investigated for decades, their popularity and impact have
only increased during the last few years as DDMs are
becoming increasingly successful, but alsomore complex and
less interpretable [132], [133], [134]. In their recent surveys,
authors in [135], and [34] provide comprehensive overviews
of techniques to integrate DDM with PBM (see also [82],
[136], [137]). Most hybridization techniques, as shown in
Figure 6b, fall into one of the following categories:

a: CORRECTIVE SOURCE TERM APPROACH
Corrective source term approach (CoSTA) is a method
proposed in [138] that explicitly addresses the problem
of unknown physics. This is done by augmenting the
governing equations of a PBM describing partial physics
with a DNN-generated corrective source term that takes into
account the remaining unknown/ignored physics. One added
benefit of the CoSTA approach is that the physical laws
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TABLE 1. Physics-based modeling vs data-driven modeling.

can be used to keep a sanity check on the predictions of
the DNN used, i.e. checking conservation laws. A similar
approach has also been used to model unresolved physics in
turbulent flows [139], [140]. CoSTA can enable coarse-scale
simulations without any loss of accuracy since the ignored
subgrid scales are compensated through a data-driven source
term. The coarse-scale simulations can be useful at almost all
the capability levels. The approach can be used for optimizing
wind farm layout through accurate wake modeling, filling
in the coarse spatiotemporal resolution of measured data,
diagnosing anomalies through the analysis of the source term,
and making real-time predictions about the future state of
the asset. However, even these approaches assume a specific
structure for at least the known part of the equation.

b: DATA ASSIMILATION
Data assimilation is one of the strongly rooted methodologies
that combines dynamical models with observational data
and has a long history of decades in numerical weather
predictions [141], [142]. In DDM paradigms, there is
always the notion of offline training and online deployment.
A fundamental challenge in these approaches is to address
and tackle poor generalization to distributional shifts in

the data (e.g., generalizing beyond training conditions).
Therefore, the applicability of the DDM models is usually
limited by the training algorithm and the training data sets.
However, a DT with various DDM components should
self-adapt to the new condition as it evolves. Accordingly,
data assimilation algorithms might provide this capability
by making use of available streams of sensor measurements
from the physical system. These data assimilation algorithms
can be also exploited for the parameterization of better
models to enable improved corrections to the DDMdynamics
[143], [144], [145]. Moreover, as was discussed earlier in
Section IV-B, such techniques can be used to optimize
the experimental configuration and sensor placements to
decrease the costs of data collection, and improve the quality
of the inference algorithms [146], [147]. Recent discussions
on model-data fusion and integration of DDM and data
assimilation approaches can be found in [148], [149], [150],
and [151]. Data assimilation can be extremely useful for
predictive DT.

c: DATA-DRIVEN PHYSICS DISCOVERY
One of the challenges which can really jeopardize the
functioning of a digital twin are those phenomena about
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which there is no complete understanding, and hence
the equation cannot be written down from first principle
to model. Although some of the other methods try to
compensate for this using a data-driven approach, they do
not help in developing new understanding and discovering
the new physics. To this end, sparse regression based on
l1 regularization and symbolic regression based on gene
expression programming have been shown to be very
effective in discovering hidden or partially known physics
directly from data. Notable work using this approach can
be found in [152], [153], and [154]. Provided that enough
high-resolution LIDAR data are available, the approach can
be used to derive better mathematical models of wakes
directly from the data. Another application could be to use
infrared thermography data to derive equations, which can
be later used to detect anomalies in gearboxes. However,
one of the limitations of this class of methods is that, in the
case of sparse regression, additional features are required to
be handcrafted, while in the case of symbolic regression,
the resulting models can often be unstable and prone to
overfitting.

d: PHYSICS GUIDED NEURAL NETWORK
One of the active research thrusts is to leverage method-
ologies for the combination of physics-based and neural
network models, a rapidly emerging field that came to be
known as physics-guided NN (PGNN) or physics-guided
ML (PGML). To this end, we have recently introduced a
PGML framework in which information from simplified
PBMs is incorporated within neural network architectures
to improve the generalizability of data-driven models [155],
[156]. The central idea in the PGNN framework is to embed
the knowledge from simplified theories directly into an
intermediate layer of the neural network. The approach can be
used to fuse data and different types of models [157], [158].
The knowledge from the simplified theories aids in ensuring
that we learn only the knowledge required to compensate
for the deficiencies of these theories instead of learning
everything from scratch. Also, owing to the fact that the
simplified theories are still based on the laws of nature
they are more generalizable compared to any data-driven
approach and hence they should be exploited to the extent
possible. For example, the prediction of flow around an airfoil
is a high-dimensional and nonlinear problem that can be
solved using high-fidelity methods like computational fluid
dynamics (CFD). PGNN/ML can be used for fast modeling
of the aerodynamic characteristic of turbines that can be used
in real-time control systems. More recently, the release of
the Theseus library [159] is facilitating the research in this
direction.

e: PHYSICS INFORMED NEURAL NETWORK
By incorporating a PBM in the objective function, DDMs
can be biased toward known physical laws during training.
A prominent recent work by [160] is the physics-informed
neural network (PINN), where a NN is used to represent

the solution to a PDE, and deviations from the equation at
a sample of points are penalized by an additional loss term.
PINNs can be used to solve problems such as heat transfer,
as was done by [161] for parts in a manufacturing process.
The PINN approach has also been extended by [162] to
allow for control in a state-space setting. In related work, the
researchers of [163] create a model for classifying bearing
health by training a NN on physics-based features and
regularizing the model using the output of a physics-based
threshold model. A problem with these approaches is that
they require precise knowledge of the loss term. The
regularization can also pose a challenge during the training
process because of the increase in the complexity of the
cost function, especially if computing the regularization term
requires the evaluation of a complex model. The readers are
referred to [164] and references therein for a recent state-of-
the-art discussion on where PINNs are and what might come
next.

f: REDUCED ORDER MODELING
Within the model order reduction approach, reduced-
order modeling (ROM) has been very popular [165].
In ROM, full-order models (FOM) are projected onto
a reduced-dimensional space based, e.g., on the proper
orthogonal decomposition of the FOM simulation results
(snapshots) ([165], [166], [167], [168], [169]). Provided that
the information in the FOM results can be retained with
a considerably reduced dimension (such that the truncation
of the dimension does not lead to significant error), one
can achieve a stable ROM with several order of magnitude
speedup. However, these models have two limitations in
the context of realistic problems. Firstly, the truncation of
the dimensions tends to destabilize the model. Secondly,
these models are often intrusive in the sense that both the
original equations and the data are required to build the ROM.
To address the first issue, eddy-viscosity-based ROMs [170],
[171], [172], [173] or semi-intrusive ROMs [144], [174],
[175], [176], [177], [178] where the effect of the ignored
modes are corrected using a data-driven approach have been
proposed. Moreover, fully non-intrusive ROMs [179], [180],
[181], [182], [183], [184] are gaining popularity because of
their ability to address the second issue. For a comprehensive
review of the ROM methodology, the readers are referred
to [185].

D. INDUSTRIAL ACCEPTANCE
DTs are specifically targeted at industrial applications. This
holds true, especially for DTs related to wind energy.
Operators, manufacturers, and consulting companies have
to collaborate on DTs to extract the full benefits. As such,
technology must be researched and developed to the point
where the industry can be reasonably expected to continue
industrial research and apply it to its assets.

1) TECHNOLOGY READINESS LEVELS
The Technology Readiness Level (TRL) scale provides a
measurement for the maturity of a technology or innovation
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from initial basic research to competitive usage within the
industry. First used by NASA, it is now widely applied,
for example, in the EU Horizon 2020 program and the
NorthWind project [186], [187], [188]. The TRL scale
consists of 9 levels [187] as 1: Basic principles observed,
2: Technology concept formulated, 3: Experimental proof of
concept, 4: Technology validated in lab, 5: Technology vali-
dated in relevant environment, 6:Technology demonstrated in
relevant environment, 7: System prototype demonstration in
operational environment, 8: System complete and qualified,
9: Actual system proven in operational environment.

The TRL describes how close a technology is to industrial
application. In the context of DTs, it is orthogonal to the
capability level scale. Each capability level can be treated
as a separate technology. One might argue that research
should first perform research on an Autonomous (level 5)
DT and only then elevate its TRL to industrial maturity.
This approach would significantly delay the deployment of
DTs within the industry. In fact, the capability levels are
defined specifically to allow unlocking significant value at
each level, as confirmed by the industry survey. Additionally,
each level builds on components from all previous levels.
By developing each capability level to a point where the
industry can adapt the DT, value is generated much sooner.
In addition, the industrial infrastructure adapts much earlier
to DTs. This includes sensor installations, data acquisition,
acclimatization of staff, and establishment of a workforce
specialized for DT development and operation. All these
factors are relevant from the earlier levels onward and become
more and more important as the DTs become more capable.
Progressing along the capability levels, therefore, allows a
gradual adaptation of DTs in the industry, thereby also low-
ering the acceptance threshold gradually. Recommendations
and control of Prescriptive and Autonomous DTs naturally
find more acceptance if the underlying data acquisition,
modeling, analysis, and forecasting techniques are already
well-established within the industry. It is noteworthy that
the TRL is specifically suited for technology development
and that there are more complex (higher-dimensional) scales
including more factors and stages. An example is the
Balanced Readiness Level assessment proposed in [189].
It combines the development-oriented TRL with readiness
level assessments from legalization, commodification, (pub-
lic) acceptance, and compatibility with existing technologies
and practices.

2) HUMAN–MACHINE INTERFACE
Another important factor for industrial and public acceptance
of DTs is the interface. An intuitive interface is essential to
navigate the large variety of data collected in a DT. Further-
more, it is important to address the needs of all potential users
when designing the interface. The advantages of a 3D model
can be tremendous for data visualization. Simply having the
relevant data values shown on the individual components
may be beneficial. Advanced examples include heat map
overlays for visualization of temperature, stress, component

FIGURE 7. VR controllers with tooltips.

wear or vibrations, or color encoding of critical components
in a turbine. This is especially advantageous for stakeholders
without knowledge of the technical details. Immersive media,
specifically enhanced reality (XR) can be used to improve
human-machine interaction. Instead of presenting the 3D
interface on a 2D screen, virtual reality (VR) can be utilized.
In VR, the user experiences a completely virtual environment.
In augmented reality (AR) and mixed reality (MR), virtual
information overlays the physical environment. This enables
visualization of the data on the real components and is a
promising tool to increase the efficiency of maintenance
work. Currently, however, AR technology is still rather
expensive. Additionally, computational resources have to be
considered for such a mobile AR lab DT. However, thereisno
doubtthatgivingahands-onexperienceoftheDTisthebestway
tocommunicatetheuntappedpotentialofthe DT technology.

3) RELEVANT USER-CASES
An essential part of the TRL scale is the test and validation of
the technology in a real environment. Industrial acceptance
will not happen without proof of DTs generating value from
real assets. Once there is proof that the technology brings
profit, it will be much easier for industries to justify funding
for in-house DT development. As such, relevant user cases
are of great importance for the transition from academic to
industrial application. The realization of such user cases is,
however, rather difficult. Already the Standalone DT benefits
from historic site or asset data, design data, or even a CAD-
model. From level one onward, additional (pseudo-) real-
time data are required. Both design and operational data
are heavily restricted for academia, as this data counts as
proprietary information. For level 5, it will become evenmore
difficult to provide meaningful user cases, as the autonomous
DT includes a feedback loop, which essentially requires farm
control. Significant time has to be spent on verifying the
autonomous DT in simulations before it will be used in the
real world. It is essential for both academia and industry to
closely collaborate on user cases through data and model
sharing to establish DTs as a new standard technique. As an
example, in the NorthWind project, two use cases are chosen,
one for onshore (Figure 8a) and one for offshore (Figure 8b).
A user can interact with the DT using the interface and
controllers as shown in Figure 7. The 3D models of the
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FIGURE 8. Demonstration of an onshore and offshore use case in virtual reality.
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TABLE 2. Mapping between common challenges and enabling technologies.

FIGURE 9. Stakeholders and their potential contributions.

turbines and the environment have been created completely
from openly accessible information, but the data measured
at the turbine are confidential (the figures are created with
mock data). More information on the user cases can be found
in [104] and [190]. Having a realistic use case in the project
has already started showing the benefits as the development
of various enabling technologies keeps the end use in view.
It is hoped that these use cases will help in tighter
collaboration between different stakeholders.

V. CONCLUSION AND RECOMMENDATIONS
The paper cited a collection of definitions of digital twins
(DT) and reiterated the capability level classification of DT
in the context of wind energy. It then, through a rigorous
literature review, identifies challenges in realizing highly
capable digital twins from an industrial perspective. Themain
contributions of this work are:

• Conducting a survey to gather industry perspectives
on DT technology, with a specific focus on its
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applications in wind energy. The survey identi-
fied several critical research challenges that need
to be addressed to fully realize the benefits ofDTs. These
challengeswere related to standards, data,,models, and
industrial acceptance.

• Conducting a targeted literature survey and consulting
with industry partners to identify potential solutions to
the challenges identified in the survey. The results of this
research are summarized in Table 2.

• Lastly, in the following section, we provide recommen-
dations for the roles the various stakeholder need to play
for mainstream acceptance, deployment, and ultimately
projection of the technology on the read assets.

As already discussed in detail, digital twinning is an
emerging technology that has the potential to revolutionize
various industries, but its success will depend on the
collaborative efforts of various stakeholders. Based on our
technology watch, we would like to conclude our analysis
by providing recommendations for each stakeholders group
(Figure 9) and their most important contributions:

• Industry: The industry sector is expected to be the
biggest driver of DT technology and can contribute
positively in three ways. Firstly, they can provide asset
data sets for research andmodel building. Secondly, they
can actively participate in research by sharing practical
knowledge. Thirdly, they can validate the usefulness of
DTs by applying the insights obtained from predictive
twins into their business applications.

• Academia and research institutes: Academia and
research institutes are expected to play a significant
role in the development of enabling technologies for
both virtual and predictive twins. It is recommended
that these developments are made exploitable for society
at large through open-source software. Additionally,
academia should take the lead in grooming a new
generation of the interdisciplinary workforce by fol-
lowing the MAC-model, which combines application
knowledge with expertise and advanced methodologies
from mathematics and computer science.

• Government and policy makers: They have a critical
role to play in ensuring that the benefits of the
new technology reach every layer of society while
safeguarding ethics, privacy, and security. They should
focus on framing inclusive policies and regulations
that democratize the technology. For instance, they can
initiate feasibility studies for utilizing DTs in their
sectors and make data generated by means of public
funding available for academia and industry.

• Funding agencies: Funding agencies, especially those
with a mission to focus on industrial innovation impact,
should prioritize digital twinning as a theme for center
projects. Funding of open-source enabling technology
platforms should be prioritized as infrastructure funding
has been scarce up to now.

• Society: Finally, it is the responsibility of the society
itself to be well-informed about the new technology.
Starting from K12 education, society should develop
new skills that will facilitate the embracement of the
emerging technology. By doing so, we can ensure that
the new technology is successfully integrated into our
private and professional lives.

We end this article by citing a work [52] in which the authors
in the context of built environment have demonstrated how
a highly capable digital twin can be quickly developed if the
challenges surrounding data sharing are resolved.

APPENDIX
A. QUESTIONS FROM INDUSTRY SURVEY
1) GENERAL

• What is your main motivation for building a DT?
• Which of the following DT components is the most
important to you?Why? 3D visualization, data bundling,
data analysis, condition monitoring, future prediction,
what-if ? scenarios, autonomous decision making, other

2) ASSET
• What assets do you want to digitalize?
• Is it sufficient to model only parts of the asset?
• Do you have to modify the asset (with e.g. more sensors)
to realize a DT ?

• Do you expect the DT to influence the data-privacy
policy?

3) IMPLEMENTATION
• Which platform do you use?
• Which standardization do you consider most important?
• What is missing right now to build the DT?
• What stopped you from building DT earlier?

4) VALUE
• In which area do you expect to save the most?
(e.g. preventing downtime, optimizing asset settings,
increasing lifetime of components, fulfilling regulatory
requirements, optimize asset placement, . . . )

• At what capability level (0-5) will the DT start
generating value for your company? How?
0. Standalone: DT has no connection to the physical

asset. Asset might not exist yet.
1. Descriptive: DT describes current state of asset

based on real time sensor data.
2. Diagnostic: DT provides diagnostic information to

user based on current asset condition.
3. Predictive: DT predicts future states of the physical

asset.
4. Prescriptive: DT provides recommendations to user

for asset optimization.
5. Autonomous: DT makes control decisions for the

asset without human involvement
• What other benefits do you expect to gain from a DT?
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5) CURRENT STATUS (IF APPLICABLE)
• Are you already having operational DT?
• How large is your workforce for DT?
• Is your DT updated based on a real-time (or near-real-
time) data stream from the physical asset?

• Is your DT capable of doing predictions based on the
current conditions?

• Is your DT capable of running what-if ? scenarios?
• Does your DT make autonomous decisions for the
physical asset?

• Can you provide us with some illustrations showing the
status of your digital twin?

6) FUTURE DIRECTION AND RESEARCH QUESTIONS
• What do you expect to be the biggest challenge?
• What would you want academic research to focus on for
enabling DT?

• What expectations do you have from DT created
by other industry partners? (What value could your
company extract from other DTs?)

• Are you interested in autonomous digital twins?
• How does/will DT change/affect the duties of your
workforce?
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