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A B S T R A C T

This paper introduces a continuous 24/7 power purchase agreement (PPA) designed for contracting photo-
voltaic (PV) generation within sustainable plus energy neighbourhoods (SPENs) or local energy communities,
aiming to ensure a stable economic revenue stream for community stakeholders. The PPA involves the sale of
solar PV generation, auctioned at a fixed strike price, to an external off-taker. Employing statistical prediction
tools such as long short-term memory and auto-regressive modelling, the proposed framework allows hour-to-
hour power delivery commitments between seller and buyer, accurately estimating the agreed-upon volume of
renewable energy to be exchanged. A fixed PPA price is negotiated utilizing Nash Bargaining Theory, aiming to
optimize revenue for the SPEN while minimizing procurement costs for the buyer, thus achieving an economic
equilibrium that mitigates the long-term price risk prevalent in wholesale energy markets. Additionally, the
proposed methodology includes utilization of a battery energy storage system (BESS) to store excess power
or address supply–demand contractual disparities during periods of low PV generation. Simulation results
obtained under varying climatic conditions and energy market dynamics across different countries, demonstrate
that the proposed PPA framework, by combining risk assessment strategies and statistical learning methods,
can effectively reduce associated financial risks while maximizing payoff for the community.
1. Introduction

The advent of information technologies have allowed conventional
consumers to become prosumers by investing on local production of
generation at their premises. Local energy communities (LECs) expand
this idea to bring together several prosumers to pool their energy
resources. These LECs are typically formed by a group of stakeholders,
including household consumers, businesses, or public entities, situated
in a specific geographical area, who collaboratively produce, consume,
and exchange locally generated renewable energy. Consequently, LECs
not only promote a greener and more sustainable energy future, but
they also serve as a potent instrument for energy cost reduction,
enabling consumers to take an active role in energy markets and
reap direct financial benefits. For instance, LECs can leverage power
purchase agreements (PPAs) to ensure stable and long-term revenue
streams and foster economic sustainability. One emerging approach is
’24/7’ renewable PPAs, which aim to match the hourly generation of
the seller to the hourly consumption at the buyer’s side [1].
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PPAs are conventionally used to ensure availability of generation ca-
pacity irrespective of the electricity off-take [2]. For the buyer, there is
no longer a dependency on strongly fluctuating electricity market prices
in the event of high demand. A PPA can still enable communities to
hedge their generation revenue against long term price risks. Due to the
long duration of months or years, PPAs also provides financial security
that can attract investment, fund operational costs, and facilitate the
expansion of renewable energy installations within a community [3].
However, PPAs run the risk of quantity uncertainty due to renewable
generation intermittency at the seller’s side [4]. This could potentially
be averted by risk averse bids from the seller, in particular by under-
bidding its future generation profile to be supplied to the buyer [5].
This would imply that the buyer would contract less in PPA from the
LEC, and thereby purchase more from the energy markets directly.

To reduce this exposure of seller-buyer pair to the uncertainties
of electricity markets, statistical learning tools can also be availed. In
particular, improved prediction techniques can be used to estimate the
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long-term generation volumes of a PV generation, thereby allowing
better decision making for long-term power contracts under PPAs. It is
known that PV generation can be predicted several hours ahead with
reasonable accuracy [6,7]. As solar irradiation is stochastic, specifically
due to weather events, state space models have been proposed in
the literature to characterize the noise in the PV power to improve
prediction [8]. To this purpose, machine learning techniques are well
suited for prediction of time series data sets. Therefore, considering
the historical PV generation as sequential data sets dependent on
spatial and weather conditions, recurrent neural networks (RNNs) can
be trained to predict monthly solar photovoltaic power generation at
any specific site [9]. In particular, long-short-term-memory (LSTM)
networks, a variant of RNNs, are commonly investigated in literature
to investigate PV generation capabilities for short or long time duration
as described in [10,11].

Long-term PV prediction, essential for capturing trends and seasonal
variations in generation output [12], requires balancing strategies for
hourly generation within ’24/7’ PPA contracts. The variability of PV
generation can lead to periods of under or over-production, forcing the
buyer to adjust power procurement from the energy markets [13,14].
This market unpredictability contrasts with the stability of long-term
PPAs. To mitigate these challenges, the use of battery energy stor-
age systems (BESS) is crucial [15]. BESS not only helps in aligning
generation with load requirements but also enhances the financial
resilience of LECs [16]. Optimal BESS sizing and scheduling can offer
benefits like micro-grid balancing [17] and efficient short-term energy
delivery [18], making it a vital component in the PPA ecosystem.

The determination of the PPA strike price is a critical factor in
securing a mutually beneficial contract between the LEC and the buyer.
On these lines, Nash Bargaining Theory provides an effective method
for energy price negotiations [19], ensuring that the interests of both
parties are equitably addressed. Accordingly, the negotiated PPA strike
price is the outcome of a bargaining process where both parties strive
to optimize their individual utility functions [20]. The PV generator,
within the LEC, would aim for a price that is higher than its levelized
cost of energy (LCOE) to ensure profitability [21]. Conversely, the
buyer would ideally want a strike price that is lower than the prevailing
market prices to realize cost savings in the PPA. By applying game
theoretical concepts, a consensus can be reached where the negotiated
strike price balances the requirements of both parties based on their
bargaining powers. This ensures that the LEC can profit from the
PV generation while the buyer secures a cost-effective energy supply,
ultimately creating a sustainable and economically viable PPA.

The flexibility in load consumption and demand response is piv-
otal in managing the inherent variability of PV generation for 24/7
PPAs [22]. This paper addresses the structuring of PPA contracts in
two segments: (a) long-term considerations for PPA price negotiation
and energy volume trading, and (b) short-term balancing of hourly en-
ergy requirements, facilitated by BESS. By implementing LSTM models
trained on hourly data, we ensure reliable long-term PV generation
predictions. Additionally, short-term forecasting inaccuracies are ad-
dressed using auto-regressive models. Together, these models balance
the contracted energy volumes effectively. Furthermore, the integra-
tion of value at risk (VaR) analysis helps manage the economic risks
associated with volume and price uncertainties, while Nash Bargain-
ing Theory helps in formulating a balanced PPA pricing structure
considering both buyer’s and seller’s risk tolerance.

It is evident from existing literature that suitable bilateral contrac-
tual settlement schemes are essential for 24/7 PPAs, with an emphasis
on long-term certainty in energy volume and price. A 24/7 PPA is
necessary to synchronize renewable generation with real-time con-
sumption, ensuring balanced energy supply throughout the day and
enhancing grid stability. This approach effectively manages the in-
termittency of PV, which is not adequately addressed in traditional
long-term (yearly) PPAs. The conventional PPAs overlook the daily and
seasonal variations in PV output, leading to potential demand-supply
2

Fig. 1. Virtual PPA contract settlement between the seller LEC and an grid-connected
buyer with energy balancing undertaken through electricity market.

imbalances. In contrast, 24/7 PPAs focus on hour-to-hour delivery
commitments, aligning PV generation with actual hourly demand. This
would allow both the seller and buyer to initiate a risk free settlement
supported by a stable long-term pricing mechanism.

Moreover, the role of flexibility using BESS in 24/7 PPAs, and its
optimal sizing under varying renewable generation is an important
step towards realizing bilateral PPA contracts. Accurate predictions of
renewable energy production combined with risk measures such as
VaR can provide low deviations of energy mismatches, thereby further
saving flexibility requirements. Finally, as renewable PPA contracts in-
clude distinct economic preferences of the buyer and seller, cooperative
solutions can be used to ascertain on fixing energy prices based on
dynamic market prices.

Based on the aforementioned points, the novel contributions of this
paper can be summarized as follows,

• The paper introduces an approach that combines the risk assess-
ment concept of VaR with RNN based predictions for determin-
ing the energy trading volume for long-term forward contracts.
This approach is designed for risk-averse off-takers and suppli-
ers, bridging the gap between risk measurement and predictive
analytics in the domain of energy trade.

• The paper outlines a methodology to derive an optimal pricing
structure for long-term PPAs, based on cooperative bargaining so-
lutions. The target of this approach is to ascertain an equilibrium
PPA strike price that surpasses the marginal LCOE yet falls be-
low wholesale market prices, thereby ensuring the maximization
of long-term financial benefits for both parties involved in the
settlement.

• The paper undertakes an exhaustive exploration of the impact of
BESS flexibility on PV volumetric uncertainties related to hourly
base-load PPAs. The analysis accounts for market-related risks,
specifically fluctuations in long-term wholesale prices and un-
certainties in renewable energy generation. The goal is to as-
certain the financial viability of using a BESS, considering en-
ergy balancing requirements, market dynamics and PV generation
intermittency.

• The paper studies PPAs focusing on economic benefits of LECs and
the potential need for 24/7 PPAs, as the uncertainties surrounding
PV generation and market participation may deter smaller entities
like LECs from committing to conventional PPAs. By including
a variety of European countries in the analysis, this paper also
offers comparative understanding of diverse climatic and market
conditions impact these PPAs.

2. Problem formulation

This work considers an LEC equipped with a fixed PV generation
capacity. Moreover, the representation of the LEC has been streamlined
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to consider it as a collective entity possessing a singular large-scale
aggregated PV system, rather than comprising multiple prosumers with
individual PV systems. The primary objective of this research is to
propose a long-term contract negotiation approach between an energy
seller (i.e. the LEC) and an external consumer, set at a fixed price
per unit, as depicted in Fig. 1. The power grid acts as an authorized
distributor, delivering energy from the supplier to the buyer [21].
Consequently, the energy flow from the LEC’s PV generator is conveyed
to the buyer’s site via the grid, thereby incurring additional network
charges and fees beyond the PPA strike price. The methodology for
PPA contract settlement is divided into three distinct stages. Initially,
the contracted PV generation volume to be sold is calculated. This
is followed by negotiations on the fixed price, and finally, energy
balancing mechanisms are set in place to ensure a 24/7 PPA is achieved
with least interaction from the market.

2.1. Long term prediction of contracted PV generation volume

Generation forecasting is a critical task in any short or long term
energy contract. In particular, accurate forecasting helps in maintaining
supply demand equality, and also reducing the cost of power generation
by conceptualizing more predictable bids of the future. Among various
forecasting methods, LSTM networks, a type of RNN, have the ability
to show promising results due to their ability to model and predict time
series data. Using sequential data of PV generation as a time series
input, the prediction of PV generation can be found using the LSTM
training process with the following steps,

1. Forget gate: Using a sigmoid function 𝜎, over the current input
𝑥𝑡 and the previous output ℎ𝑡−1.

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ) (1)

2. Input gate: Involves the sigmoid function and hyperbolic tangent
(𝑡𝑎𝑛ℎ) layer that creates a new candidate vector.

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2)

�̃�𝑡 = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶 ) (3)

3. Update of cell state: By forgetting the specified part of the
previous state and adding the new candidate values.

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡�̃�𝑡 (4)

4. Output gate: Controls which the value in the cell state is used to
compute the final output.

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5)

ℎ𝑡 = 𝑜𝑡 tanh(𝐶𝑡) (6)

Here, the input 𝑥𝑡 to the LSTM network would be historical PV
generation data. In general, the dimension of the input fed to the LSTM
model at a time would depend upon the hyper-parameter referred
to as lookback parameter. Optimizing the choice of lookback period
allows the predictions to include a particular length of input to train
the output. For long-term PV generation forecast, the lookback would
ideally be chosen to be higher. Moreover, to produce a multi-variate
LSTM model, other relevant features such as weather conditions (tem-
perature, irradiance, etc.) can also be included with their correlation
input values to the output PV generation. Thus, the LSTM network
can be trained to predict the PV generation for the next time step, or
several time steps ahead, based on the input sequence of historical data.
Moreover, in order to provide adequate pre-processing of data in case
of high noise, the use of smoothing function such as moving average
with a window size 𝑘, i.e. 𝑀𝐴𝑡 =

1
𝑘
∑𝑘−1

𝑖=0 𝑥𝑡−𝑖 can be utilized. In effect,
such data-smoothing can help in highlighting the long term trend of the
PV generation data while suppressing the short term stochastic noise.
3

The LSTM network would also require a suitable loss function
while training, such as the mean squared error (MSE) between the
predicted and actual PV generation, and an optimization algorithm
such as stochastic gradient descent or Adam optimizer. The weights
of the LSTM network would be updated iteratively to minimize the
chosen loss function. The accuracy of the LSTM-based PV generation
forecasting model can be evaluated using various metrics, however, the
loss function used during the training process is typically chosen to be
RMSE, which is defined as,

𝑅𝑀𝑆𝐸 = 1
𝑛

√

√

√

√

𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2 (7)

where, �̂�𝑖 are the predicted values, and 𝑦𝑖 are the actual values.
For several time steps prediction in advance, a closed loop model is

necessary whereby the output of the LSTM at each time step is fed back
into the LSTM as input for the next time step. However, this approach
may suffer from accumulation of errors since each new forecasted value
depends on the previous forecasts. This approach allows the LSTM to
make multi-step ahead forecasts based on its own previous predictions.
However, it should be noted that errors in closed loop predictions can
accumulate over time, potentially leading to lower accuracy for longer
forecast horizons. Thus, a long-term PV generation prediction timeline
may have more errors, while smaller timescale predictions may be more
accurate. To this purpose, we propose a methodology to re-adjust the
long term PV generation predictions to promote accuracy, segregating
them into monthly, daily and hourly forecasts.

The long-term hourly PV generation forecasting can be broken down
into short-term monthly forecasts to improve accuracy. This approach
leverages the temporal hierarchy of the data, where high-level monthly
forecasts are divided into lower-level daily forecasts. It is assumed that
the PV generation remains constant over the foreseeable years in the
future. The process can be described as follows,

1. Monthly Forecasting: An LSTM model is trained to predict the
total PV generation for each month based on the past monthly
data. This model captures the monthly patterns and seasonal
variations in the PV generation data.

𝑀𝑖 = 𝐿𝑆𝑇𝑀(𝑀𝑖−1,𝑀𝑖−2,… ,𝑀𝑖−𝑛) (8)

where, 𝑀𝑖 is the PV generation for month 𝑖 and 𝑛 is the period
of historical data.

2. Daily Forecasting: For each month, another LSTM model is
trained to predict the PV generation for each day based on the
past daily data. This model captures the daily patterns in the PV
generation data as follows,

𝐷𝑡,𝑖 = 𝐿𝑆𝑇𝑀(𝐷𝑡−1,𝑖, 𝐷𝑡−2,𝑖,… , 𝐷𝑡−𝑛,𝑖) (9)

where, 𝐷𝑡,𝑖 is the total generation for the day 𝑡, corresponding
to the month 𝑖.

3. Disaggregation: As the monthly prediction 𝑀𝑡 has lesser time-
steps to predict, they may be more accurate. Thus, the longer
daily forecasts 𝐷𝑡,𝑖 may be re-calibrated by a proportionality
ratio to incorporate information from monthly forecast,

�̂�𝑡,𝑖 =
𝐷𝑡,𝑖

∑30
𝑗=1 𝐷𝑡,𝑗

𝑀𝑡 (10)

This allows adjustments to capture both long-term monthly trends
and short-term daily patterns in the PV generation data. It may be
inferred that similar reasoning can also help with daily and hourly
forecast re-adjustments. This disaggregation process ensures that the
forecasts at different levels are consistent with each other.
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2.2. Volumetric uncertainty reduction using value at risk

As the prediction of PV generation carries burden of risk, there may
be additional requirement of adjusting the energy volume in the PPA
forward contracts. In particular, due to non-zero RMSE outputs in long-
term hourly PV generation forecasts, we advocate for using Value at
Risk (VaR) to ensure contractual energy fulfilment in the PPA. VaR
is a statistical technique used to measure and quantify the level of
risk considering a pre-defined probability distribution of the uncertain
variable. This metric is most commonly used to determine the extent
and occurrence ratio of potential losses in their financial portfolios.
In the context of a PPA, the concept of VaR can be used to limit the
volumetric uncertainty which arises due to the unpredictable future
generation of the PV plant. This uncertainty can be due to various
factors such as weather conditions, equipment performance, etc.

Let the PV predictions for a particular day be denoted as 𝐗𝑝𝑟 =
[

𝑋1
𝑝𝑟,… , 𝑋24

𝑝𝑟

]

. A beta distribution function can be utilized to model
the uncertainty in PV generation of any particular time-slot 𝑋𝑡 as
follows [23],

𝑓 (𝑋𝑡) =
𝛤 (𝛾𝑡 + 𝛽𝑡)
𝛤 (𝛾𝑡)𝛤 (𝛽𝑡)

𝑋 (𝛾𝑡−1)
𝑡 (1 −𝑋𝑡) 𝛽𝑡−1 (11)

where 𝑡 represents the time, 𝛤 is the gamma function, while 𝛾𝑡 and
𝛽𝑡 are the probability shape parameters that can be calculated using
historical PV generation data. Subsequently, given a predefined distri-
bution function of PV uncertainty, the VaR can be calculated as follows,

𝑉 𝑎𝑅𝛼 = 𝜇 − 𝜎 ⋅𝛷−1(𝛼) (12)

where, 𝑉 𝑎𝑅𝛼 is calculated at the confidence level 𝛼, 𝜇 is the mean
and 𝜎 is the standard deviation of 𝑓 (𝑋𝑡), while 𝛷−1(𝛼) is the quantile
function. The confidence level 𝛼 represents the probability that the
actual PV generation will exceed the VaR. Upon considering the defined
confidence level, the seller can finalize the anticipated PV generation to
be transacted with the buyer. This forecast, along with the probabilistic
confidence level, helps in managing the volumetric uncertainty in
PV generation and establishes a more stable foundation for the PPA
contract. For finding the risk-assessed energy volume to be traded in a
day in a 24/7 PPA, the joint probability distribution combining every
hour can be calculated as follows,

𝑓 (𝑋1,… , 𝑋24) = 𝑓 (𝑋1)𝑓 (𝑋2)…𝑓 (𝑋24). (13)

where, all hourly 𝑓 (𝑋𝑡) are considered to be i.i.d random variables, and
computing the VaR for this joint distribution provides a comprehensive
risk assessment for the day. It is to be noted that the upper and lower
bounds of generation power estimated using LSTM model forecasts
the overall PV generation potential of the LEC, while using VaR to
assess the risk associated with these forecasts focus on the overall PV
generation potential.

2.3. PPA strike price negotiations

The Nash Bargaining Theory can be used to negotiate the PPA strike
price between two parties, such as a renewable energy producer and
a utility company. The goal of the negotiation is to reach a mutually
beneficial agreement that maximizes the utility of both parties. The
Nash Bargaining Solution (NBS) provides a solution to this bargaining
problem. It is a pair of strategies, one for each party, such that no party
can unilaterally change their strategy to improve their utility without
decreasing the utility of the other party.

Let 𝑈𝑆 and 𝑈𝐵 be the utility functions of the two parties, and let
𝑆1 and 𝑆2 be their respective strategy sets. A pair of strategies (𝑠∗1 , 𝑠

∗
2),

where 𝑠∗1 ∈ 𝑆𝑖 is a NBS if it satisfies the following condition for each
party 𝑖,

𝑈 (𝑠∗, 𝑠∗ ) ≥ 𝑈 (𝑠 , 𝑠∗ ) ∀𝑠 ∈ 𝑆 (14)
4

𝑖 𝑖 −𝑖 𝑖 𝑖 −𝑖 𝑖 𝑖
Fig. 2. Bargaining solution of the PPA strike price with seller and buyer utility
functions (𝑈𝑆 and 𝑈𝐵) and disagreement points (𝑑𝑆 and 𝑑𝐵).

where, 𝑠∗−𝑖 denotes the strategy of the other party.
In the context of PPA strike price negotiations, the strategies could

represent different possible strike prices, and the utility functions could
represent the net benefits of the parties from the PPA at those prices.
The NBS would then represent the strike price that maximizes the net
benefits of both parties and is therefore the most likely outcome of the
negotiation. It should be noted that the NBS assumes that the parties
are rational and have perfect information about each other’s utility
functions and strategy sets. In practice, these assumptions may not al-
ways hold, and the actual outcome of the negotiation may deviate from
the NBS. The methodology for the PPA strike price negotiation can be
explained using Fig. 2. It may be noted that both buyer and seller would
want to maximize their own economic benefit, quantified using their
respective utility functions. The seller LEC would want an high strike
price whereas the buyer would want the price to be the lowest possible.
Thus, PPA strike price should satisfy Pareto optimality, a condition that
ensures no party can enhance their utility without compromising the
utility of the other party. The Pareto-optimal solution favourable to
both parties will be further discussed in the subsequent subsections.

2.3.1. LEC utility perspective
For a local energy community selling its PV generation in a PPA

contract to an outside buyer, the utility function would represent
the community’s satisfaction or utility from the contract. This utility
could depend on various factors such as the price received for the PV
generation, the volume of PV generation sold, the stability of the buyer,
etc.

A simple form of the utility function 𝑈 (𝑝, 𝑣) with price 𝑝 and volume
𝑣 can be defined as follows,

𝑈𝑆 (𝑝, 𝑣) = 𝑝 ⋅ 𝑣 − 𝐶(𝑣) (15)

This function assumes that the community’s utility is proportional to
the net revenue from the PPA contract, i.e. price times energy volume
minus the associated cost. The cost function 𝐶(𝑣) may include both
volume-dependent variable costs and volume-independent fixed costs
over PV lifetime 𝑇 ,

𝐶(𝑣) = ∫

𝑇

0

𝐶𝑡
(1 + 𝑟)𝑡

𝑑𝑡 (16)

The community would thus aim to maximize this utility function by
negotiating a PPA contract that provides the highest price at a partic-
ular volume. Applying the first-order derivative condition to (15), we
derive the following expression [24],
𝜕
𝜕𝑣

𝑈𝑆 (𝑝, 𝑣) = 𝑝 − 𝐶 ′(𝑣) = 0 (17)

where, the derivative 𝐶 ′(𝑣) increment in the present value of costs per
additional unit of electricity generated, and can be considered to be the
LCOE of PV generator. Thus, to keep the marginal gain in the utility
of the LEC greater than zero, the minimum price by the LEC should
be set at 𝑝 ≥ 𝐶 ′(𝑣). In this manner, the change in utility function
𝑈𝑆 (𝑝, 𝑣) would remain positive for the LEC to participate in the PPA
negotiation contract. Thus, (17) suggests that for maximizing utility,
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Fig. 3. Flowchart of three-stage settlement process of 24/7 PPA.

the price per unit of electricity should be set at least equal to the
marginal cost of PV generation, that may include any variable and
fixed costs. In other words, the satisfaction of (17) indicates the price at
which the additional revenue from selling one more unit/kWh equals
the additional cost of generating that unit.

2.3.2. Buyer’s perspective
In the context of a buyer in a PPA contract, the utility function

would represent the buyer’s satisfaction or utility from the contract.
This utility could depend on various factors such as the price paid for
the PV generation, the volume of PV generation bought, the reliability
of the PV generation, etc. A general formulation for buyer’s utility can
be defined as follows,

𝑈𝐵(𝑝, 𝑣) = 𝑉 (𝑣) − 𝑝 ⋅ 𝑣 (18)

where, the value function 𝑉 (𝑣) could depend on both the volume and
the reliability of the PV generation. The buyer would thus aim to
maximize this utility function by negotiating a PPA contract at the
lowest possible price. Moreover, using first order optimality condition
on (18) we get,
𝜕
𝜕𝑣

𝑈𝐵(𝑝, 𝑣) = 𝑉 ′(𝑣) − 𝑝 = 0 (19)

which shows that the marginal utility of the seller would only register
a positive change if 𝑉 ′(𝑣) ≥ 𝑝. Moreover, it also reflects equilibrium
point for the buyer’s problem, where the price should not exceed the
marginal utility 𝑉 ′(𝑣). In other words, the price the buyer would be
prepared to pay for the PPA contract should be less than the marginal
change in its perceived value, 𝑉 (𝑣). The buyer seeks an electricity price
that is less than its perceived real cost. As an alternative to the PPA,
the buyer might resort to the wholesale electricity market to fulfil its
energy requirements. Therefore, 𝑉 ′(𝑣) can also be interpreted as the
average wholesale market price.
5

With the utility functions of the seller and the buyer as 𝑈𝑠(𝑝, 𝑣) and
𝑈𝑏(𝑝, 𝑣) respectively, the NBS is the price 𝑝∗ for a particular pre-decided
volume 𝑣∗ that maximize the product of the utilities [25],

𝑝∗ = argmax
𝑝

(𝑈𝑆 (𝑝, 𝑣) − 𝑑𝑠)(𝑈𝐵(𝑝, 𝑣) − 𝑑𝑏) (20)

where, disagreement point is 𝑑 = (𝑑𝑆 , 𝑑𝐵) and 𝑑𝑆 and 𝑑𝐵 are the
respective payoffs to the LEC and the buyer, which they are guaranteed
to receive if they cannot come to a mutual agreement. In our case,
the disagreement point for the LEC would be the scenario in which
the PPA contract is not agreed upon by both parties due to failed
price negotiations. In such a worst case scenario, the LEC may have to
sell their PV generation at no-profit (i.e. LCOE) or average wholesale
market price. In the absence of an agreement on the PPA with the LEC,
the buyer’s worst-case disagreement point would also be the wholesale
electricity market price. This is the price the buyer would need to pay to
procure the required power from the wholesale electricity market. This
configuration of the disagreement points (𝑑𝑆 , 𝑑𝐵) reflects the worst-case
scenario for each party if the PPA negotiations fail, i.e., the LEC and the
buyer would both have to face market risk. However, the buyer and
seller would place different risks in the future market prices, denoted
as 𝑟𝑠 and 𝑟𝑏. Using these, the disagreements points of the seller-buyer
pair can be described as follows,

𝑑𝑠 = (𝜏 − 𝑟𝑠) ⋅ 𝑣 − 𝐶(𝑣) (21)

𝑑𝑏 = 𝑉 (𝑣) − (𝜏 − 𝑟𝑏) ⋅ 𝑣 (22)

where, 𝜏 is the average market price predicted over the length of
the contract. Thus, NBS ensures that both the LEC and the buyer
have a strong incentive to reach an agreement, as they both stand to
gain from a successful PPA negotiation compared to their worst-case
disagreement scenarios.

The solution of (20) can be found by first order optimality condition,
that is by setting the derivatives of the product with respect to price 𝑝
equal to zero and solving,
𝜕
𝜕𝑝

[(𝑈𝑆 (𝑝, 𝑣) − 𝑑𝑠)(𝑈𝐵(𝑝, 𝑣) − 𝑑𝑏)] = 0 (23)

Alternatively, a PPA contract price can also be influenced by asym-
metrical bargaining powers of either the seller or the buyer. The
bargaining power of a seller can be derived from a unique value
proposition which the buyer cannot easily find an alternative source
to. In particular, if there is high demand for renewable energy but
limited supply, the seller would have more bargaining power due to the
scarcity of alternatives for the buyer. Furthermore, regulatory support,
such as favourable government policies or incentives for renewable
energy can enhance the LEC’s bargaining power by making their offer
more attractive to the buyer. On the other hand, the buyer’s bargaining
power can come from their market presence, alternative options, and
financial resources. As a buyer, large organizations with significant
market presence can have more bargaining power, as the seller may
value the opportunity to establish a relationship with such a buyer.
Defining the bargaining power of the seller-LEC and the buyer as 𝜗 ∈
[0, 1] and 1−𝜗 respectively, the price negotiation using the NBS solution
can be then denoted as,

𝑝∗ = argmax
𝑝

(𝑈𝑆 (𝑝, 𝑣) − 𝑑𝑠)𝜗(𝑈𝐵(𝑝, 𝑣) − 𝑑𝑏)1−𝜗 (24)

where, higher value of 𝜗 would force the PPA strike price to be
influenced by the seller, and vice-versa. The NBS takes these bargaining
powers into account to find a fair and mutually beneficial agreement.

Fig. 3 illustrates the three-stage settlement process designed for
24/7 PPAs. In the first step we use LSTM to predict cyclic patterns
and amplitudes of PV generation across different seasons. Following
the LSTM predictions, VaR is utilized to quantify the risk associated
with the forecasted PV generation. This risk assessment is used in
determining the optimal volume of PV energy that can be sold daily
under the PPA, striking a balance between maximizing energy sales
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and managing uncertainty. The second step is price determination,
where we solve an unconstrained convex objective function as in
(20) to derive a long-term fixed price for the PPA. This step ensures
that the price point reflects both the seller’s and buyer’s economic
interests through their utility functions. In the third step, we address
the balancing requirements for hourly settlement by concentrating on
the optimal charging and discharging of a BESS. For this purpose, a
chance-constrained optimization framework is developed as detailed in
the next subsection

2.4. Energy deficit balancing using BESS flexibility

BESS can play a crucial role in enabling the realization of 24/7
PPA between renewable energy seller and the buyer. In renewable
energy contracts, the generation output may not always match with
the long term contractual generation guarantees that would originally
be formed. This discrepancy leads to a mismatch, causing a challenge to
the continuous power supply requirement stipulated in PPA. In such a
scenario, flexibility of consumption (and generation) provided through
BESS provides a solution.

Initially, the LEC as the seller, utilizes an auto-regressive (AR)
method for predicting the PV generation output for the forthcoming
24-h period. The AR method, using prior data points to forecast the
future output, effectively captures the temporal dependencies in PV
generation data. Hence, using historical days as the input, a 𝑝th order
auto-regressive model can be formulated to forecast PV generation of
the next day 𝑥𝑃𝑉

1 ,… , 𝑥𝑃𝑉
24 till as follows,

𝑃𝑉
𝑡+1 =

𝑝
∑

𝑖=1
𝜙𝑖 𝑥

𝑃𝑉
(𝑡+1)−𝑖 + 𝜀𝑡 (25)

here, 𝜀𝑡 is white-noise, and 𝜙1,… , 𝜙𝑝 are modelling parameters esti-
ated using Yule–Walker equations [26].

Once the PV generation for a typical day is forecasted, the seller
hen identifies the potential discrepancies between the anticipated
V generation and the contracted supply as per the 24/7 PPA. This
tep enables the seller to quantify the balancing requirements for the
nsuing day, essentially outlining the degree of PV generation deficit
r surplus anticipated at different time intervals. That is, considering
he PPA contractual volume for any hour 𝑥𝑃𝑃𝐴𝑡 and the hours-ahead
V generation forecast 𝑥𝑃𝑉𝑡 , the net deficit or surplus of PV generation
ill be,
𝑁𝐸𝑇
𝑡 = 𝑥𝑃𝑃𝐴𝑡 − 𝑥𝑃𝑉𝑡 (26)

where, both 𝑥𝑃𝑃𝐴𝑡 and 𝑥𝑃𝑉𝑡 are known a-priori for the entire day. If
𝑥𝑁𝐸𝑇
𝑡 is greater than zero, the LEC would be in a deficit of PV gener-
tion as contracted power supply exceeds the local PV generation. In
uch a scenario, the LEC would either balance the deficit by purchasing
nergy from the wholesale market or choose to discharge BESS.

emark 1. Short term day-ahead forecasts of PV generation have
easonable accuracy as also discussed in [27]. Thus, this work considers
he day-ahead PV prediction using AR to be accurate, and use it to
alculate 𝑥𝑁𝐸𝑇

𝑡 as in (26).

For balancing requirements at any typical day, an optimization
ramework can be established which aims to reduce the balancing costs
f the LEC for the 24/7 PPA. Considering the hourly net 𝑥𝑁𝐸𝑇 , the LEC
an procure the required balancing energy from the day-ahead energy
arkets at hourly varying spot prices. The objective of the LEC would

e to reduce the purchase the least possible energy from the markets
or fulfilling the PPA obligations,

min
𝑡=24
∑

𝑡=1
𝑐𝑡 𝑥

𝐺2𝐵
𝑡 + 𝑐 𝑃 𝑥𝐵2𝐺

𝑡 (27)

here, 𝐜 = [𝑐1,… , 𝑐24] are the hourly spot prices, 𝑐 𝑃 is the fixed PPA
𝐺2𝐵 𝐵2𝐺
6

trike price, and 𝑥 𝑡,𝑐 and 𝑥 𝑡 are the ’grid to battery’ (charging)
nd ’battery to grid’ (discharging) variables for a particular time-slot 𝑡.
n (27), the LEC pays hourly spot prices 𝐜 while charging BESS, while
he LEC receives the fixed PPA strike price 𝑐 𝑃 when discharging. This
ynamic implies the BESS is solely utilized to supplement any deficit
ower under the PPA contract. Specifically, during hours when the spot
rice is cheaper, the BESS is charged, storing energy for subsequent
se. In contrast, during periods when the contracted PV generation is
xpected to be more than the actual PV generated, the BESS discharges
ts stored energy. This strategic operation facilitates the consistent
ulfilment of the PPA contract terms, despite the temporal discrepancies
etween the contracted and actual PV generation, thus optimizing the
alance between supply and demand while also maximizing economic
fficiency based on market prices.

Moreover, the state of charge (SoC) constraints on the BESS would
e as follows,

𝑜𝐶 𝑡+1 = 𝑆𝑜𝐶 𝑡 + 𝜂𝑐

(

𝑥𝐺2𝐵
𝑡
𝐵𝑒𝑠 +

𝑥𝑃 2𝐵
𝑡
𝐵𝑒𝑠

)

− 1
𝜂𝑑

𝑥𝐵2𝐺
𝑡
𝐵𝑒𝑠 (28a)

𝑆𝑜𝐶𝑚𝑖𝑛
𝑡 ≤ 𝑆𝑜𝐶 𝑡 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥

𝑡 (28b)

𝑆𝑜𝐶 1 = 𝑆𝑜𝐶 24 (28c)

where, (28a) denotes the SoC change of BESS with time, while (28c)
implies that SoC of BESS at day beginning (𝑡 = 1) equals the SoC at day
end (𝑡 = 24). The variable 𝑥𝑃 2𝐵

𝑡 denotes the energy transfer from the
V to BESS. Therefore, either BESS can charge from the grid or the PV,
ut not both simultaneously. The constraint is ensured as follows,

≤ 𝑥𝐺2𝐵
𝑡 ⟂ 𝑥𝑃2𝐵

𝑡 ≥ 0 (29a)

≤ 𝑥𝐺2𝐵
𝑡 ⟂ 𝑥𝐵2𝐺

𝑡 ≤ 0 (29b)

≤ 𝑥𝑃 2𝐵
𝑡 ⟂ 𝑥𝐵2𝐺

𝑡 ≤ 0 (29c)

where, (29a) ensures that BESS charges either from PV or the grid,
hile (29b) and (29c) ensure that BESS is either charging or discharg-

ng at any particular time. Moreover, the discharging variable 𝑥𝐵2𝐺
𝑡

nly takes non-positive values.

emark 2. In this work, the size of the BESS is not predefined.
nstead of setting a predetermined size or imposing constraints on it,
ur model allows the size of the BESS to be determined as an outcome
f the optimization process. This is achieved by analysing the optimal
harging and discharging patterns over a typical day, which in turn
ives required capacity of the BESS for effective energy balancing

Solving, the balancing objective (27) subject to constraints (28)–
29), the LEC can achieve the lowest possible balancing costs for
ulfilling the 24/7 PPA contractual obligations. Moreover, an additional
n BESS discharging would be placed as follows,

𝑡 ≤ 𝑥𝐵2𝐺
𝑡 (30)

𝑡 =

{

0 if 𝑥𝑃𝑃𝐴𝑡 ≤ 𝑥𝑃𝑉𝑡
𝑥𝑁𝐸𝑇
𝑡 if 𝑥𝑃𝑉𝑡 < 𝑥𝑃𝑃𝐴𝑡

(31)

hich only allows discharging the BESS when PPA contracted power is
ess than actual PV generation.

As a consequence, surplus PV generation would be allocated to-
ards charging the BESS. Moreover, the utilization of BESS is strictly

estricted to serve as a balancing asset within the PPA framework and
hus energy arbitrage, i.e., capitalizing on the differences in energy
rices at different times, is strictly prohibited. This emphasizes the ex-
lusive role of BESS in maintaining the balance between PV generation
nd the PPA obligations, rather than as a tool for speculative gains.

In the case day-ahead PV generation forecasts 𝑥𝑃𝑉𝑡 are not accurate,
level of uncertainty may be modelled in them as follows [28],

�̃�𝑃𝑉𝑡 = 𝑥𝑃𝑉𝑡 + 𝜂 (32)

here, �̃�𝑃𝑉𝑡 denotes the uncertain PV generation at time 𝑡, and 𝜂 ∈
𝑃𝑉 𝑃𝑉
[−�̂� 𝑡 , �̂� 𝑡 ] is a random variable that can vary within a predefined
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Fig. 4. Uncertainty quantification of PV generation compared to PPA volume.

interval. Subsequently, constraint (31) can be re-modelled as a chance
constraint as follows,

Pr[𝑥𝑁𝐸𝑇
𝑡 ≥ 0] ≥ 𝛿 (33)

where, 𝛿 ∈ [0, 1] is the probability confidence value. Thus, the con-
straint of 𝑥𝑁𝐸𝑇

𝑡 , that is, 𝑥𝑃𝑃𝐴𝑡 − �̃�𝑃𝑉𝑡 being greater than zero would
have to be satisfied with a probability 𝛿, considering stochastic �̃�𝑃𝑉𝑡 .
However, as also depicted in Fig. 4, uncertain PV generation would be
less than the fixed PPA contracted volume with a certain probability 𝛽,

Pr[�̃�𝑃𝑉𝑡 ≤ 𝑥𝑃𝑃𝐴𝑡 ] ≤ 𝛽 (34)

Thus, the choice of risk measure by the LEC operator in (12) would
also decide the feasibility of the chance constraint (33). That is, as the
contracted PPA volume 𝑥𝑃𝑃𝐴𝑡 is chosen such that the cumulative proba-
bility 𝛽 in Fig. 4 greater than 𝛿. This would ensure that the constraint set
𝛺𝑡 is satisfied even in scenarios of high PV generation thereby allowing
the BESS to discharge more throughout the optimization timeline.

3. Case studies

3.1. Parameters for modelling

To study the economic viability of the proposed 24/7 PPA frame-
work, four distinct weather and energy market scenarios (of Austria,
Norway, Spain & Netherlands) are undertaken. It is assumed that a PV
of size 50 kW is installed at LECs situated in all four countries. The
yearly PV generation data is taken from [29], while the day-ahead
energy prices are taken from [30]. For each of the four cases, we
consider an optimally sized BESS to be available for energy balancing.
Moreover, the capacity sizing requirement of BESS is also studied com-
parative to the country wise dynamics. It is further assumed that local
energy consumption of LEC consumers is fixed, thus is not explicitly
modelled in this work. Nevertheless, assuming consumer loads to be
constant, the proposed methodology in this work can be easily extended
to incorporate energy consumption of consumers as well.

The maximum charging and discharging rate of the BESS is assumed
to be 0.25 times its capacity rating. Specifically, the BESS can charge or
discharge its entire energy capacity in 4 hours. Moreover, the charging
and discharging efficiency of BESS is taken to be 𝜂𝑐 = 𝜂𝑑 = 0.95. The
proposed algorithmic framework is modelled in MATLAB R2022b using
Yalmip, and solved through Gurobi on a PC with 2.4 GHz CPU and
16 GB of RAM. The day ahead market prices for all the countries are
shown in Fig. 5. Moreover, the PV generation profile in all different
countries is shown in Fig. 6. It may be noticed that for a fixed size of
PV, the capacity utilization factor (CUF) of Spain would be the highest
given its year-round sunnier climate.

3.2. Long-term volume prediction and price negotiation

The initial step of the proposed methodology is to predict the long-
term PV generation, so as to ascertain the hour-by-hour volume of
energy exchange under the PPA contract. Fig. 7 shows the long term
prediction of PV generation using LSTM over a particular season. In
7

Fig. 5. Day-ahead market price of all countries (Year 2022).

Fig. 6. Variation in PV generation for fixed capacity size of 50 kW.

particular, the PV generation profile of summer month (June) and
winter month (December) for Norway are shown. It may be noticed that
the summer month in Fig. 7(a) is easier to predict with higher accuracy
due to less intermittency in actual PV generation profile. In Fig. 7(a) it
is seen that the actual PV production is marginally higher/lower than
the prediction for any typical day. Moreover, the predicted profile is
seen to capture the cyclic trend and the amplitude of daily maximum
PV generation very accurately for many days and hours. Similarly,
Fig. 8 shows the prediction of PV generation for the winter months of
rest of the countries.

On similar lines, in Fig. 9 the monthly forecasts also portray an accu-
rate prediction of the actual generation of PV. This is also established
by seeing Fig. 10 which shows the RMSE while executing the LSTM
prediction training. After 200 iterations the RMSE, on training data,
is seen to be lower than 0.1. Moreover, a consistent improvement in
RMSE is seen with increasing iterations. However, in Fig. 7(b) the PV
generation forecast of winter month is shown. It may be noticed that
the amplitude of the PV generation is predicted with high accuracy.
This is because, the maximum generation forecasted to be around 4
kW on average, coincides with the actual data. However, there are
still several days with lower than anticipated PV generation, primarily
due to unpredictable weather and low solar irradiation in the winter
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N

Fig. 7. Long term amplitude and cyclic trend analysis of hourly PV generation for

orway. (a) Month of June (b) Month of December.

Fig. 8. Hour to hour prediction of solar generation for long-term (monthly) scenario
of different countries. Winter month of December.

climate of Norway. These predictions become the primary point for
deciding the volumetric energy exchange between the LEC as a seller
and the outside buyer. For comparison, Table 1 shows the long-term
prediction performance of two additional methods of support vector
regression (SVR) and seasonal ARIMA (S-ARIMA). It is evident that
LSTM outperforms SVR and S-ARIMA in terms of long-term forecasting
accuracy for PV generation, as indicated by its lower RMSE value.
Additionally, LSTM’s ability in cyclic trend prediction suggests it is
8

Fig. 9. Long term prediction for a year on a monthly basis.

Fig. 10. RMSE of LSTM on training data for hourly PV generation forecast of Norway.

better suited for capturing the patterns in PV output across different
seasons and times of the day.

In Fig. 11, VaR measure is used on a typical day of the summer
month. The LSTM prediction is shown which is assumed to be maxi-
mum PV production of the day. The seller-LEC may however, choose to
limit its contracted volume of PV to be sold in the forward 24/7 PPA
contract. The computation of the different PV generation profiles for
contracting in the PPA are considered based on the confidence intervals
decided by the parameter 𝛼-VaR. The parameter 𝛼 shows the seller’s
risk-tolerance, which would be lower as the parameter increases. For
a given value of 𝛼, the seller would calculate the probability of PV
generation of a typical day to be lower than a threshold value decided
using VaR. As the risk tolerance decreases, the PV generation profile
also decreases in probabilistic measure. As seen in Fig. 11, with 𝛼 as
0.9, the PV generation profile for selling in the PPA contract is very
low. However, 𝛼 = 0.9 ensures that PV generation would fall below the
contracted volume only in worst 10% cases, thereby ensuring low risk
and balancing requirements from the seller.

Fig. 12 shows the price of the PPA contract with varying bargaining
power between the seller and the buyer. As parameter 𝜗 increases,
the seller gains higher bargaining power, and vice-versa. Thus, the
PPA price sees a monotonic increase with increasing 𝜗, as the seller
is able to bargain a higher price for the long-term contract. However,
due to modelling constraints of the disagreements points 𝑑𝑠 and 𝑑𝑏
within the NBS framework, the strike price remains within the lower
limit of LCOE and the predicted wholesale market price 𝜏. The case of
equal bargain incorporates the generalized NBS, where 𝜗 = 0.5, where
an fair settlement of the long term price is made. It may be further
noted that linear utility functions, of both seller and buyer, allow a
linear price-bargaining power relationship. However, for conventional
generators with quadratic fuel-cost curves, the NBS would reflect the
non-linear relationship, as the bargaining power impacts both the price
and volume, due to the inherent convexity of their cost structure.

3.3. Day-ahead energy balancing strategies

Fig. 13 shows the day-ahead prediction of PV generation using AR
modelling. Using previous day’s generation as the input, we predict the

next day (24 h) PV output. This short-term hour-to-hour prediction is
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Table 1
Comparative analysis of LSTM, SARIMA, and SVR for long-term PV prediction.

Feature/Model LSTM S-ARIMA SVR

RMSE (on test dataset) 0.09 0.134 0.171

Cyclic Trend Prediction Excellent Moderate Limited

Training Time 23 min 7 min 11 min

Model Complexity High (many layers, considered
black-box)

Low (requires seasonality
adjustment)

Low (kernel choice critical)

Data Preprocessing
Requirements

Normalization, time-series prep,
optimal look-back selection

Stationarity check, time-lag
differencing

Scaling, Lagged-input,
Normalization
Fig. 11. Volumetric VaR of PV generation profile of a typical day with varying
confidence intervals.

Fig. 12. PPA strike price variation with changing bargaining power (𝜗) of the
buyer-seller pair.

useful in deciding the difference between the contracted and the actual
PV generation for the next day. If the prediction is dissimilar to the
contracted, the seller might opt for computing an optimal schedule
for the BESS providing balancing services. In Fig. 14(b) the balancing
requirements can be seen for a day when PV generation is usually
higher than contracted. However, it may be noticed that in hour 6 to
hour 10, the contracted generation is marginally higher. Thus, there
would be balancing requirement in those hours by discharging the
BESS. In effect, the deficit in PV generation for the first few hours
can be offset easily as seen in Fig. 14(c). Moreover, the required SoC
of the BESS is gained back in the following hours through PV to
BESS charging. Therefore, using a BESS, the requirement to procure
balancing power from the energy market is avoided entirely. That is,
neither the seller or the buyer has to procure energy from the real-time
market for balancing.

In contrast, Fig. 15 shows the balancing requirements in a typical
day with low PV generation, i.e. generation deficit at all hours. It
is evident that energy has to bought from the market to cover the
unavailability of PV generation. In Fig. 15(b), during hour 20 to hour
24, when the spot price falls below the PPA price, the battery system
is effectively charged from the grid. PV to battery is zero as this is a
deficit example case where predicted generation is less than contracted
generation. The BESS, however, plays a crucial role by discharging its
stored energy to fulfil the contracted power requirements for the buyer
with whom there is a PPA. This enables the delivery of the agreed-
upon power despite the deficit in PV generation, ensuring contractual
9

Fig. 13. Day-ahead prediction of PV generation using AR modelling.

Fig. 14. Balancing requirements in a typical day with PV generation surplus (a) Market
and PPA prices. (b) PV generation contracted in PPA and actual PV generation. (c)
Charging/discharging requirements from BESS for balancing.

obligations are met. The optimal BESS size in this case comes out to be
50 kWh, which signifies the need for larger storage systems when the
PV generator of the LEC under-produces power.

Fig. 16 provides an overview of the costs and benefits associated
with a sustainable LECs. The costs labelled as ‘‘Grid import costs’’
represent the expenses incurred when purchasing power from the grid
in the event of a power deficit. ‘‘Revenue from the market’’ indicates
the income generated by selling excess power to the open market.
‘‘Revenue from the PPA’’ represents the earnings obtained from selling
power to a specific buyer with whom the seller-community has a
PPA contract. The ‘‘Overall revenue’’ refers to the profit obtained by
subtracting the grid import costs from the revenue generated in the
market. In the absence of a BESS, the seller must purchase power
from the grid to meet the contracted power requirements when the
predicted generation falls short. Conversely, the implementation of a
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Fig. 15. Balancing requirements in a typical day with PV generation deficit (a) PV
generation contracted in PPA and actual PV generation. (b) Charging/discharging
requirements from BESS for balancing.

Fig. 16. Balancing costs and PPA revenue of a typical day (a) Surplus day (b) Deficit
day.

Fig. 17. Variation in PPA revenue and BESS capacity as a function of evolving VaR.

ESS enables the community to reduce its reliance on the grid to
ulfil the contract, thereby diminishing the need for grid imports and
liminating grid import costs. It is essential to acknowledge that in the
bsence of BESS, having surplus power can be advantageous. If the spot
rice at a particular exceeds the PPA price, the community can generate
ncome by selling the excess power to the grid. Therefore, the revenue
arned from selling to the market, without BESS, surpasses the revenue
arned with BESS.

Fig. 17 illustrates the relationship between PPA revenue for a
tandard day and BESS size based on changing risk assessments in PV
eneration included in the PPA. At a 5% VaR, the PV generation for sale
ears a 5% risk, resulting in a modest PPA revenue of e10 daily due to

the low contracted volume of PV. This reduced volume also corresponds
to a reduced battery capacity need for balancing, making a 6 kWh BESS
10
Fig. 18. Country-wise balancing costs and market based revenue for surplus/deficit
days.

Fig. 19. Country-wise overall PPA revenue for a cumulative year.

adequate. As the contracted PV volume in the PPA grows, both PPA
revenue and BESS size proportionally increase. It may be noted that
the BESS size growth rate exceeds that of the PPA revenue, indicating
that the challenges in balancing unpredictable PV generation surpass
the PPA contract’s revenue benefits.

3.4. Effect of climatic conditions and market dynamics on PPA feasibility

This section explores the factors that contribute to the unique char-
acteristics and circumstances of different climatic and market dynam-
ics, resulting in differences in the arrangements of PPA profitability.
The differences in PPA arrangements for photovoltaic (PV) systems
among different countries can be attributed to several factors. Some
of the key factors include variations in spot prices, and variations in
PV generation profiles.

Fig. 18 shows the costs associated with balancing deficits, i.e. pur-
chasing from, and surpluses, i.e. selling to the energy market. It may
be seen that Spain incurs lower costs compared to other countries,
indicating a closer alignment with contracted PV production, and low
uncertainty of PV production with high CUF. However, the situation in
Norway is different. Throughout the year, the cost of balancing deficits
is consistently higher than the revenue generated from surplus power.
This pattern indicates a significant challenge for higher uncertainty
in PV production, especially in the winter months, as was also seen
under the long-term prediction mechanism. Finally, Fig. 19 displays the
overall profit in different countries, calculated as the summation of PPA
revenue and surplus market revenue minus the balancing costs required
from the market. For this particular case, we assume the exclusion of

an BESS to study the adverse impact of market based balancing costs
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on the overall PPA profits. Excluding Norway, all countries demon-
strate similar profit levels, assuming the same PV production capacity
of 50 kW. This disparity underscores the unique challenges faced in
achieving profitable PV production under a PPA for particular market
dynamics and weather dependent CUF.

4. Conclusions

This paper demonstrated the development of a novel framework
for continuous 24/7 PPA contracts with an hourly renewable energy
delivery timeline. The framework was designed with the aim of en-
hancing the economic viability of LECs and increasing returns for
its stakeholders. Using advanced statistical prediction tools including
LSTM and AR modelling, the proposed framework effectively managed
the hour-to-hour power delivery commitments. Moreover, the work
demonstrated the utility of cooperative bargaining between seller-buyer
pair for negotiating a fixed PPA price, achieving a balanced outcome
that ensures pareto optimality of the seller-buyer economic utilities.
Furthermore, it is found that integration of a BESS within a 24/7 PPA is
effective in managing excess power and bridging supply–demand gaps
during low PV generation periods. Significantly, the implemented PPA
model demonstrated distinct ability to mitigate long-term price risk tied
to day-ahead/wholesale energy markets. The framework’s efficiency
was validated through several simulation results derived from various
climatic conditions and energy market dynamics. The study indicates
that the proposed PPA, supplemented with statistical learning methods
for risk assessment, has significant potential to minimize financial
risks for LECs. The proposed VaR methodology has its limitations
in capturing inter-hour dependencies of PV generation, which could
potentially impact the risk profile. To address this, the exploration
of time-correlated uncertainty models can be considered as a scope
of future research to investigate the impact of incorporating time-
correlation on the risk assessment for PV generation in the context of
24/7 PPAs.
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