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• Background The sugar kelp Saccharina latissima is a Laminariales species widely distributed in the Northern 
Hemisphere. Its physiology and ecology have been studied since the 1960s, given its ecological relevance on 
western temperate coasts. However, research interest has been rising recently, driven mainly by reports of negative 
impacts of anthropogenically induced environmental change and by the increased commercial interest in culti-
vating the species, with several industrial applications for the resulting biomass.
• Scope  We used a variety of sources published between 2009 to May 2023 (but including some earlier litera-
ture where required), to provide a comprehensive review of the ecology, physiology, biochemical and molecular 
biology of S. latissima. In so doing we aimed to better understand the species’ response to stressors in natural 
communities, but also inform the sustainable cultivation of the species.
• Conclusion Due to its wide distribution, S. latissima has developed a variety of physiological and biochemical 
mechanisms to adjust to environmental changes, including adjustments in photosynthetic parameters, modulation 
of osmolytes and antioxidants, reprogramming of gene expression and epigenetic modifications, among others 
summarized in this review. This is particularly important because massive changes in the abundance and distribu-
tion of S. latissima have already been observed. Namely, presence and abundance of S. latissima has significantly 
decreased at the rear edges on both sides of the Atlantic, and increased in abundance at the polar regions. These 
changes were mainly caused by climate change and will therefore be increasingly evident in the future. Recent 
developments in genomics, transcriptomics and epigenomics have clarified the existence of genetic differentiation 
along its distributional range with implications in the fitness at some locations. The complex biotic and abiotic 
interactions unraveled here demonstrated the cascading effects the disappearance of a kelp forest can have in a 
marine ecosystem. We show how S. latissima is an excellent model to study acclimation and adaptation to envir-
onmental variability and how to predict future distribution and persistence under climate change.

Key words: acclimation, biogeography, climate change, local adaptation, macroalgae, marine ecology, metabol-
ites, molecular biology, omics, physiology, seaweed, warming.

INTRODUCTION

Kelps, in the strict sense including only representatives of the 
order Laminariales, are brown macroalgae (Phaeophyceae) 
growing on shallow rocky shores along the Atlantic, Pacific 
and Indian Oceans (Wernberg et al., 2019). In the Northern 
Hemisphere, kelps are represented mainly by the genera 
Alaria, Laminaria and Saccharina (Bolton, 2010; Wernberg et 
al., 2019). Kelps have received considerable attention, given 
their ecological roles, the several ecosystem services they pro-
vide and the several commercial applications of their extracts 
(e.g. Bartsch et al., 2008; Smale et al., 2013). Recently, threats 
to kelp persistence around the globe have been reviewed, and 
the need for conservation measures has been reiterated (e.g. 

Filbee-Dexter et al., 2019; Smale, 2020; Filbee-Dexter and 
Wernberg, 2018).

Among kelps, Saccharina latissima (Linnaeus) C.E. Lane, 
C. Mayes, Druehl & G.W. Saunders (Lane et al., 2006) is 
one of the most well studied, especially in more recent years. 
Saccharina latissima is a boreal–temperate kelp widely distrib-
uted across the Northern Hemisphere, from polar to temperate 
regions (Fig. 1). Given its wide distribution range covering 
highly distinct climatic regions, this species is a brilliant model 
to understand environmental and adaptation. Moreover, given 
that it contains several valuable metabolites for the industry, 
research on its biochemical composition is well developed 
and provides an understanding on how mechanisms work at 
the metabolome level for kelps. Recently, ‘-omics’ tools have 
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Diehl et al. — Saccharina latissima2

been developed and applied in S. latissima as researchers try to 
understand the genetic diversity that underlies the adaptation of 
S. latissima to different temperature, salinity and light regimes. 
This, in the context of climate change, which is precipitating 
the retreat and local extinction of several kelps, results in S. 
latissima being an excellent model to understand resilience and 
adaptation in brown algae.

This review (part I) focuses on knowledge generated over the 
past ~15 years, particularly on recent developments that provide 
new insights into the physiology and ecology of S. latissima. 
It is divided into six main themes, with a final ‘Conclusions’ 
section highlighting the needs for future research. For a review 
of previous work, we refer the reader to Bartsch et al. (2008). 
The second part of the review (The sugar kelp Saccharina 
latissima II: recent advances in farming and applications) fo-
cuses on the latest applied research, farming and applications 
for S. latissima (Saether et al. 2023).

LIFE CYCLE AND PHENOLOGY

Saccharina latissima, like all Laminariales, is characterized 
by a haplo-diplontic (haploid–diploid) heteromorphic life 
cycle (Fig. 2; Schiel and Foster, 2006; Bartsch et al., 2008). 
Sessile macroscopic sporophytes (2n) of S. latissima usually 
grow up to 4 m (White and Marshall, 2007) and vary greatly 
in their morphological appearance (Fig. 3; Diehl et al., 2023). 
Bigger specimens can be found in Arctic regions (~7 m and 
larger; T. Vonnahme & S. Niedzwiedz, pers. comm., June 

2023). The species grows typically on rocky shores in the 
upper subtidal zone to depths of 15–30 m, attached to hard rock 
using a branched claw-like holdfast (Pehlke and Bartsch, 2008; 
Bekkby and Moy, 2011; Bischof et al., 2019). It has also been 
reported growing on fine sediment attached to sparse gravel, 
pebbles (Bluhm et al., 2022; Filbee-Dexter et al., 2022b) and 
on tubeworms (Bracken, 2018). The sporophyte of S. latissima 
changes greatly in morphology depending on exposure and en-
vironmental factors (Fig. 3; Lüning, 1990; Van den Hoek et 
al., 1995). In general, the phylloid is elongate, undivided and 
without a midrib, but may have bullations (wrinkled surface) 
and wavy rims (White and Marshall, 2007). Under moderate 
wave exposure, S. latissima develops narrow fronds and solid 
cauloids (Lüning, 1990; Van den Hoek et al., 1995). In add-
ition, sporophytes tend to develop longer and heavier stipes at 
greater depths to enhance light capture (Ronowicz et al., 2022). 
This morphological plasticity has led to misidentification and 
taxonomic confusion. For example, Saccharina angustissima 
has only recently been elevated to species level, being until 
then considered a morphotype of S. latissima (Augyte et al., 
2018), whereas both Saccharina longicruris and Saccharina 
groenlandica were synonymized with S. latissima (McDevit 
and Saunders, 2010; Longtin and Saunders, 2015). The adult 
sporophyte exhibits basal meristematic growth. Sporophytes 
normally have a lifespan of 3 years, reaching their maximum 
size in the second growing season (Lee, 1989). However, speci-
mens in the intertidal zone are annuals (Lee, 1989).

When mature, sporangia accumulate into easily recognizable 
sori on sporophytes of S. latissima and produce microscopic 
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Fig. 1. The worldwide distribution of Saccharina latissima. Occurrence data of S. latissima (orange dots) were collected from databases [Global Biodiversity 
Information Facility (www.gbif.org) and the Ocean Biogeographic Information System (http://iobis.org)]. Occurrence data cover the time frame between 1903 
and 2020. Note that the points size is increased to allow visualization at this large scale and does not display the real areal extent Sea surface temperature data 
(colour gradient) from 2022 [left panel, summer temperature (21 March to 21 September 2022); and right panel, winter temperature (1 January to 21 March 2022 
and 21 September to 31 December 2022)] were downloaded from the NOAA database (https://coastwatch.pfeg.noaa.gov/erddap/). The maps integrate the monthly 
temperature mean with latitude and longitude averaged as integers. There are white areas around the North Pole, where the projection makes data interpolation 

impossible. Maps were created with the R package ggOceanMaps (Vihtakari, 2022).
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spores (n) (Fig. 2; Forbord et al., 2012). As free-living stages, 
spores and gametes are the phases that allow for dispersal, al-
beit usually limited to a few metres in kelps. Therefore, spores 
tend to settle near parent sporophytes (Schiel and Foster, 2006). 
Sex is expressed at the haploid stage, and gametes and gameto-
phytes present sexually dimorphic traits. Female gametophyte 
cells and nuclei are larger and rounder, whereas male gameto-
phytes cells are smaller and tend to form filaments with more 
cells (Lüning and Neushul, 1978; Goecke et al., 2022) which al-
lows for identification and separation of sexes in the laboratory.

After the seminal work in the 1970s and 1980s by Lüning 
in Europe and by Lee and Brinkhuis in North America (e.g. 
Lüning, 1980; Bolton and Lüning, 1982; Lee and Brinkhuis, 
1988), research targeting the sexual reproductive stages of S. 
latissima stalled. Recently, the research interest has risen again, 
driven by the need to manipulate the sexual life cycle in aqua-
culture. Hence, recent advances have enabled researchers to 
control the reproductive period artificially in the laboratory 
at several stages, allowing for scientific experimentation and 
improving the economic sustainability of seaweed aquacul-
ture (Charrier et al., 2017). Also, methodological advances 
have allowed better examination of the development of em-
bryos to study cellular interactions in the embryo (Clerc et al., 
2022), quantify DNA content in different cell types (Goecke et 
al., 2022) and improve protocols for studying embryogenesis 
(Theodorou et al., 2021).

At the spore stage, sporogenesis (production of spores) in the 
wild typically peaks during winter, being negligible in summer; 
however, the extent of the sorus formation period is dependent 

on the geographical region (Bartsch et al., 2008; Andersen et 
al., 2011; Boderskov et al., 2021). In the laboratory, sporogen-
esis is commonly induced by applying short-day light treat-
ments, mimicking the light conditions of autumn/winter, and 
by removing the basal blade of the meristem, to remove inhibi-
tors, ensuring year-round spore availability for farmers and re-
searchers (Forbord et al., 2012). In turn, a recent study reported 
higher and faster induction of sporulation in tissues under com-
plete darkness than in short-day treatments (Boderskov et al., 
2021).

At the gametophyte stage, gametogenesis (maturation) can 
be induced or prevented by manipulating both biotic and abi-
otic conditions (see below on the next paragraph). When gam-
etogenesis is prevented, gametophytes remain vegetative and 
continue to grow, remaining viable for several years [≥1 year 
reported in S. latissima (Ebbing et al., 2021b); ≤30 years in sev-
eral Laminaria sp. (Druehl et al., 2005; Martins et al., 2019)], 
also referred to as delayed gametophytes. Cultures of delayed 
gametophytes can function as genetic diversity reservoirs if con-
served by cryopreservation, which has been applied success-
fully to the gametophytes of S. latissima (Visch et al., 2019). 
In parallel, vegetative growth of gametophyte cultures can be 
boosted to produce enough biomass for cultivation facilities. 
In the wild, delayed gametophytes might represent a marine 
resource analogous of terrestrial seed banks, preserving the 
algae in a resting stage during harsh environmental conditions 
and allowing for a rapid recovery once the conditions improve 
(Schiel and Foster, 2006). However, the high levels of gene ex-
pression reported in vegetative gametophytes indicate that these 
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Fig. 2. Life cycle of Saccharina latissima. The life cycle of S. latissima can be split into a diploid phase (blue) and a haploid phase (yellow). Adult sporophytes 
(2n) release zoospores, which grow into either female or male gametophytes (1n). Female gametophytes release eggs (1n); male gametophytes release gametes 
(1n). The egg and gamete fuse to form a zygote (2n), which grows into a sporophyte (2n). Sporophyte photograph: S. Forbord. Microscopic photographs and de-

scription (I. Bartsch) are included to provide additional information about the variety and diversity of gametophytes.
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gametophytes are metabolically active and not resting stages 
where growth is stopped, calling for more research on the topic 
(Monteiro et al., 2019a). Recent methodological advances, 
such as the use of flow cytometry to isolate gametophytes of 
S. latissima, will allow for a more cost-effective gametophyte 
control at a larger scale (Augyte et al., 2020). For more infor-
mation on aquacultural approaches, see Review II (Saether et 
al., 2023).

The maturation of female gametophytes depends on the 
interaction of temperature, light quality and intensity, nutrients 
and biotic factors. Blue light is required for female gameto-
phytes to mature, and as temperature rises, more blue light is 
required until an inhibitory species-specific threshold: 20 °C 
in S. latissima (Lüning and Dring, 1972; Lee and Brinkhuis, 
1988). Therefore, in laboratory conditions, if only exposed to 
red light, gametophytes will tend to grow vegetatively, because 
growth is unaffected by light quality (Lüning and Dring, 1975). 
Recently, a study revealed that light quality was significant only 
at lower intensities; at higher intensities, both red and blue light 
induced maturation (Ebbing et al., 2021b).

Concerning nutrients, it has been shown that iron is necessary 
for oogenesis in kelps; hence, iron is typically excluded from 
nutrient solutions given to stock culture meant to grow vegeta-
tively (Motomura and Sakai, 1981; Lewis et al., 2013). Also, 
nutrient enrichment favours gametophyte growth; however, 

caution must be taken with the proliferation of diatoms, the 
growth of which is inhibited by addition of germanium dioxide 
(Kerrison et al., 2016; Nielsen et al., 2016a).

Concerning biotic factors, concentrations above an optimal 
initial density of gametophytes inhibit fertilization, regardless 
of temperature and light intensities (Ebbing et al., 2020). The 
authors ruled out reduced nutrients or light intensity as the cause 
of inhibition of fertilization at high concentrations; hence, the 
underlying mechanism remains unknown. Another relevant bi-
otic factor is the sex ratio of cultures, with a higher propor-
tion of female gametophytes decreasing the reproductive yield, 
most relevant at high culture densities (Ebbing et al., 2021a).

Concerning phenology, in the wild, the maturation process of 
S. latissima typically peaks in winter, with sporophytes growing 
at the highest rate over spring, after which they often senesce 
over summer owing to high temperatures. However, in some 
sites, the species produces sori throughout the year (Boderskov 
et al., 2021). Although reproduction can occur over several 
months, reproductive success and sporophyte growth depend 
on the month when sporogenesis occurs. In Denmark (tem-
perate Atlantic), the percentage of fertile sporophytes (with vis-
ible sorus formation) varies markedly over the year, peaking in 
November and December and reaching null values in July and 
September. The number of viable spores released also varies 
monthly, decreasing steadily from a maximum in November to 

A
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Fig. 3. Morphological variability of European Saccharina latissima sporophytes. The white bars represent 20 cm. (A) Ny-Ålesund, Spitsbergen; collected from 
the Old Pier, 10 m depth, moderate exposure (photograph: N. Diehl). (B) Ansnas, Norway; collected in a small bay, 1–2 m depth, protected (photograph: N. 
Diehl). (C) Runde, Norway; collected from rocks surrounded by sand, 1–2 m depth, moderate exposure (photograph: N. Diehl). (D) Runde, Norway; collected in 
a Laminaria digitata forest, 1–3 m depth, exposed (photograph: N. Diehl). (E) Locmariaquer, France; collected from rocky shores, high tidal range, 3–5 m depth, 
moderate exposure (photograph: L. Fouqueau). (F) Helgoland, Germany; collected from rocky shores, 5 m depth, exposed (photograph: A. Wagner). Figure modi-

fied from Diehl et al. (2023).
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February, with a surge in March and April (Boderskov et al., 
2021). Meiospores of S. latissima (from Alaska, USA; Arctic 
Pacific) released in July resulted in larger gametophytes but 
smaller sporophytes when compared with spores released in 
August (Raymond and Stekoll, 2021), whereas for spores ori-
ginated from S. latissima collected in April (from Ireland, tem-
perate Atlantic), growth rates of gametophytes were five to ten 
times higher than from spores originated in February (Nielsen 
et al., 2016a).

Concerning sporophyte growth, seasonal variation in growth 
rates is notable along the coast of Norway, with sporophytes 
from northern Norway reaching their maximum frond length 
and biomass ~2 months earlier than sporophytes occurring in 
the south of the country (Forbord et al., 2020).

The fact that recent studies (Ebbing et al., 2020; Boderskov et 
al., 2021) sometimes contradict previous findings and/or show 
a more complex control of life-cycle transitions highlights the 
need for further research on this topic, testing for more single 
and interacting drivers and accounting for possible site-specific 
responses.

ADVANCES IN ‘OMICS’

Genomics

The decrease in sequencing costs has led to an increase in gen-
omic resources for non-model species, such as brown algae, 
that have been severely understudied until recently. Nuclear 
genomes are now available for some Phaeophyta species [e.g. 
Ectocarpus sp. (Cock et al., 2010), Saccharina japonica (Ye et 
al., 2015; Liu et al., 2019), Undaria pinnatifida (Shan et al., 
2020; Graf et al., 2021)], and plastid and mitochondrial gen-
omes are also mounting (e.g. Oudot-Le Secq et al., 2006; Chen 
et al., 2019; Rana et al., 2021). For S. latissima, a mitochon-
drial genome is available (Wang et al., 2016) but not a nuclear 
genome, although efforts are underway (M. Cock, pers. comm.; 
https://phaeoexplorer.sb-roscoff.fr/home/). Based on genetic 
data, a taxonomic re-organization was proposed in 2006 that 
reassigned the previously Laminaria saccharina to Saccharina 
latissima, the currently accepted species name (Lane et al., 
2006). Since then, other species have been synonymized with 
S. latissima (Neiva et al., 2018), highlighting the need for more 
extensive sampling across described and possible sites where 
S. latissima occurs to assess the intraspecific diversity better. 
The availability of validated DNA barcodes for the species 
[mitochondrial cytochrome c oxidase I (COI) and ribulose-1,5- 
bisphosphate carboxylase/oxygenase large subunit (rbcL) 
(Ratnasingham and Hebert, 2007)] is important to confirm the 
identity of S. latissima samples. Moreover, it allows for the 
species to be detected in environmental DNA surveys, which 
allow for identification and quantification of several species 
from a unique sample using metabarcoding techniques (Deiner 
et al., 2017). Population structure, connectivity and genetic di-
versity in S. latissima have been studied using microsatellites 
(e.g. Guzinski et al., 2016; Luttikhuizen et al., 2018; Mooney et 
al., 2018), COI (Neiva et al., 2018) and, more recently, double 
digest restriction site-associated DNA sequencing, and the re-
sults are discussed in the section entitled ‘Biogeographical pat-
terns’. Using a genomic selection approach, breeding values of 
the gametophytes of S. latissima were estimated and correlated 

with phenotypic traits of sporophytes, especially wet and dry 
weight per metre; however, low genetic correlations among 
different years are concerning and need to be explored further 
(Huang et al., 2023). These approaches inform current attempts 
to establish breeding programmes and, in the future, to domes-
ticate S. latissima (Yarish et al., 2017; Umanzor et al., 2021).

Transcriptomics

Responses of organisms to stress are often measured by 
physiological parameters, such as survival, reproductive success 
or growth, which are extremely relevant because they underlie 
the success of species. However, the underlying molecular 
mechanism often remains unknown even when significant 
physiological responses are found after exposure to a stressor 
(Bischof et al., 2019). Transcriptomics approaches focus on the 
expression of mRNA following a stimulus. Given the nature of 
mRNA, this approach measures a transient response that can be 
encoded at the DNA level or via epigenetic mechanisms (Stark 
et al., 2019). The application of this approach to non-model 
organisms has been rising in recent years, and methods have 
improved considerably in a short period. Nonetheless, the use 
of transcriptomics in brown algae is lagging and has been ap-
plied to only a few species [e.g. Laminaria digitata (Liesner et 
al., 2022); Undaria pinnatifida (Graf et al., 2022); and mostly 
on the brown algal model Ectocarpus (e.g. Ahmed et al., 
2014; Mignerot et al., 2019) and the commercially important 
Saccharina japonica (e.g. Liu et al., 2014; Zhang et al., 2021)]. 
Although access to transcriptomic data in brown algae has 
been made easier by advances in (higher) model plants, namely 
Arabidopsis thaliana (e.g. Zhang et al., 2017), the evolutionary 
distance between Phaeophyceae and plants and other algae cre-
ates challenges. There is still a very low annotation rate of ex-
pressed genes in brown algae because few functional studies 
have been conducted in this group, given that approaches such 
as reverse genetics are not available (Kroth, 2013; Bringloe et 
al., 2020). However, promising advances have been made re-
cently, and the use of CRISPR/Cas9 technology might enable a 
better understanding of the function of each gene in the metab-
olism of this group (Badis et al., 2021).

Gene-expression patterns in S. latissima were investigated 
initially using microarrays (Heinrich et al., 2012a, b; Heinrich 
et al., 2015, 2016), but more recently, RNA-sequencing has 
been applied (Monteiro et al., 2019a, b; Pearson et al., 2019; 
Li et al., 2020a; Li et al., 2020b), and reference genes for real-
time quantitative PCR have been developed (Xing et al., 2021). 
Transcriptomic studies in S. latissima have revealed an intri-
cate metabolism-wide programming of gene expression in the 
species in response to environmental drivers, discussed in the 
section ‘Responses to environmental drivers’.

Epigenomics

Epigenomics have been shown to play a crucial role in 
defining a phenotype (Moore et al., 2013; Anastasiadi et al., 
2021). Given its sessile lifestyle and often low dispersal dis-
tances, S. latissima is likely to rely on epigenetic mechanisms 
and epigenetic variation. Epigenetic mechanisms play an es-
sential role in the adaptation of a population, and in the coping 
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mechanisms of an individual in reaction to local conditions, 
ecotype differentiation (eco-phenotype) or rapid changes in 
local conditions (= local).

The known, non-exclusive epigenetic mechanisms encom-
pass non-coding RNA, histone modification and DNA methy-
lation (Boquete et al., 2021). They have been shown to play a 
role in establishment, maintenance and control of gene expres-
sion without changes to the DNA sequence (Anastasiadi et al., 
2021); hence, they play a key role in the eco-evolutionary dy-
namics of a species (Calosi et al., 2016; Anastasiadi et al., 2021). 
Research on epigenetic modulation and variation thereof is well 
established in plant biology (Richards et al., 2017). However, in 
kelp, the study of epigenetics has recently gained momentum, 
with only a handful of studies to date (Phaeophyceae; Cock et 
al., 2010; Liu et al., 2019; Fan et al., 2020a; Teng et al., 2021; 
Scheschonk et al., 2022).

Regarding epigenetic mechanisms in the genus Saccharina, 
only DNA cytosine methylation has been investigated so far (Liu 
et al., 2019; Fan et al., 2020a; Teng et al., 2021; Scheschonk 
et al., 2022). ‘DNA methylation’ in plants and algae describes 
the methylation of a cytosine in the DNA (5ʹ-methylcytosine). 
DNA cytosine methylation can occur within and outside genes 
in the sequence context of CG, CHG or CHH (with ‘H’ being 
any base except G; Bewick et al., 2017). Genes are typically 
methylated in the CG context in animals (Schmitz et al., 2019), 
and methylation of the CG context in gene bodies of nuclear 
DNA is between 2 and 86 % across Viridiplantae (Bewick et al., 
2017). Methylations in the CG, CHG and CHH contexts were 
found to act in silencing transposable elements in and outside 
of genes (Zhou et al., 2020) or to act in regulation of transcript 
expression (Dubin et al., 2015; L. Zhang et al., 2018a; Boquete 
et al., 2021). With this, they are important to consider as aspects 
of and adaptation processes. Moreover, it has been proposed in 
plants that CG methylation regulates the inheritance of other 
types of epigenetic information (Mathieu et al., 2007).

Within brown algae, there seem to be group-specific occur-
rences regarding the types of epigenetic mechanisms. Histone 
modification has been observed in Ectocarpus siliculosus 
(Cock et al., 2010; Bourdareau et al., 2021), whereas DNA 
cytosine methylation was found to be negligible, which led to 
the assumption that DNA methylation is negligible in brown 
algae (Cock et al., 2010). However, in the kelps S. latissima and 
S. japonica, it has recently been established that methylation 
plays a significant role in gene expression, for both the nuclear 
genome and the chloroplast genome (e.g. Fan et al., 2020a, b; 
Yang et al., 2021; Scheschonk et al., 2022). Hence, it is likely 
that the totality of epigenetic modifications of importance in 
S. latissima can be assessed only by testing for the respective 
mechanism in the species, or possibly the congener species (S. 
japonica), but cannot be implied per se by findings from other 
genera within the group of Phaeophyceae. The studies focusing 
on Saccharina spp. investigated the impact of cytosine methy-
lation on both life-cycle stages at the transcriptomic level (S. 
japonica; Liu et al., 2019; Fan et al., 2020; Teng et al., 2021) 
and differences in cytosine methylation attributable to cultiva-
tion and latitudinal location (possibly heritable traits) observ-
able at the sporophyte stage (S. latissima; Scheschonk et al., 
2022; L. Scheschonk, unpubl. res.). Cytosine methylation was 
shown to influence gene expression in both life-cycle stages 
(predominantly, the non-heritable methylation variant CHH; 

~56 %; Yang et al., 2021), with higher methylations found in 
the gametophyte stage for both nuclear and chloroplast genome 
(Fan et al., 2020b; Teng et al., 2021). In both life-cycle stages 
and genomes (nuclear and chloroplast), high levels of cytosine 
DNA methylation led to the silencing of the respective DNA 
sequence, acting as an additional control mechanism in gene 
expression (Fan et al., 2020a). At the population level, differ-
ences in cytosine methylation were observed between latitudes 
in populations regardless of cultivation status (laboratory and 
wild; Scheschonk et al., 2022; L. Scheschonk, unpubl. res.). 
This implies hereditary additional control imposed via cyto-
sine methylation. As in other sequences, regions became 
methylated only during the cultivation process in both origins, 
and DNA cytosine methylations are likely to be a mechanism 
of rapid adaptation, because changes in habitat (wild to culti-
vation) initiated epigenetic changes within a generation.

RESPONSES TO ENVIRONMENTAL DRIVERS

Temperature

The composition and biogeographical distribution patterns of 
macroalgal communities are largely determined by temperature 
(Lüning, 1984; Adey and Steneck, 2001; Wiencke and Bischof, 
2012). Thus, climate change, particularly warming and marine 
heatwaves (MHWs), is a major threat to marine forests (e.g. 
Harley et al., 2012; Smale, 2020). Hobday et al. (2016) defined 
MHWs as a temperature increase above the 90th percentile of 
the 30-year mean for >5 days consecutively; however, several 
publications mention MHWs as prolonged anomalously warm 
water events. As the use of the term ‘MHW’ differs among 
studies, in this review, we refer to the wording of the individual 
studies.

Much is known about the general thermal characteristics of 
S. latissima, mainly in terms of survival, reproduction, photo-
synthesis and growth (Bartsch et al., 2008). Like other kelps, 
S. latissima is a cold-temperate organism (Araújo et al., 2016). 
The survival threshold of sporophytes has been shown to be 
location specific. Sporophytes from Helgoland presented op-
timal growth between 10 and 15 °C (Bolton and Lüning, 1982), 
although they tolerated an extensive range of temperature, from 
0 to 23 °C, for shorter periods, with sharply increasing mor-
tality rates at >20 °C (Fortes and Lüning, 1980; Lüning, 1984, 
1990a).  Sporophytes from Nova Scotia were found to have 
decreasing growth rates with increasing temperatures between 
11 and 21 °C, high mortality at 18 °C and no survival at 21 °C 
after merely 2 weeks (Simonson et al., 2015a). On the con-
trary, S. latissima sporophytes from Brittany survive ≤25 °C 
for >1 week (Diehl et al., 2021). Susceptibility to high tem-
perature was shown to vary with environmental thermal his-
tory, thus between seasons and years (Niedzwiedz et al., 2022). 
Gametophytes of S. latissima exhibited a broader thermal toler-
ance, surviving temperatures down to −1.5 °C and up to 23–25 
°C (tom Dieck, 1993). Differences in temperature sensitivity 
were also found between laboratory cultures and field sporo-
phytes (Heinrich et al., 2016) and between male and female 
gametophytes (Monteiro et al., 2019a). Consequently, gener-
alizations about thermal limits of S. latissima based on limited 
spatial covering and without consideration of generational ef-
fects should be handled carefully.
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Detrimental effects of suboptimal high temperatures on S. 
latissima often include compromised growth (e.g. Bolton and 
Lüning, 1982; Simonson et al., 2015b), but high temperature 
can also lead to weakening of the tissue structure (Simonson et 
al., 2015b), increasing blade erosion (Krumhansl et al., 2014; 
Simonson et al., 2015b), enhanced biofouling and epiphytism 
(Andersen et al., 2013; Forbord et al., 2020), complex modi-
fications in photosynthetic mechanisms, lowered chlorophyll 
a and fucoxanthin concentrations (Andersen et al., 2013), a 
strongly increased de-epoxidation state of the xanthophyll 
cycle (Nepper-Davidsen et al., 2019; Diehl et al., 2021) and 
reduced kelp carbon decomposition (Filbee-Dexter et al., 
2022a). Exposure to elevated, although not lethal, temperature 
is harmful in the long term for S. latissima (Andersen et al., 
2013; Nepper-Davidsen et al., 2019). Warming in the Arctic, 
however, might promote kelp populations, with densities being 
higher in warmer areas than at comparable colder sites (Wiktor 
et al., 2022). At the warmer sites, S. latissima was also found at 
slightly greater depths.

It is increasingly relevant to look at the impact of MHWs 
on seaweeds (Straub et al., 2019). Strong correlations between 
MHW events over the last 60 years and loss of S. latissima for-
ests in the East and West North Atlantic were found (Filbee-
Dexter et al., 2020). Nevertheless, few studies simulating MHW 
scenarios have been conducted on S. latissima (see Nepper-
Davidsen et al., 2019; Diehl et al., 2021; Niedzwiedz et al., 
2022). After a simulated 3-week MHW event in Danish waters, 
most samples died within a few days at 24 °C, and impairing 
effects of high but sub-lethal temperatures (18 and 21 °C) were 
observed in a 2-week recovery phase (Nepper-Davidsen et al., 
2019). Thereby, interrelationships were demonstrated between 
reduced growth, reduced photosynthetic performance, carbon 
uptake and pigment composition. At the same temperatures 
(11, 18 and 21 °C), no changes in C:N and phlorotannins were 
detected in specimens from Nova Scotia, Canada (Simonson 
et al., 2015b). The impact of local MHWs in the summer on 
five European S. latissima populations ranging from southern 
Brittany to Spitsbergen revealed strong physiological and bio-
chemical divergences between the populations. Increased mor-
tality and decreased photosynthetic performance at the higher 
temperature amplitude treatments were detected exclusively in 
the rear-edge populations from Helgoland (German Bight) and 
Brittany, while the Arctic population was unaffected (Diehl et 
al., 2021). In Norway, strong differences in the physiological 
condition of S. latissima were observed, showing, e.g. de-
creased growth and more erosion in a hot year compared with a 
cooler year (Armitage et al., 2017). The impact of MHWs also 
varies by year and season, as shown for field sporophytes from 
Helgoland (Niedzwiedz et al., 2022). Saccharina latissima was 
more sensitive to high temperatures at the end of summer and 
during an extremely warm year.

High and excessively low temperatures alter physiological 
and biochemical properties of S. latissima. Overall, wild S. 
latissima from Iceland revealed a positive correlation of carbo-
hydrates and negative correlations of proteins with the envir-
onmental temperature (Coaten et al., 2023). Lower pigment 
concentrations were found at temperatures of <10 °C, whereas 
the de-epoxidation state of the xanthophyll cycle was signifi-
cantly higher compared with higher temperature treatments 
(Olischläger et al., 2017; Monteiro et al., 2019b; Li et al., 

2020a), and higher phosphorylation rates of mitogen-activated 
protein kinases were measured at 2 °C than at 7 °C (Parages et 
al., 2013). Additionally, strongly enhanced mannitol concentra-
tions were detected in young sporophytes from Brittany after 0 
°C treatment, indicating a strong anti-freezing response of the 
species (C Monteiro et al., 2020a). Consequently, S. latissima 
will most probably benefit from the predicted rising temperat-
ures in subpolar and polar regions (Filbee-Dexter et al., 2019; 
Diehl and Bischof, 2021), because the physiological func-
tions of S. latissima will be enhanced (Iñiguez et al., 2016). 
Yet, darkness during the polar night seems to outcompete the 
positive effects of warming (Scheschonk et al., 2019), and low 
water temperature is a requirement for survival (Gordillo et al., 
2022). Warming in winter accelerated weight loss of young 
sporophytes over 4 months of darkness, with ~50 % at 8 °C 
and 40 % at 3 °C (Gordillo et al., 2022). Furthermore, dark 
respiration of Arctic S. latissima sporophytes increased with 
increasing temperatures (3, 7 and 11 °C) (Niedzwiedz and 
Bischof, 2023).

Arctic S. latissima gametophytes did not survive at 20 °C in 
the laboratory but grew at ≤15 °C, with higher growth rates be-
tween 10 and 15 °C than at 5 °C (measured as the length of both 
male and female gametophytes) (Park et al., 2017). Another 
laboratory study looking at Arctic gametophytes showed that 
they survive at 20 °C by heat stress mechanisms that were in-
duced extensively at the transcriptomic level at this tempera-
ture, whereas this was not the case at 4 and 12 °C (Monteiro et 
al., 2019a).

Considering spore germination, a higher temperature of 9 °C 
increased the germination rate of spores compared with 5 °C 
for Arctic individuals (Zacher et al., 2016). In an experiment 
with individuals from North America, at temperatures between 
4 and 12 °C, lower temperatures negatively influenced the size 
of gametophytes and sporophytes and the production of eggs 
and young sporophytes (Raymond and Stekoll, 2021). When 
looking at sexual reproduction, sex-biased responses to tem-
perature were found, with male gametophytes being more re-
silient to higher temperatures than females; females grew at a 
slower rate, and pathways related to fecundity were repressed 
(Monteiro et al., 2019a). Likewise, higher temperatures in-
creased the proportion of male gametophytes in an earlier study 
(Lee and Brinkhuis, 1988), but not more recently (Park et al., 
2017).

Recently, the impact of increasing temperatures in the Arctic, 
in combination with decreased salinity (Monteiro et al., 2019b; 
Diehl and Bischof, 2021), increased partial pressure of CO2 
(pCO2) (Olischläger et al., 2014, 2017; Iñiguez et al., 2016), 
ultraviolet (UV) radiation stress (Parages et al., 2013), increased 
sedimentation (Zacher et al., 2016) or increased nutrient con-
ditions (Diehl and Bischof, 2021), were investigated. All these 
studies showed that growth, photosynthetic performance, bio-
chemical composition and the transcriptomics of S. latissima 
were strongly affected by temperature. The species would 
benefit from higher temperatures in Arctic regions, whereas the 
impact of the other drivers was less pronounced or there was no 
impact at all. On the contrary, the early stages of S. latissima 
appear vulnerable to strong warming and interaction with other 
factors in the Arctic. Overall, strong interactions between light 
and temperature were also detected in different microstages, 
highlighting the impairing effect of UV-B radiation (Müller 
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et al., 2008, 2012). Increased production of superoxide anion 
radicals was measured in gametophytes in increasing temper-
atures between 2 and 18 °C and slightly under UV radiation 
(Müller et al., 2012). Temperatures ≤21 °C combined with 
hyposalinity diminished the spore settlement of S. latissima 
from Alaska (Lind and Konar, 2017). Although higher temper-
atures generally lead to higher germination rates of Arctic S. 
latissima spores, temperature and grazing had an interactive 
effect (Zacher et al., 2016). At 5 °C, the germination rate was 
higher when grazers were present, whereas at 9 °C, the reverse 
happened. The same pattern holds for the density of juvenile 
sporophytes. The species-specific interactive effects revealed a 
differential response between co-occurring kelps in the Arctic.

Large ecosystem shifts from S. latissima canopies or dom-
inance to turfs or barrens have been reported. Generally, the 
loss of S. latissima populations has been attributed to warming 
to a certain extent. In Norway, S. latissima communities were 
observed to be replaced by ephemeral, filamentous turf algae 
(Moy and Christie, 2012; Christie, Andersen et al., 2019). This 
ecosystem shift was proposed to have been driven mainly by 
extraordinarily high temperatures over summer, in combin-
ation with eutrophication (Moy and Christie, 2012). Loss of S. 
latissima beds and shifts to turf-dominated ecosystems were 
also observed in Nova Scotia, Canada, caused by increased 
temperature and diverse unbalanced multitrophic interactions 
(Filbee-Dexter et al., 2016).

The impacts of interactions between MHWs and biota on 
kelp forests appear to be extremely dynamic and complex. 
Although the severe declines of S. latissima in the eastern and 
western North Atlantic were attributable primarily to large in-
creases in the frequency and cumulative intensity of MHWs, 
excluding alternative effects, such as turbidity or biological 
factors (Filbee-Dexter et al., 2020), kelp forest mortality and 
recovery in other regions were found also to be controlled in 
a top-down manner (Christie et al., 2019b; Norderhaug et al., 
2021). Thus, multifactorial experimental set-ups are of major 
importance in identifying the complexity of reactions to climate 
change and local anthropogenic stressors (Strain et al., 2014). 
Overall, much research has been done on Arctic and Norwegian 
populations of S. latissima. In contrast, the knowledge about 
the potential of southern populations is scarce and should re-
ceive particular attention in future studies.

Hydro-optics

As photosynthetic organisms, seaweeds are dependent on 
light availability to survive. Irradiance effects on S. latissima 
have already been well studied for decades and have been sum-
marized by Bartsch et al. (2008). Both extremely high and low 
photosynthetic active/available radiation (PAR) and mainly UV 
radiation (UVR) cause modifications in multiple biochemical 
and physiological processes in S. latissima, with early life stages 
and adult sporophytes showing differences in susceptibility.

More recent studies have demonstrated that reduced irradi-
ance negatively affects the growth performance of sporophytes 
in situ (Spurkland and Iken, 2011; Forbord et al., 2020) without 
diminishing the photosynthetic performance (Spurkland and 
Iken, 2011) but still promoting biofouling (Forbord et al., 2020). 
The maximum modelled distribution depth of S. latissima in 
Arctic fjords followed the extent of the meltwater plume, being 

shallower close to the glaciers and deeper in outer fjord regions 
(Niedzwiedz and Bischof, 2023). Pronounced variability was 
found in different parts of the phylloid regarding the long-term 
storage of the carbohydrate laminarin in Arctic field sporophytes 
between October and early February (Scheschonk et al., 2019). 
Also, other biochemical components, such as mannitol or ni-
trogen, declined greatly during the dark season. Interestingly, 
darkness appeared to be optimal for artificial sporogenesis of 
Danish S. latissima compared with other light levels (20–120 
μmol photons m−2 s−1) (Boderskov et al., 2021).

A few studies suggest that other response variables, beyond 
the main physiological and biochemical parameters, are involved 
in to variations in light in S. latissima. Enhanced release of or-
ganic iodine and reduced release of reactive organic bromine and 
chlorine were found after PAR (23 µmol photons m−2 s−1) + UVR 
exposure (Laturnus et al., 2010). The impacts of PAR (~10 µmol 
photons m−2 s−1) and UVR were also investigated in chloroplasts 
of vegetative (non-soral) and fertile (soral) tissue of S. latissima 
(Holzinger et al., 2011). The fertile tissue cells were not affected 
by PAR + UVR, whereas negative effects were found in vege-
tative parts. For instance, decreased optimal quantum yields of 
photosystem II Fv/Fm were measured under UVR treatment, 
and the chloroplast structure was altered, i.e. including more 
physodes. Another study revealed that the oxygen consumption 
rate of S. latissima was significantly higher in high light condi-
tions (300 µmol photons m−2 s−1) compared with low light condi-
tions (3 µmol photons m−2 s−1) (McDowell et al., 2015).

Sedimentation and epibiosis have a strong impact on light 
availability. Saccharina latissima can withstand short-term 
sediment cover (Roleda and Dethleff, 2011; Picard et al., 2022), 
whereas longer burial negatively affects its vitality and morph-
ology (Roleda and Dethleff, 2011). Furthermore, it was shown 
that sediment from melting ice weakened the recruitment of 
S. latissima (Zacher et al., 2016). Overgrowth with epibionts, 
with consequent shading, can reduce growth and survival of the 
species (Andersen et al., 2018).

Polar night imposes very special conditions for Arctic S. 
latissima, especially when combined with future increases in 
winter temperatures. Treatments of light/dark or darkness alone 
seem to have a greater effect on S. latissima than the various 
temperatures applied (0, 4 or 8 °C) (Scheschonk et al., 2019). 
The lower laminarin content at elevated temperatures (8 °C) 
suggests that prolonged darkness might be a problem for S. 
latissima under future temperature trends.

In a comparable study on S. latissima sporophytes, low tem-
peratures (2 °C) and PAR (10 µmol photons m−2 s−1) + UVR 
treatments activated the rapid phosphorylation of mitogen-
activated protein kinases, while UVR generally impaired the 
photosynthetic performance (Parages et al., 2013). A study in 
juvenile Arctic sporophytes revealed that Fv/Fm remained un-
changed in low PAR treatments (~24 µmol photons m−2 s−1), 
even with the addition of UVR, and that it decreased under high 
light stress (~110 µmol photons m−2 s−1), especially when com-
bined with UVR (Heinrich et al., 2012b; Heinrich et al., 2015). 
Remarkably, the photosynthetic performance exhibited particu-
larly severe reduction at high PAR + high temperatures (17 vs. 2 
and 7 °C) (Heinrich et al., 2012b), whereas when UVR was in-
cluded in a comparable set-up, the strongest inhibition occurred 
in the high PAR + UVR treatment at 2 °C, compared with 7 and 
12 °C (Heinrich et al., 2015). Thus, high temperatures appear 
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to mitigate the impairing effects of UVR on S. latissima sporo-
phytes. However, these observations were more pronounced in 
laboratory cultures than in field sporophytes (Heinrich et al., 
2015).

Investigation of the effects of irradiance (<10 and 30–50 
μmol photons m−2 s−1), temperature (4, 8 or 12 °C) and season 
on gametophyte growth and reproduction of S. latissima re-
vealed that the gametophyte length, sporophyte length, frac-
tion of female gametophytes with eggs, and fraction of female 
gametophytes with sporophytes were all altered mainly by tem-
perature and season (Raymond and Stekoll, 2021). Irradiance 
significantly affected all response parameters except for gam-
etophyte length; however, interactions were found only for 
sporophyte length (irradiance × temperature).

In the last decade, transcriptomic responses of S. latissima 
to different light conditions have been investigated (Heinrich 
et al., 2012b; Heinrich et al., 2015, 2016; Li et al., 2020b; 
Xing et al., 2021). On the time scale of 24 h exposure, the 
combination of high temperature and high PAR induced more 
transcriptomic regulation than low temperature and low PAR. 
High PAR and high temperature widely downregulated genes 
involved in photosynthesis, including photosystem I/II com-
ponents, thylakoid protein and light harvest complex proteins 
with strong folds (≤60-fold). Genes encoding reactive oxygen 
species (ROS) scavenging enzymes, oxygen heat shock pro-
teins and proteins involved in proteolysis were upregulated 
under high PAR and high temperature conditions. In contrast, 
the combination of high PAR and low temperature generally 
upregulated genes encoding photosynthesis, ROS scavengers 
and heat shock proteins, whereas downregulated genes encoded 
proteolysis-related protein. Exposure to UVR for 24 h also in-
duced a wide regulation of gene expression, mainly including 
photosynthetic components, DNA repair, vitamin B6 biosyn-
thesis and ROS scavengers, which supported that UVR nega-
tively affected photosynthesis and damaged DNA (Heinrich et 
al., 2012b). Long-term (14 days) exposure to PAR, UVR and 
temperature combinations resulted in large transcriptomic re-
programming, which did not cause physiological adjustments. 
The combination of high PAR and UVA caused more gene regu-
lation than the single exposure to high PAR or UVR and mainly 
upregulated genes encoding photosynthetic components, pig-
ment metabolism, glycine, serine and threonine metabolism 
and ROS scavenging enzymes. The transcriptomic responses of 
S. latissima to 14 days of darkness at two temperatures revealed 
that darkness induced more regulated genes than increased 
temperature (Li et al., 2020b). Darkness downregulated genes 
encoding enzymes involved in glycolysis and metabolite bio-
synthesis. Some energy-consuming processes, e.g. photosyn-
thetic components and biosynthesis of transporters were also 
repressed. On the contrary, genes coding for the catabolism of 
lipid and laminarin, the glyoxylate cycle and signalling were 
upregulated in darkness, pointing out the possible energy 
source of S. latissima during the polar night.

Salinity

Coastal salinity frequently varies with tidal ranges, precipi-
tation, freshwater plumes from rivers or terrestrial run-offs 
(Lüning, 1990), increasing with climate change (Holt et al., 
2010; Masson-Delmotte et al., 2021). Variation in salinity is 

particularly relevant for the physiology of S. latissima in Arctic 
fjord systems owing to enhanced sea ice and glacier melting 
(Hanelt et al., 2001; Svendsen et al., 2002; Sundfjord et al., 
2017). Fluctuations in salinity lead to osmotic stress, with con-
sequences at the physiological and biochemical level, which is, 
overall, well studied for seaweeds (see Karsten, 2012 and ref-
erences therein) but not for S. latissima. Although Laminaria 
sensu lato is considered a rather stenohaline genus (Bartsch 
et al., 2008), S. latissima is known physiologically to tolerate 
broad ranges of salinities between absolute salinities (SA) 5 and 
60 (Karsten, 2007), although young sporophytes were shown 
to have a tolerance of down to SA 11 in laboratory conditions 
(Karsten, 2007; Peteiro and Sánchez, 2012), which allows 
the species to inhabit brackish waters (Nielsen et al., 2016c; 
Mortensen, 2017). Nevertheless, hyposalinity results in de-
creased growth (e.g. Spurkland and Iken, 2011; Marinho et 
al., 2015; Bruhn et al., 2016; Forbord et al., 2020), diminished 
photosynthetic performance (e.g. Karsten, 2007; Spurkland and 
Iken, 2011; Peteiro and Sánchez, 2012) and loss of pigmenta-
tion (Karsten, 2007; Peteiro and Sánchez, 2012). Furthermore, 
decreased carbon dioxide exchange rates were detected at 
low salinities (Mortensen, 2017). Generally, salinity has a 
strong effect on the biochemical composition of S. latissima. 
For instance, the content of sulfated fucose-rich polysacchar-
ides, measured with fucoidan, generally increased at absolute 
salinities (SA 15–25) in the Baltic Sea; however, the pattern 
did not hold for all locations (Bruhn et al., 2017). Samples of 
S. latissima from an Atlantic population hold higher contents 
of fucose-containing sulfated polysaccharides than a Baltic 
population, which experiences lower salinity variation than the 
former population (Ehrig and Alban, 2015). Along the salinity 
gradient of the Baltic Sea’s, effects of salinity were observed 
in carbohydrates, proteins, pigments and nitrogen contents 
(Nielsen et al., 2016a). However, it should be noted that these 
observations were not necessarily consistent between different 
populations or experimental frameworks (Manns et al., 2017; 
Diehl et al., 2023).

Little is known about the interaction between salinity and 
other factors in S. latissima, with only salinity × temperature 
having been investigated so far. Recent studies revealed that 
potentially, hyposalinity is highly stressful for S. latissima in 
combination with temperature variation. In the Baltic Sea, low 
salinity in combination with high summer temperatures de-
creases the productivity of S. latissima owing to high physio-
logical stress in cultivated seaweed (Nielsen et al., 2014). Arctic 
field adult sporophytes of S. latissima, however, were almost 
unaffected by an increase in temperature (from 4 to 10 °C) and 
hyposalinity (SA 25) in mimicked field conditions (Diehl et al., 
2020), although slightly increased growth and photosynthetic 
performance (Fv/Fm) were detected at higher temperatures. 
In contrast to adult sporophytes, more pronounced effects of 
both parameters and some interaction of salinity and tempera-
ture are detectable in the early life stages of S. latissima. For 
instance, elevated temperatures and low salinities decreased 
spore settlement and gametophyte growth (Lind and Konar, 
2017). The impact of temperature × salinity interaction was in-
vestigated in young sporophytes from Brittany and the Arctic 
by running comparable experiments on specimens from both 
locations (Monteiro et al., 2019b; C. Monteiro et al., 2020a; 
Li et al., 2020a). Remarkably, similar effects were observed 
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in young sporophytes from the two regions. Lower salinities 
had little negative impact on growth and Fv/Fm and modified 
the xanthophyll-cycle pigment pool. The effects of different 
temperatures were more pronounced, revealing ameliorating 
effects of higher temperatures and diminishing effects of lower 
temperatures.

At the transcriptomic level, an ameliorating effect of high 
temperature was observed for algae from Brittany and Svalbard 
(Monteiro et al., 2019b; Li et al., 2020a). The treatments at low 
salinity (SA 20) at 0 and 8 °C elicited more differentially ex-
pressed genes than at 15 °C and low salinity. Geographical vari-
ation also played an important role, because the combination of 
low salinity and low temperature was especially stressful for 
sporophytes from Brittany (not exposed to 0 °C in their envir-
onment of origin) than from Svalbard. In response to low sal-
inity, metabolic pathways such as photosynthesis and carbon 
assimilation were downregulated, and some gene coding en-
zymes contributed to the xanthophyll cycle and cell wall me-
tabolism were also down-regulated. Moreover, genes coding 
for heat shock proteins and enzymes involved in the synthesis 
of mannitol and proline were not significantly regulated during 
this experiment, perhaps revealing that the stress was mild or 
that the regulation of salt stress is more intricate than expected, 
involving several other pathways than those already described 
for other environmental drivers.

Nutrients

The macronutrients nitrogen (N) and phosphorus (P) serve as 
essential elements for photosynthesis and growth, of which N 
is considered the main limiting resource for macroalgal prod-
uctivity (Roleda and Hurd, 2019). An overview of nutrient 
physiology and factors affecting nutrient uptake in seaweeds 
is provided by Roleda and Hurd (2019). Effects of various nu-
trient regimes have been well investigated for Laminariales, 
including S. latissima (summarized by Bartsch et al., 2008). 
Laminariales can accumulate nutrient reserves over winter 
when nutrient conditions are favourable (Bartsch et al., 2008; 
Lubsch and Timmermans, 2019) and have an optimal environ-
mental nitrate concentration of ~10 μm but also tolerate oligo-
trophic conditions (Kerrison et al., 2015). Nutrient depletion 
has long been known to have negative impacts on the physio-
logical status of S. latissima, resulting, for instance, in lower 
growth rate and lower photosynthetic performance (Williams 
and Herbert, 1989; Gerard, 1997a, b; Korb and Gerard, 2000; 
Roleda and Hurd, 2019). A recent study revealed that the de-
velopment, density and growth in length of young sporophytes 
were also diminished in nutrient-poor conditions (Raymond 
and Stekoll, 2021). Nitrate uptake rates are linearly related to 
the substrate concentrations for both N-limited and N-saturated 
young sporophytes, indicating that S. latissima requires high 
ambient nitrate concentrations in the environment to produce 
rapid growth. Sporophytes with deficient internal nitrogen 
pools exhibited higher uptake rates of nitrate than sporophytes 
with higher internal nitrogen pools (Forbord et al., 2021). As a 
result, the growth of S. latissima decreases significantly over 
the summer, although it can continue to grow for some time 
even in low nutrient conditions (Nielsen et al., 2014; Lubsch 
and Timmermans, 2019; Forbord et al., 2020). The ability of 

the species to store nutrients is also considered an advantage in 
direct competition for habitat with other seaweeds (Armitage et 
al., 2017). Several physiological parameters of S. latissima are 
also limited by bioavailable P (Bruhn et al., 2016). Comparing 
the effect of P enrichment on spores and gametophytes in 
February and April showed that growth was supported by ele-
vated P levels (23–69 μm), and earlier gametophyte develop-
ment appeared under P treatment in April (Nielsen et al., 2016a). 
Sufficient or slightly enhanced N supply is reported to have 
beneficial effects on the response of S. latissima with respect to 
several environmental stressors. For instance, it was found that 
UV damage in S. latissima can be mitigated or prevented by en-
riched (50 µm) N supply (Davison et al., 2007). Recent studies 
on nutrient × light interactions showed the high importance of 
nutrients (N + P). Specimens were not much altered overall by 
the different natural light intensities, but growth and intracel-
lular N were positively affected by elevated nutrient conditions 
(Boderskov et al., 2016; Jevne et al., 2020). The contents of 
total carbon (C) decreased, and chlorophyll a and fucoxan-
thin increased in nutrient-rich conditions and varied between 
frond parts (Boderskov et al., 2016). No distinct interaction of 
light and nutrients was determined. However, interactions of 
nutrients and light were found regarding sterolic compounds 
(de Jong et al., 2021). Highest sterol content was measured at 
low nutrient and high light, although enhanced nutrient condi-
tions combined with high light resulted in unchanged or even 
decreased concentrations. However, the authors attributed the 
results to reduced photosynthetic function rather than nutrient 
fluctuations.

A recent study on the interaction of nutrient availability and 
wave exposure revealed that fronds grow narrow under high 
wave exposure and in high nutrient concentrations and wider 
in low nutrient concentrations (Zhu et al., 2021). Additionally, 
the biomass, shape and C:N ratio of the frond surface were af-
fected by waves, nutrients and their interaction. Thereby, spe-
cific morphological changes can compensate for nutrient-poor 
conditions.

Eutrophication has become a common phenomenon in 
coastal regions, triggered mainly by anthropogenic nutrient 
input (Skjoldal, 1993; Norderhaug et al., 2015). A moderately 
enhanced N (~3–20 µm) supply was reported to influence the 
physiology of S. latissima positively (e.g. Chapman et al., 
1978; Conolly and Drew, 1985; Gerard, 1997a). However, se-
vere eutrophication levels combined with high temperatures 
are detrimental (Moy and Christie, 2012). In contrast, Arctic 
primary production was reported to be limited by low nutrient 
availability (<1 µm), but nutrient concentrations are expected to 
increase and alter seasonal patterns as melting, and thus fresh-
water run-off, increases and occurs earlier (Zacher et al., 2010; 
Filbee-Dexter et al., 2019). Only marginal positive effects 
of nutrient enrichment on the physiological and biochemical 
status were reported in sporophytes of S. latisima in the Arctic 
(Gordillo, 2006; Diehl and Bischof, 2021). Temperature effects 
outcompeted nutrient supply, and no significant interactions of 
temperature and nutrients were determined (Diehl and Bischof, 
2021).

Saccharina latissima can act as a bioremediator. In 
investigating the potential of S. latissima to remove nutri-
ents from eutrophic brackish fjord systems and the parallel 
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effects on several chemical compounds of the species, it was 
found to survive hyposalinity in elevated nutrient conditions 
(Mortensen, 2017). Higher protein and tissue N content and 
lower contents of β-glucans and iodine were found in young 
S. latissima maintained in brackish water with nutrient sup-
plementation compared with conditions in seawater with ad-
equate nutrient supply. Furthermore, the study revealed that the 
beneficial effects of increased nutrient levels were greater in 
young sporophytes than in older ones. The potential of algae 
to sequester nutrients poses great potential for establishing in-
tegrated multi-trophic aquaculture, which aims to reduce eu-
trophication caused by intensive fish farming (Kim et al., 2015; 
Marinho et al., 2015). While removing large amounts of N from 
the environment, S. latissima benefits from the elevated nutrient 
conditions by enhancing its growth by ≤50 % compared with a 
reference site (e.g. Sanderson et al., 2012; Broch et al., 2013; 
Wang et al., 2014; Fossberg et al., 2018). Different studies de-
scribe enhanced growth, photosynthetic activity, N (protein) 
concentration and pigment content, resulting in higher biomass 
quality of cultivated S. latissima (Sanderson et al., 2012; Wang 
et al., 2014; Rugiu et al., 2021; for further information, see 
Saether et al., 2023).

The effects of micronutrients on S. latissima are still largely 
unexplored. Trace metals are essential for various metabolic 
functions in seaweeds but can also be harmful at higher concen-
trations (Stengel et al., 2005 and references therein). The only 
studies on the effects of microelements, e.g. iodine or copper, on 
S. latissima were conducted >30 years ago (Hsiao and Druehl, 
1973; Brinkhuis and Chung, 1986; Chung and Brinkhuis, 
1986). However, for other Laminariales, iodine has been shown 
to support osmotic functions (Nitschke and Stengel, 2014), iron 
had a strong impact on gametogenesis (Raymond and Stekoll, 
2021), and copper modified the transcriptomic profile (Zhang 
et al., 2019). The extent to which abiotic factors and distribu-
tion patterns affect the concentration of microelements in S. 
latissima is unknown. In addition, the fact that S. latissima ac-
cumulates micronutrients from the environment (e.g. Schiener 
et al., 2015; Bruhn et al., 2016; Nielsen et al., 2016b) is of 
high relevance to the food industry, because concentrations 
above certain thresholds can exclude S. latissima biomass from 
human consumption (e.g. Bruhn et al., 2019; Kim et al., 2019; 
Roleda et al., 2019).

pH

Ocean acidification (OA) refers to the ongoing decrease in 
seawater pH and variations in carbonate chemistry resulting 
from the substantial marine uptake of CO2 since the Industrial 
Revolution (Doney et al., 2020). Studies about the effects of 
OA on S. latissima have focused mainly on growth, photo-
physiology and biochemistry. Ocean acidification has been 
reported to increase (Gordillo et al., 2015; Olischläger et 
al., 2017; Young and Doall, 2021), not affect (Iñiguez et al., 
2016; Olischläger et al., 2017) or even decrease (Swanson 
and Fox, 2007) the growth rates of S. latissima, according 
to the duration of the experiment and the levels of pCO2 ap-
plied. Photophysiology, reflected by different parameters (e.g. 
pigments, photosynthetic O2 evolution and CO2 uptake, and 
chlorophyll a fluorescence), also showed various responses in 

OA conditions. For example, in some studies, it was shown that 
OA (~1000 and ~800 ppm, respectively) significantly increased 
the rates of photosynthetic CO2 uptake and O2 evolution rates 
(Longphuirt et al., 2013; Nunes et al., 2016), whereas another 
study failed to detect differences in net photosynthesis rates 
between ambient (390 ppm) and increased pCO2 levels (1200 
ppm) (Iñiguez et al., 2016). Regarding the biochemistry, S. 
latissima was found to use more CO2 than bicarbonate (HCO3

−) 
as the photosynthetic carbon source, revealed by the signatures 
of a stable carbon isotope (δ13C) (Young and Doall, 2021). The 
contents of soluble carbohydrates, nitrogen and lipids changed 
in sporophytes of a temperate population of S. latissima, 
whereas they remained stable in the Arctic samples when pCO2 
increased alone (Olischläger et al., 2014). Saccharina latissima 
has been found to mitigate the negative effects of OA on farmed 
bivalves by increasing pH and the saturation state for aragonite 
(Young et al., 2022). Thereby, the co-cultivation of bivalves and 
S. latissima is likely to be a promising integrated multi-trophic 
aquaculture approach to generate synergistic benefits in future 
OA scenarios.

The effects of OA on S. latissima have been investigated in 
interaction with temperature (Olischläger et al., 2014, 2017; 
Iñiguez et al., 2016) and UVR (Gordillo et al., 2015). The ef-
fects of increased pCO2 on growth, biochemical composition 
and photosynthetic performances of S. latissima were gen-
erally less pronounced than those of increased temperature 
(Olischläger et al., 2017). Furthermore, Arctic S. latissima was 
more resilient to increased pCO2 and more likely to benefit 
from climate change than the temperate population, as reflected 
by its increased growth rates at elevated pCO2 and higher tem-
peratures (Olischläger et al., 2014, 2017). The interactive ef-
fects of OA and UVR illustrated that OA increased the growth 
of S. latissima, meanwhile inhibiting a series of UVR-driven 
responses (e.g. pigments and photosynthetic electron trans-
port) (Gordillo et al., 2015). Owing to the various responses 
of S. latissima to OA discussed above, more work is needed to 
understand how OA is affecting S. latissima and will continue 
do so in the future. Besides, no studies on the molecular mech-
anisms regulating responses of S. latissima to OA are available 
to date, hence transcriptomics and/or metabolomics could help 
to understand the gene regulation and related metabolic path-
ways of S. latissima in OA conditions.

BIOTIC INTERACTIONS

Microbiome

Macroalgal functioning must be considered to be a result of 
the interactions between the algal hosts and their associated 
microbiota, forming a singular entity, the algal holobiont (Egan 
et al., 2013). Algal microbial partners can be prokaryotes, such 
as viruses, Archaea or bacteria, and eukaryotes, such as fungi. 
Bacterial partners regulate and support macroalgal health and 
fitness (Goecke et al., 2010), pathogen resistance (Wiese et al., 
2009), to a changing environment (Dittami et al., 2016), and 
metabolism (Burgunter-Delamare et al., 2020).

The S. latissima microbiota has become a subject of interest 
only in recent years (Vallet et al., 2018; Tourneroche et al., 
2020; King et al., 2022; Liu et al., 2022; Burgunter-Delamare et 
al., 2023). Bacteria associated with S. latissima are also found 
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classically in other brown macroalgae (Hollants et al., 2013) and 
belong predominantly to the Proteobacteria and Bacteroidota 
phyla (Tourneroche et al., 2020; Burgunter-Delamare et 
al., 2023). At the class level, Alphaproteobacteria and 
Gammaproteobacteria (Liu et al., 2022; Burgunter-Delamare 
et al., 2023), Deltaproteobacteria, Bacilli, Flavobacteriia, 
Planctomycetia and Verrucomicrobiae (Liu et al., 2022) have 
been found. Bacterial strain isolation experiments determined 
that strains were affiliated with Actinobacteria, Bacteroidetes, 
Firmicutes and Alpha-, Beta- and Gammaproteobacteria 
and belonged to 21 genera (Wiese et al., 2009). The genera 
Marinobacter, Psychromonas, Litorimonas and Aquimarina 
were also exclusively found attached to the blade of S. latissima 
and not in the surrounding seawater (Liu et al., 2022). The bac-
terial composition changes gradually along the blade, shifting 
from a lower to higher alpha-diversity from the meristem to 
the distal part, reflecting the age gradient (Staufenberger et al., 
2008; Burgunter-Delamare et al., 2022, 2023). The degree of 
colonization is linked, in part, to the types of metabolites re-
leased by the algae (Tourneroche et al., 2020).

A bacterial core is found in S. latissima independent of the 
geographical origin, season or physiological state of the spe-
cimens. When looking at the meristematic part, a small core, 
comprising the four genera Granulosicoccus sp., Litorimonas 
sp., Hellea sp. and Blastopirellula sp., was found in two 
studies [8 of 13 Amplicon Sequence Variant (ASVs) and four 
of nine genera (King et al., 2022); four genera (Burgunter-
Delamare et al., 2023)]. Five additional ASVs (Croceitalea sp., 
Robiginitomaculum sp., Gammaproteobacteria sp., OM190 
sp. and KI89A_clade sp.) were also found in this blade region 
(King et al., 2022). The bacterial core composition also shows 
shifts from low to higher diversity along the blade at the genus 
level. The distal bacterial core comprises the four genera found 
in the meristem core plus the five genera Algitalea, Arenicella, 
Portibacter, Tenacibaculum and Bdellovibrio (Burgunter-
Delamare et al., 2023). In addition, when looking at the core 
community and the ASVs found specifically attached to a par-
ticular tissue, particularly Granulosicoccus and Litorimonas, 
ecology and genome profiles suggest that they might be ne-
cessary functionally for the host (King et al., 2022; Burgunter-
Delamare et al., 2023). For example, the Granulosicoccus 
genus might help its host thanks to key functions encoded in 
its genome (e.g. alginate metabolism, vitamin B12 biosynthesis, 
nitrogen reduction from nitrate to ammonium, or dissolved or-
ganic matter assimilation) and thus potentially providing the 
kelp with vitamins and available nitrogen (Kang et al., 2018; 
Capistrant‐Fossa et al., 2021; Weigel et al., 2022).

Fungi infect the blade more often than other parts, and 
fungal communities comprise principally Ascomycota and 
Basidiomycota (Vallet et al., 2018; Tourneroche et al., 2020), 
with a predominance of Dothideomycetes and Sordariomycetes 
(Vallet et al., 2018) or Psathyrellaceae (Tourneroche et al., 
2020). Additionally, S. latissima is colonized by viruses clas-
sified as Phaeovirus [Saccharina latissima virus, SlatV, 
family Phycodnaviridae (Schroeder and Mckeown, 2021)]. 
They are latent double-stranded DNA viruses that insert their 
genome into that of their host (McKeown et al., 2017) and 
exist in three subgroups (A, B and C). Phaeoviruses are geo-
graphically widespread in the Laminariales (McKeown et al., 
2018). In particular, Laminaria and Saccharina genera are 

infected by Phaeovirus from subgroup C (McKeown et al., 
2017). Identifications of these viruses are supported by novel 
Phaeovirus major capsid protein (mcpl MCP) sequences found 
in kelp (by PCR) (McKeown et al., 2017, 2018; Schroeder and 
Mckeown, 2021).

Environmental factors can influence the composition of 
the microbiota in S. latissima (King et al., 2022). Several 
studies have compared the bacterial population from dif-
ferent geographical origins and found regional structuring 
in S. latissima [Baltic and North Sea (Staufenberger et al., 
2008; Lachnit et al., 2009), North and West Scotland, Wales 
and South England (King et al., 2022); Brittany, Helgoland 
and Skagerrak (Burgunter-Delamare et al., 2023)]. The global 
epibacterial communities of S. latissima were differentiated 
between the Baltic and North Sea (Staufenberger et al., 2008; 
Lachnit et al., 2009). Differences regarding salinity, tidal range 
and bacterioplankton composition between sampling sites are 
likely to explain this. A regional structuring across British sites 
(North and West Scotland, Wales and South England) was also 
discovered, whereby bacterial communities in Wales differ 
from those in North and West Scotland. Here, the temperature 
is not the factor responsible, but rather the variable portion of 
the microbiota that reflects random and determinant processes 
within the host environment (King et al., 2022), because reef 
habitats are highly dynamic and influenced by several factors 
that vary across multiple scales (Kaiser, 2011; Lamy et al., 
2018). In the same way, samples from Brittany, Helgoland 
and Skagerrak cluster according to their region of origin 
(Burgunter-Delamare et al., 2023). Abiotic factors can lead to 
cellular stress and senescence and will thus create a new eco-
logical niche for specific bacterial groups (Burgunter-Delamare 
et al., 2023). Also, algal genotypes differ depending on the re-
gion (see ‘Biogeographical patterns’) (Guzinski et al., 2016, 
2020) and can impact bacterial communities. The chemical 
and lipid content in membranes also varies with environmental 
factors (see ‘Responses to environmental drivers’), hence at-
tractiveness for bacteria is influenced (Burgunter-Delamare et 
al., 2023). Furthermore, the associated microbial communities 
can vary with seasonality. Regardless of the mechanisms, sea-
sonal changes can vary from site to site; therefore, any con-
clusions drawn about seasonality are valid only for the studied 
area. Differences between winter and spring were found at the 
blades and rhizoid levels of S. latissima from the Baltic Sea 
(Staufenberger et al., 2008). In Brittany (Roscoff, France), 
the abundances of Firmicutes, Actinobacteria and Alpha- and 
Gammaproteobacteria were impacted, with an increase in au-
tumn for the Firmicutes and Alphaproteobacteria, in summer for 
the Actinobacteria and in spring for the Gammaproteobacteria. 
The seasonal changes were linked to the nutrient content of sea-
water and the chemical composition of the algae (Burgunter-
Delamare et al., 2023).

Although the biological impact of viruses on their hosts is 
largely unknown, researchers are working on the microbial ef-
fects on the host regarding potential pathogens. By performing 
co-culture experiments with bacteria specifically isolated from 
S. latissima, it has been shown that a disruption in the micro-
biota composition (dysbiosis) is correlated with an increase 
in quorum sensing molecules (bacterial ability to detect and 
respond to cell population density through gene regulation) 
and a decrease in algal growth (Burgunter-Delamare, 2022). 
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Also, Aquimarina, Parcubacteria and Peronosporomycetes 
were suggested as potential pathogens of S. latissima (Liu et 
al., 2022). Conversely, initial evidence that fungal partners of 
brown macroalgae might protect their host in vivo by producing 
molecules as an active chemical defence has been provided by 
Vallet et al. (2018). Thus, the algal microbiota might manage 
the infection rate of pathogenic microbes in the phycosphere.

Mobile biota

Kelps are essential coastal habitats for many commercially 
important fish and crustacean species (Seitz et al., 2014). 
However, specific associations between fish/crustaceans and S. 
latissima have been poorly assessed. One study found 358 in-
dividuals of fish and crustaceans associated with S. latissima 
communities in Southern Norway, higher than the number of 
individuals associated with eelgrass and turf algae but lower 
than the specimens caught in forests of Laminaria hyperborea 
(700). Regarding species richness and diversity, eelgrass beds 
held higher diversity than S. latissima and the other habitats 
(Christie et al., 2022). Habitat preferences of fish are species 
specific and vary with life stages. Young (<1-year-old) cod 
in Norwegian waters prefer red algae and eelgrass to habi-
tats dominated by S. latissima, whereas cod >1 year old used 
all seaweed and seagrass habitats equally. In turn, the fishes 
Goldsinny wrasse (Ctenolabrus rupestris) and corkwing wrasse 
(Symphodus melops) preferred S. latissima and red algae over 
eelgrasses (Dunlop et al., 2022). In the Northwest (NW) 
Atlantic, the residential fish cunner (Tautogolabrus adspersus) 
uses S. latissima and other large-blade Phaeophyta for foraging 
and refuge (O’Brien et al., 2018). Saccharina latissima offers 
a better refuge for fish (>1 cm in length) but a lower-quality 
habitat for meso-invertebrates than other morphologically dif-
ferent macroalgae, such as turf (Ware et al., 2019). However, a 
decline of large predatory fish has cascading effects throughout 
the food web, ultimately reinforcing the decline of S. latissima 
in some regions (Eriksson et al., 2009).

Epi- and endobiota

Saccharina latissima, like other kelps, can serve as a sub-
stratum, allowing smaller algae and animals to grow on (epi-
phytes) or inside (endophytes) its thalli (Bartsch et al., 2008). 
Considering epiphytes, both macroalgae (e.g. Ectocarpus 
siliculosus, Ulva lactuca and Champia parvula) and microalgae 
(e.g. pennate diatoms, including genera Licmophora, Navicula 
and Nitzschia) were observed on the surface of S. latissima 
(Liu et al., 2022). Considering endophytes, microscopic brown 
algae with filamentous thalli, mostly Ectocarpales sensu lato, 
are common in kelps (reviewed by Bartsch et al., 2008) and 
in S. latissima (Bernard et al., 2018). A study revealed that 
88 % of endophyte algae from kelps belonged to the genera 
Laminarionema and Laminariocolax, with two isolates be-
longing to the genera Ectocarpus (Bernard et al., 2019b). 
Furthermore, the most common endophyte in European S. 
latissima is Laminarioema elsbetiae (Bernard et al., 2019a). 
The infection rates of endophytic algae in wild S. latissima 
along the European coasts were found to be ≤100 % (Bernard 
et al., 2018). The occurrence and abundance of epi-/endophytic 

algae were affected both by environmental factors, such as 
seasons and locations, and by characteristics of S. latissima, 
such as age and position (Peteiro and Freire, 2013a; Bernard 
et al., 2019b; Corrigan et al., 2023). For example, the abun-
dance of epiphytes on S. latissima was observed to be signifi-
cantly higher for fronds growing in the sheltered area of the 
bay compared with those farmed at an exposed location, and 
the greatest quantities of epiphytes were on the apical parts of 
S. latissima blades (Peteiro and Freire, 2013a). Besides, cul-
tivated S. latissima in Northern Brittany was not found to be 
affected by Laminarioema elsbetiae, which is highly prevalent 
in the wild populations of European S. latissima (Bernard et 
al., 2019a). The infection with epibionts can reduce the photo-
synthesis of S. latissima by hindering ≤90 % of available light, 
revealed in laboratory conditions (Andersen et al., 2018).

In addition to causing morphological changes, endophytic 
algae also adversely impact the physiological and biochemical 
traits of kelps, such as growth and reproduction. Transcriptomic 
analysis demonstrated that S. latissima upregulated many cell-
wall modification-related genes and stress response-related 
genes during the infection of the endophyte Laminarioema 
elsbetiae, suggesting that endophytic algae damaged the cell 
wall and induced oxidative stresses in S. latissima (Xing et al., 
2021). In Norway, cultivated S. latissima sustains a heavy load 
of epibionts, ≤90 % of available area, causing light deprivation 
driven mainly by epiphytic algae and ascidians and, to a lesser 
extent, by bryozoans (Andersen et al., 2018). The lack of S. 
latissima populations at the Skagerrak coast was suggested to 
be attributable to heavy epiphytism rather than the direct effect 
of abiotic factors on S. latissima, because transplanted sporo-
phytes were able to grow and mature until the epiphyte load 
increased in the summer (Andersen et al., 2011). The reduced 
growth and survival of kelp populations in shallow waters are 
also driven by the heavy load of epibionts, driving S. latissima 
populations deeper down and reducing their vertical distribu-
tion. This impact is seasonal and site specific; hence, it prob-
ably interacts with other environmental factors to drive the 
ongoing decline of S. latissima populations (Andersen et al., 
2018).

In the wild, the bryozoan Membranipora membranacea, 
which is an epiphyte on S. latissima, has negative effects on 
populations of S. latissima in the NW Atlantic, namely tissue 
weakening, breakage and, ultimately, loss of kelp biomass 
(Attridge et al., 2022). Populations of this bryozoan, invasive 
in the Northeast (NE) Atlantic, are expected to increase under 
climate change scenarios, further impacting S. latissima popu-
lations in the area (Denley et al., 2019). In the NE Atlantic, 
M. membranacea is a common native bryozoan, and although 
very little is known for natural populations, impacts of this spe-
cies on cultivated S. latissima are already reported (e.g. Førde 
et al., 2016; Forbord et al., 2020). Another common bryozoan 
on kelps is Electra pilosa; however, this species has a slower 
growth rate and less substrate preference than M. membranacea 
and seems to have a more benign effect on kelps, including S. 
latissima; a pattern that holds on both sides of the Atlantic 
(Yorke and Metaxas, 2011; Førde et al., 2016).

Mobile and epiphytic communities associated with S. 
latissima farms in Norway were shown to be significantly dif-
ferent from those associated with wild stands, holding less bio-
diversity and a smaller number of individuals (Bekkby et al., 
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2023). The dominant species also differed between farmed and 
wild stands, with isopods being abundant in farmed S. latissima 
and nearly absent in the wild sporophytes. Also, kelp farms 
represent an additional, richer habitat than the surrounding 
water column (Bekkby et al., 2023). An S. latissima farm in 
Sweden had a significantly positive impact on the amount and 
diversity of benthic infauna and attracted a similar number of 
mobile taxa to the nearby wild sites (Visch et al., 2020). In a 
field study in Ireland comparing the associated biota of four 
macroalgae (S. latissima, Halydris siliquosa, Fucus serratus 
and Sargassum muticum), S. latissima held the lowest biomass 
of epiphytic algae of the four species (Strong et al., 2009). 
Saccharina latissima supported a broad epiphytic faunal com-
munity (significantly different from the other macroalgae), 
with the species Gibbula umbilicalis, Corophium volutator and 
Ischyrocarus anguipes being characteristic of the thallus of S. 
latissima. In turn, the grazer amphipod Dexamine spinosa was 
considerably more abundant in Sargassum muticum than in 
S. latissima and had no significant effect on the growth of S. 
latissima. Saccharina latissima also showed more resilience to 
fouling (with only 9 % of biomass loss) when compared with 
the invasive Sargassum muticum (with mean losses of 70 %) 
(Strong et al., 2009).

The biota associated with S. latissima in Kongsfjorden, a 
high Arctic fjord on the west coast of Spitsbergen, was assessed 
(Shunatova et al., 2018). One hundred and eleven sessile taxa 
were reported in S. latissima individuals attached to stone  in 
2018: 80 animals (of these, 56 were Bryozoa) and 30 algae 
taxa (of these, 36 were Phaeophyceae and 11 Florideophyceae) 
(Shunatova et al., 2018). Species richness associated with S. 
latissima was higher than in nearby sediment substrates. Both 
species richness and biomass varied with microhabitat and 
season, being considerably higher on the holdfast compared 
with blades and stipes and in January compared with May and 
September.

Grazers

Although S. latissima contains high levels of phlorotannins 
that decrease the digestibility of the species, several animals 
can still graze directly on it. Among them is the snail Lacuna 
vincta (O’Brien and Scheibling, 2016; Young and Doall, 2021). 
A comparative study revealed that S. latissima is one of the pre-
ferred food sources for L. vincta and the macroalgae that elicits 
a higher growth rate of the snail (Chavanich and Harris, 2002). 
This snail prefers reproductive over vegetative tissue, probably 
owing to lower levels of phlorotannins in the former, comprom-
ising the reproductive success of S. latissima (O’Brien and 
Scheibling, 2016). Lacuna vincta also consumes S. latissima 
at higher rates when pretreated with high temperatures (21 °C), 
probably because the tissue is easier to consume (weaker and 
more fragile at higher temperatures) (Simonson et al., 2015a). 
The grazing rate of L. vincta appeared to be unaffected by chan-
ging temperatures (Simonson et al., 2015a) but decreased in 
OA conditions (Young and Doall, 2021).

A significant group in the coastal food web are sea ur-
chins. Across the globe, events of mass grazing by sea urchins 
have decimated kelp forests and given rise to sea urchin bar-
rens (Filbee-Dexter and Scheibling, 2014b). Several studies 

have shown that grazing pressure of the green sea urchin 
Strongylocentrotus droebachiensis led to the decline of L. 
hyperborea (e.g. Rinde et al., 2014) in several areas in the NE 
Atlantic and of Saccharina longicruris, now S. latissima, in 
the NW Atlantic. Although field studies investigating the direct 
link between S. droebachiensis and S. latissima are rare, la-
boratory experiments show that S. droebachiensis indeed feeds 
on S. latissima (Daggett et al., 2010; Eddy et al., 2012), and 
growth rates of the sea urchins fed S. latissima or other species 
of macroalgae is similar (Carrier et al., 2017).

The growth and survival of S. droebachiensis are, in turn, 
controlled by its predators (Norderhaug et al., 2021) and by dis-
ease outbreaks (Feehan, 2014). A field and laboratory study in 
Nova Scotia showed that the presence of the crab Cancer bor-
ealis did not change the foraging behaviour of the sea urchin on 
S. latissima. A greater proportion of sea urchins around cages 
with S. latissima than without was also determined, revealing 
some response to a food cue (Harding and Scheibling, 2015). 
Another study revealed that juveniles of S. droebachiensis 
inhabiting S. latissima holdfasts are 20–30 % less likely to be 
predated by the crabs C. borealis and Cancer irroratus when 
compared with treatments with no refuge (Feehan et al., 2019). 
Also, there was a correlation between S. latissima volume and 
the size of sea urchin juveniles, showing that S. latissima serves 
as food, habitat and refuge for S. droebachiensis (Feehan and 
Francis, 2014). Moreover, S. latissima detritus remains a main 
food source even for deep-living sea urchins (60 m) that can 
maintain a good reproductive status (Filbee-Dexter, 2014). 
In a laboratory experiment with samples of S. latissima from 
Alaska, a high sediment load (as in a land-terminating glacier) 
led to a sharp decrease in grazing rates of S. droebachiensis 
on S. latissima. In the same experiment, increasing temperature 
had no effect on grazing rates (Traiger, 2019).

Other species of sea urchin feed on S. latissima, such as 
Arbacia punctulata, although they prefer turf algae to S. 
latissima (Hamel, 2022). The purple sea urchin Paracentrotus 
lividus also feeds on S. latissima (Castilla-Gavilán et al., 2019), 
although the best growth performance is achieved when fed 
on the red alga Palmaria palmata. A set of mesocosm experi-
ments compared respiration and consumption rates of several 
grazers under medium and increased temperatures (Gilson 
et al., 2021). The common sea urchin Echinus esculentus 
preferred the combination of S. latissima and L. digitata 
over Laminaria ochroleuca and Saccorhiza polyschides, 
the gastropod Steromphala umbilicalis consumed more of 
the latter, and the amphipod Gammarus spp. did not exhibit 
a preference. In addition, both E. esculentus and Gammarus 
spp. increased their respiration rates under warming, but only 
Gammarus spp. increased their consumption rates. In turn, S. 
umbilicalis increased growth with warming, but the other two 
species did not. Another animal group feeding on S. latissima 
are fish, such as wrasses, although S. latissima represents only 
a small percentage of their diet (Bourlat et al., 2021). However, 
more studies looking at the gut content of fish are necessary to 
understand better the pressure exerted by this group of grazers.

A recent study revealed that kelp forests have recovered  
(L. hyperborea and S. latissima considered together) along 
the northern Norwegian coast (Christie et al., 2019b). The re-
covery was suggested as the result of complex interactive ef-
fects of temperature on the food web. In the southern part of the 
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previous sea urchin barren, the recovery of kelp is attributable 
to a decline in sea urchins following direct and indirect effects 
of increasing temperature (Christie et al., 2019b), whereas in 
the northernmost regions of Norway, the recovery seems to 
be driven by top-down control. Overfishing of cod leads to a 
increase in predatory crustaceans, hence an decrease in sea 
urchin abundance, which results in a decreased grazing pres-
sure on kelp (Christie et al., 2019b; Norderhaug et al., 2021). 
Given that this region is monitored closely (Moy and Christie, 
2012; Christie et al., 2019a, b), this could be an ideal oppor-
tunity to understand shifts between phases and determine what 
actions are successful in recovering S. latissima populations. 
Such knowledge can then be applied to less studied regions. 
Considering the diversity of animals feeding on S. latissima and 
the unknowns related to their interactions with other species 
and physical factors, more work is necessary to clarify the im-
pact of grazing on S. latissima.

Algal competitors

Saccharina latissima disappeared in the early 2000s from 
several sites in Norway and has been replaced by turf algae 
(Moy and Christie, 2012). Since then, several studies have tried 
to understand the underlying mechanisms and monitor any 
changes (e.g. Andersen et al., 2018; Christie et al., 2019a, b). 
Although some studies have reported that a regime shift has oc-
curred (S. latissima was no longer able to recover and had been 
replaced by turf algae), recent monitoring efforts have revealed 
some recovery, although temporally and spatially variable. A 
similar regime shift has occurred in the NW Atlantic. Off Nova 
Scotia, Canada’s kelp biomass (mainly composed of L. digitata 
and S. latissima) was recently found to have decreased by 85–99 
% when compared with the first monitoring campaigns in 1949 
(Filbee-Dexter et al., 2016). In the Gulf of Maine, a phase shift 
from canopy algae (including S. latissima) to ephemeral turf 
algae has occurred, and now 50–90 % of the bottom is domin-
ated by red and green algae that were not common in the 1980s 
(Dijkstra et al., 2017). Associated biota was found in lower 
numbers in S. latissima and other canopy species than in highly 
branched and filamentous algae. Nevertheless, high numbers of 
several gastropods were associated with S. latissima, including 
Lacuna vincta, Margarite helicinus and Mitrella (Dijkstra et 
al., 2017). The presence of turf algae reduced S. latissima popu-
lations further by competing for space. Saccharina latissima is 
increasingly recruiting from turf algae, but the individuals are 
smaller, the survival rate lower, and they are more likely to be 
dislodged by wave action than sporophytes attached to rocky 
reefs, hence decreasing the health of the populations (Burek et 
al., 2018; Feehan et al., 2019). It was suggested that individ-
uals are smaller because energy is diverted to larger holdfasts 
required to stabilize sporophytes in a more unstable substratum 
(turfs compared with rocks). Detachment rates of turf-attached 
S. latissima are more pronounced at high wave-action sites or 
after storm events. This pattern was consistent throughout the 
distributional range of S. latissima in the NW Atlantic.

A field study in Northern Ireland revealed that the invasive 
Sargassum muticum did not compete with S. latissima stands 
(Strong and Dring, 2011). Another potential competing species 
is the invasive green alga Codium fragile ssp. fragile. A study 

in Nova Scotia compared C. fragile with S. latissima in terms 
of the composition of its detritus and contribution to the detrital 
food chain (Krumhansl, 2012), revealing that degradation in S. 
latissima was faster and resulted in greater mass loss than C. 
fragile. The C:N ratio was higher in S. latissima than in C. fra-
gile throughout decomposition, resulting in a lower nutritional 
value of S. latissima than of C. fragile. This resulted in associ-
ated macrofauna that was more abundant but less diverse on S. 
latissima than on C. fragile.

BIOGEOGRAPHICAL PATTERNS

Population differentiation at the genetic level

The population structure, genetic diversity and connect-
ivity of populations of S. latissima have been explored in re-
cent years (Guzinski et al., 2016, 2020; Nielsen et al., 2016c; 
Luttikhuizen et al., 2018; Mooney et al., 2018; Neiva et al., 
2018; Grant and Chenoweth, 2021). Overall, population dif-
ferentiation, low within-population genetic diversity and low 
connectivity have been observed, although regional and local 
patterns can differ.

Only one study compared samples across oceans, identifying 
four differentiated phylogroups: (1) including specimens from 
NW Pacific (Japan, as Saccharina coriacea), NE (British 
Columbia) Pacific and Greenland and Hudson Bay in NW 
Atlantic; (2) NE Atlantic; (3) NW Atlantic; and (4) samples 
from Russia previously identified as Saccharina cichorioides 
(Neiva et al., 2018). Together with recent findings on individ-
uals in the NE Pacific and Bering Sea (Grant and Chenoweth, 
2021), the hypothesis of a northern refugium during the Last 
Glacial Maximum for the species is gaining support, in con-
trast to the previous hypothesis of recolonization from southern 
European populations, as has been suggested for other seaweed 
species (Bringloe et al., 2020). Further differentiation of S. 
latissima populations exists within the NE Atlantic phylogroup, 
with distinct ‘northern’ and ‘southern’ clusters (Neiva et al., 
2018). Those authors suggest that speciation might be in pro-
gress within these phylogroups, in accordance with another 
study determining population differentiation between seven 
European populations (Luttikhuizen et al., 2018). Furthermore, 
it was shown that within-population genetic diversity is lowest 
for the southern populations (Spain and Portugal) and the iso-
lated island population on Helgoland, German Bight, and 
highest in Spitsbergen (Guzinski et al., 2016). This was also 
confirmed by a more recent study using both microsatellites 
and double digest restriction site-associated DNA sequencing, 
to explore the genetic diversity of 11 populations in the NE 
Atlantic (Guzinski et al., 2020).

At smaller scales, populations of S. latissima revealed low 
genetic diversity within a brackish population (Denmark), while 
significant differences were observed between brackish and 
marine populations (Denmark vs. Norway and Sweden) (Nielsen 
et al., 2016c). In the Irish Sea, populations from Scotland, the 
Isle of Man and Northern Ireland were also shown to be differ-
entiated (Mooney et al., 2018). In Norway, isolation-by-distance 
has been observed in S. latissima; however, the grouping seems 
to differ according to the method of analysis owing to the 
use of different genetic markers and sampling sites and sizes. 
In general, northern populations (Svalbard and Lofoten) are 
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observed to be genetically distinct, suggesting that a physical 
barrier (islands) drives genetic differentiation. Overall, along the 
Norwegian coastline, results range from three different genetic 
groups (Evankow et al., 2019) to generally connected popula-
tions (Ribeiro et al., 2022). Local adaptation has been discussed 
for the general connection, because including a locus under posi-
tive selection altered the results of the genetic structure, even 
in the face of gene flow (Ribeiro et al., 2022). Like European 
populations, a differentiation in ‘cold’ and ‘temperate’ clusters 
was found in the NW Atlantic phylogroup, although less pro-
nounced (Neiva et al., 2018). Fine-scale genetic structure and 
low within-population genetic diversity have been found for 
populations along the eastern Maine region in the NW Atlantic 
(Breton et al., 2018). However, comparing the same markers, 
lower allelic richness and heterozygosity were reported in NW 
Atlantic than in NE populations (Guzinski et al., 2016). Lower 
genetic diversity in the NW Atlantic compared with the NE has 
been reported for other benthic taxa (Wares and Cunningham, 
2001). A recent study in S. latissima with more sampling sites 
revealed a biogeographical barrier at Cape Cod separating the 
populations in the Gulf of Maine and southern New England 
(Mao et al., 2020).

Despite the apparent wealth of studies targeting the popula-
tion structure of S. latissima, they differ in the locations studied 
and methods applied, preventing a wide comparison and global 
conclusions. All studies generally show that within-population 
genetic diversity is low, which is concerning because it indi-
cates that populations might not have the adaptive potential to 
face increasing environmental change at sites where it is most 
extreme. Moreover, they report low connectivity that could 
result from stretches of land, waves and currents and vari-
ation in salinity depending on the site that restricts coloniza-
tion of disturbed populations. For a successful conservation 
and/or restoration plan for the species, more data are needed 
on population differentiation, covering a large number of lo-
cations across the geographical distribution but also spatial 
heterogeneity at smaller scales (e.g. islands or other isolated 
populations). Different markers and sequencing depth provide 
slightly different results, which should be taken into account 
when choosing the methods.

However, most studies on population differentiation have 
neglected the epigenetic component of local adaptation, which 
is strong in S. latissima across latitudes (Scheschonk et al., 
2022). The epigenetic component might explain the general 
capacity of this species to adjust to rapid changes and colonize 
very different habitats. Hence, even with the apparent low gen-
etic diversity, epigenetic differences might be high, and there-
fore it is crucial that they are considered in future studies.

Phenotypic plasticity and local adaptation

Phenotypic plasticity refers to the ability of a single genotype 
to modify its phenotype in response to changing conditions 
(Nicotra et al., 2010; King et al., 2018). In contrast, ecotypes 
are locally adapted populations that are phenotypically and 
genetically differentiated for adaptive traits, meaning that they 
perform better in the local conditions than another population 
from a distant location with other local environmental factors 
(Kawecki and Ebert, 2004; Nicotra et al., 2010). Ecotypes 
can emerge by long-term exposure to selective environmental 

pressures (Nicotra et al., 2010), such as temperature ecotypes 
in different climate zones. For example, stress responses and 
recovery from ocean warming and heat waves were shown to 
differ between organisms and across latitudes (Winters et al., 
2011; Liesner et al., 2020a). By local adaptation and acclima-
tion mechanisms, species can vary in tolerance and perform-
ance to biotic and abiotic factors.

In models or simulations, broadly distributed species are 
usually treated as single homogeneous physiological units 
(Reed et al., 2011). However, seaweeds such as S. latissima can 
exhibit different specific responses to distinct environmental 
conditions, of which temperature is a key factor (Lüning, 1990; 
Adey and Steneck, 2001; see also ‘Responses to environmental 
drivers’). Overall, the influences of various abiotic factors on 
the morphology, physiology and biochemical composition of 
S. latissima have been studied extensively, and a high degree 
of capacity for has been found. Little is known about how geo-
graphical patterns influence the capacity of the species.

Morphological plasticity is linked with adjustments to local 
conditions in different sites (Lüning, 1990; Peteiro and Freire, 
2013b; Visch et al., 2020; Zhu et al., 2021; Diehl et al., 2023). 
Effects of wave exposure on the frond length and width of S. 
latissima have been described in the field (Chapman, 1973) 
and in laboratory conditions (Gerard, 1987; Zhu et al., 2021). 
Sporophytes typically form narrow blades with solid stipes in 
more wave-exposed habitats, whereas blades are broader with 
hollow stipes in sheltered habitats (Lüning, 1990). Specimens 
with hollow stipes will float when detached, possibly impacting 
the fate of detritus. Controlled laboratory experiments revealed 
an interaction between wave action and nutrient availability 
(Zhu et al., 2021). Under wave action, S. latissima sporophytes 
developed a rough, more intricate frond surface that allowed 
for a higher nutrient and light uptake, resulting in high bio-
mass and frond length even in low nutrient conditions (Zhu et 
al., 2021). Additionally, sporophytes from a glacier-influenced 
area in Alaska have been described as narrower and longer 
than oceanic individuals (Spurkland and Iken, 2012), while in 
Svalbard (European Arctic), the biomass and size of S. latissima 
were lower in glacier-influenced sites. In the same fjord, sporo-
phytes of S. latissima were longer and heavier at greater depths 
(Ronowicz et al., 2022). For laboratory-grown individuals (from 
the gametophyte stage), sporophytes from the Arctic were nar-
rower and longer than sporophytes from Brittany (Monteiro et al., 
2019b), indicating eco-phenotypes (see below). Morphological 
plasticity is very common in S. latissima and has led to misiden-
tifications. For example, S. angustissima, formerly considered a 
morphotype of S. latissima (Augyte et al., 2018), is endemic to 
Maine (USA). Very exposed conditions result in narrow blades; 
otherwise, it is morphologically very similar to S. latissima but 
shows genetic divergence.

Recent studies investigated the biochemical plasticity of field-
grown sporophytes of S. latissima. By comparing the lipidomic 
composition and other parameters such as total carbon, lipid, 
protein, and carbohydrate contents of S. latissima, it was pos-
sible to distinguish populations from France, Norway and the 
UK (Monteiro et al., 2020b). High intraspecific variability and 
habitat-specific phenotypes in morphology and biochemical 
composition were also found in field sporophytes of S. latissima 
across its entire distribution range in Europe, although without 
apparent geographical patterns (Diehl et al., 2023).
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In addition, different populations of S. latissima were shown 
to vary in sensitivity to environmental factors, such as tempera-
ture (Olischläger et al., 2014, 2017; Monteiro et al., 2019b; Diehl 
et al., 2021, 2023). The existence of ecotypes regarding specific 
local parameters, such as temperature, salinity, pCO2 and light, 
have been postulated for the NE and NW Atlantic (Lüning and 
Dring, 1975; Gerard, 1987, 1988, 1990; Gerard and Du Bois, 
1988; Müller et al., 2008; Spurkland and Iken, 2012; Olischläger 
et al., 2014, 2017). In contrast, other studies did not find evi-
dence for ecotypic differentiation and instead suggested high 
phenotypic plasticity in S. latissima (Bolton and Lüning, 1982; 
Spurkland and Iken, 2011). Several studies have proposed eco-
logical differentiation between populations from Spitsbergen and 
Helgoland (Müller et al., 2008; Olischläger et al., 2014, 2017). 
Differences in biochemical composition and physiological per-
formance were reported under different temperature and CO2 
treatments (Olischläger et al., 2014, 2017). In a multiple-stressor 
experiment on laboratory cultures of S. latissima from Brittany 
and the Arctic, the results suggested the existence of ecotypes in 
S. latissima (Monteiro et al., 2019b; Li et al., 2020a). Responses 
to salinity and temperature variation diverged between Brittany 
and the Arctic, resulting in variations in morphology and in dif-
ferences in growth rate, pigment content and gene-expression 
profiles. At the transcriptomic level, short-term responses dif-
fered between sporophytes from the two sites in magnitude and 
in the metabolic pathways involved, which were correlated to 
some degree with the local conditions (Monteiro et al., 2019b).

Along the Norwegian coast (58–69°N), populations of cul-
tivated S. latissima display higher blade length and biomass in 
central and northern regions that peak later in the season than 
for individuals in the south (Forbord et al., 2020). Increased 
growth in north and central populations was coupled with 
higher protein content and delayed onset of biofouling.

Concerning vertical distribution, cultivated S. latissima 
sporophytes in Norway display higher biomass yields and frond 
length at 1–2 m depth compared with 8–9 m depth (Forbord et 
al., 2020). However, this is not the case for the Baltic coast of 
Denmark, where frond size and dry matter reached the highest 
values at depths of >11 m (Nielsen et al., 2016b).

To date, it has been shown that S. latissima is adapted to 
local conditions throughout its wide geographical distribution. 
Several studies focused on regional differences, however intra-
regional, among-sites differences have also been shown  (e.g. 
Smale and Moore, 2017; Wang et al., 2021; Diehl et al., 2023), 
which complicates the analysis of latitudinal effects on S. 
latissima but reveals its ability to acclimatize. Adjustments to 
abiotic drivers are site specific and, therefore, cannot be gen-
eralized from one population to the entire species complex. 
Nevertheless, definite ecotypes cannot yet be confirmed, and 
the question of whether S. latissima exhibits ecotypes or not 
is not fully resolved. In addition, most studies conducted on 
ecotypes so far have been focused on the genetic level as an 
explanation for the intraspecific variability (phenotypes as local 
expression of a genotype).

However, adaptation can also be powered by epigenetic 
mechanisms, which have been demonstrated recently in S. 
latissima (Scheschonk et al., 2022). These findings show that, 
like the concept of phenotypic plasticity, the epigenome of S. 
latissima is likely to play a vital role in local and adaptation 
in this species. To highlight the importance of non-genetic 

gene control for local adaptation/processes, the term ‘eco-
phenotype’ has been suggested (Scheschonk et al., 2022). It in-
dicates epigenetic mechanisms (within and across generations; 
see ‘Epigenomics’) to be involved in the variation of the pheno-
type in response to local parameters.

Phylogeographical differentiation of S. latissima popula-
tions has been reported across the Northern Hemisphere, also 
over small geographical distances (see ‘Population differenti-
ation at the genetic level’). Although it is hypothesized that the 
European S. latissima species complex has not reached an equi-
librium, the emergence of ecotypes could occur and eventually 
lead to different species (Luttikhuizen et al., 2018; Neiva et al., 
2018). However, this might be precluded by the rapid changes 
in its habitats attributable to climate change. The fact that there 
is evidence that divergence between different populations is ex-
pressed at transcriptomic and epigenetic levels (Monteiro et al., 
2019b; Scheschonk et al., 2022) suggests that ecotypes might 
emerge at the phenotypic level (or as more pronounced eco-
phenotypes) in future or might be revealed with more extreme 
environmental pressure or testing of different parameters.

The variability in phenotypic plasticity and formation of eco-
types in S. latissima described above is based on different ap-
proaches (various laboratory experiments, in situ measurements 
and reciprocal transplants), environmental criteria (temperature, 
salinity and irradiance) and response parameters (growth, sur-
vival, fitness and biochemical composition). These differences 
complicate a systematic comparison of results and warrant a 
discussion of which parameters are most helpful in assessing 
phenotypic plasticity or local adaptation. ‘Common garden ex-
periments’ or reciprocal transplants of field specimens from 
distinct populations are widely accepted methods to assess 
ecotypic differentiation (Kawecki and Ebert, 2004). However, 
reciprocal transplants cannot be applied in protected areas, such 
as Spitsbergen (Ministry of Climate and Environment Norway, 
2001), and concerns regarding genetic contamination are war-
ranted (Guzinski et al., 2016; Luttikhuizen et al., 2018). Hence, 
a combination of methodologies, both experimental work and 
omics tools, could provide a better picture of the existence of 
ecotypes in S. latissima.

Ecological forecast

Climate change, especially global warming, has affected 
the distribution and abundance of many kelps (Smale, 2020; 
Fragkopoulou et al., 2022). Kelps are projected to shift con-
tinuously northwards in the future (Wilson et al., 2019; Krause-
Jensen et al., 2020). Saccharina latissima has already been 
observed and estimated to decrease in Nova Scotia (Filbee-
Dexter et al., 2016), the Gulf of Maine (Witman and Lamb, 
2018), Rhode Island (Feehan et al., 2019), Norway (Bekkby 
and Moy, 2011; Moy and Christie, 2012), Sweden (Eriksson et 
al., 2002), Helgoland (Pehlke and Bartsch, 2008), the Iberian 
Coast (Casado-Amezúa et al., 2019) and the eastern English 
Channel and Strait of Dover (Araújo et al., 2016 and refer-
ences therein), whereas it is increasing in biomass in Greenland 
(Krause-Jensen et al., 2012, 2020) and Svalbard (Bartsch et al., 
2016) (see Fig. 1).

Species distribution models (SDMs) have been regarded as an 
effective tool for predicting marine species distribution shifts, 
using the species occurrence data and environmental variables 
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available (Robinson et al., 2011). In the last decade, SDMs 
have been applied to evaluate the distribution of S. latissima in 
Norway (Bekkby and Moy, 2011) and the British Isles (Yesson 
et al., 2015). Furthermore, other models have considered the 
effect of climate change on the distribution of S. latissima and 
projected its future distribution trends (Müller et al., 2009; 
Assis et al., 2018; Goldsmit et al., 2021). The northward shift 
of S. latissima was first projected by relating the temperature 
requirements of S. latissima and the modelling of sea surface 
temperature isotherms in 2080–2099 (Müller et al., 2009). By 
constructing SDMs of kelp forests in the year 2100 under a fu-
ture scenario (RCP 8.5), S. latissima was projected to extend 
to higher latitudes and inhabit the entire Arctic coast, while re-
treating from its southern limits in Nova Scotia, NW Iberia and 
Brittany towards Newfoundland and southwest Ireland (Assis 
et al., 2018). In the Eastern Canadian Arctic, under RCP 8.5, S. 
latissima was projected to have the largest gain (64 000 km2) of 
suitable habitats in 2050 and second largest gain (17 000 km2) 
in 2100 of the kelps studied (Goldsmit et al., 2021). However, 
some areas were projected to be lost in 2100, such as north 
of Baffin Bay, Foxe Basin and Hudson Bay (Goldsmit et al., 
2021).

Although SDM is a powerful tool to predict the poten-
tial distribution of species under future climate scenarios, 
the accuracy of predictions is often disputed. For example, 
few studies have taken into account in SDMs the physio-
logical limits of seaweeds, although this has proved useful 
for modelling macroalgal distribution (Martínez et al., 
2015). Besides, the discrepancy between model predic-
tions and long-term field observations of the abundance of 
Arctic kelps suggests that SDMs might overestimate the 
potential of kelps for northern expansion in the short term 
(Filbee-Dexter et al., 2019). The possible reasons might be 
the extensive gaps between available substrates, the limited 
dispersal ability of kelps, and other abiotic factors, such as 
turbidity and light penetration (Filbee-Dexter et al., 2019; 
Smale, 2020). Hence, it is crucial to track the occurrence and 
absence of S. latissima throughout the whole distributional 
limit in the future to improve the precision of model pre-
dictions. Modelling exercises that include physiological data 
generated from experiments and that account for possible 
local adaptation are also worth considering. To achieve more 
accurate predictions, it is also essential to improve the spatial 
resolution of environmental data layers available to consider 
the variable physical landscape of the intertidal and shallow 
subtidal zones where S. latissima occurs and to account for 
regional patterns that might override large-scale warming 
patterns, e.g. upwelling (Potter et al., 2013; Meneghesso et 
al., 2020).

CONSERVATION AND RESTORATION

Given the severe decline of kelp forests globally, action is needed 
to protect these important ecosystems in the future. Threats to 
S. latissima have been discussed in previous sections (effects 
of abiotic and biotic factors largely driven by climate change). 
Evidence of the impacts of other anthropogenic activities, such 
as pollution, on S. latissima is scarce. The rare examples in-
clude hydrogen peroxide on salmon farms that induced signifi-
cant mortality and reduced photosynthetic efficiency of nearby 

S. latissima juveniles (Haugland et al., 2019). In contrast, S. 
latissima juveniles at sites impacted by the Exxon Valdez oil 
spill presented higher densities than reference sites 2 years after 
the spill, and populations recovered 10 years later (Dean and 
Jewett, 2001).

Kelp forests have been included in conventions aiming 
to protect habitats, namely the Convention of Bern and the 
Habitats Directive, both at the European level, and in the list 
of threatened species and habitats of the Convention for the 
Protection of the Marine Environment of the NE Atlantic 
(OSPAR) (de Bettignies et al., 2021). Nevertheless, specific 
measures targeting conservation of kelps and, more specific-
ally, S. latissima are rare. Marine Protected Areas (MPAs) in 
the Atlantic have not yet been designed to protect kelp forests, 
but many include areas with kelp forests, providing some pro-
tection because harvest is forbidden. This is the case in some 
MPAs in Norway, France, the UK and Germany. However, the 
effects of these measures have not been evaluated, and little is 
known about the efficiency of MPAs in conserving kelps (de 
Bettignies et al., 2021). A study in California, USA, revealed 
that after 15 years, the abundance of sea urchins inside the MPA 
remained unchanged and giant kelp populations did not differ 
between inside and outside the MPA (Malakhoff and Miller, 
2021). However, another study in a 30-year-old marine reserve 
in New Zealand demonstrated that the MPA effectively con-
serves populations of the kelp Ecklonia radiata. Outside MPAs, 
where fishing still occurred, sites were dominated by sea ur-
chins and turf algae, whereas inside the MPA, healthy popu-
lations of E. radiata were present (Peleg et al., 2023). Marine 
Protected Areas in Chile have successfully preserved inter-
tidal populations of the commercially harvested Lessonia spp. 
(González-Roca et al., 2021). These are encouraging results 
and call for similar actions for S. latissima if aiming for the 
protection and/or restoration of its populations. Considerable 
baseline information will be required to evaluate the effect of 
MPAs and other conservation measures, such as reducing local 
pollution inputs or limiting coastal construction, on the conser-
vation of S. latissima.

If conservation actions fail, restoration might be the way 
to go. One strategy to recover populations is to plant new in-
dividuals where they have been lost/decreased, aiming to re-
store the populations. A few studies aiming to find the best 
techniques for restoration have been performed on S. latissima 
(Fredriksen et al., 2020; Tsiamis et al., 2020; Le François et 
al., 2023). In a trial in Quebec, Canada, the production of S. 
latissima sporophytes was successful and worked best on arti-
ficial substrate and using a binder-based method for spraying 
gametophytes (Le François et al., 2023). In contrast, a study 
in Scotland revealed that the abundance of S. latissima and 
other kelps in an artificial reef was low, and in turn, turf sea-
weeds were abundant (Tsiamis et al., 2020). This is in accord-
ance with a review on artificial seaweed reefs that concluded 
that the success of reforesting macroalgae is variable and 
depends on the scale, structural composition, materials used 
and surface complexity (Jung et al., 2022). A trial in Norway 
was also successful using the ‘green gravel’ method, in which 
stones are seeded in the laboratory and are planted in the field 
only when sporophytes reach 2–3 cm (Fredriksen et al., 2020). 
Another strategy for restoration of kelps is grazer control. A 
study in Norway showed that sea urchin decline following 
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treatment with quicklime allowed for kelp forest recovery, 
including S. latissima (Strand et al., 2020). Other strategies 
not yet tested for S. latissima include the harvest of grazers 
and destructive hammering of sea urchin populations (Eger 
et al., 2022). Up to now, research on restoration practices in 
S. latissima is scarce, and no large-scale restoration plan has 
been attempted.

Scientific debate is ongoing on whether assisted evolution 
(or assisted adaptation) is warranted when restoring degraded 
and vulnerable populations. Assisted evolution entails that 
the genetic diversity of populations is increased artificially, 
by moving new genotypes to a population, boosting genetic 
diversity within, using intraspecific hybrid vigour or heter-
osis or genome editing (Coleman et al., 2020; van Oppen and 
Coleman, 2022). These methods raise important ethical ques-
tions that might limit their use (Filbee-Dexter and Smajdor, 
2019). Overall, this is an area of research that we expect to 
attract a lot of attention in the near future as the need to restore 
degraded habitats becomes evident, and best practices need to 
be discussed.

CONCLUSIONS

All in all, S. latissima has been studied intensively over the last 
15 years, and important new insights have been gained (Fig. 
4). Nevertheless, new findings usually raise new questions, and 
here we highlight the most current research priorities.

Generally, as already stated in the review of the genus 
Laminaria by Bartsch et al. (2008), microscopic life-history 
phases have received considerably less research attention 
than the sporophyte stage. Spores, stages of gametophyte de-
velopment, gametes and microscopic sporophytes should all 
be studied more intensely. Direct comparisons between life-
history stages have to be included in future studies to identify 
phase-specific responses to environmental drivers. Knowledge 
is lacking on demographic patterns, life span and the spatial 
and temporal variability of life-cycle stages. Also, studies on 
differences in gametophyte sexes and sporophyte maturity 
are largely underrepresented. Only by examining the sensi-
tivity throughout the entire life cycle and across the geograph-
ical distribution of S. latissima will it be possible to gain a 
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Fig. 4. Research values of Saccharina latissima sporophytes: ecosystem services, economic values and drivers. Schematic display of the manifold ecosystem 
services and economic application. Saccharina latissima is represented as a bicycle chain powering many ecosystem services: providing habitat, feed and a nursery 
ground for the associated micro- and macrofauna (see main text, section ‘Biotic interactions’); improving the water quality by accumulating high concentrations 
of harmful elements; improving the air quality by releasing oxygen; and sequestering carbon. These ecological values lead to a multitude of economic values. In 
nature, S. latissima provides coastal protection by reducing wave energy, increasing fishing and diving tourism, and enhancing fisheries by serving as a nursery 
ground for economically important fish species (‘Biotic interactions’). Harvested S. latissima is used for: food; feed; extraction of bioactive compounds, with 
applications in pharmaceutical, medical, cosmetics, paper and processed food industries, among others (see more in Saether et al., 2023); and development of 
biofuels and biomaterials (see more in Saether et al., 2023). The main drivers of S. latissima survival and growth are temperature, light availability, salinity, nutri-
ents (see ‘Response to environmental drivers’) and biotic factors (‘Biotic interactions’) that significantly modify the ecological and economic services provided. 

Ongoing research leads the way for a deeper understanding of kelp ecosystems and new applications (‘Conclusion’).
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comprehensive understanding of the resilience of the species 
to climate change, which is an important component for man-
agement of conservation and cultivation. Regarding climate 
change, most attention has been given to the impact of warming 
and marine heat waves. However, other weather extremes, 
such as marine cold spells (Schlegel et al., 2021) or climate 
change-related increases in storm surges, can have a huge im-
pact and should be considered in future studies. Furthermore, 
to date, studies investigating the impact of irradiation on S. 
latissima have focused mainly on changes in PAR and the 
effect of UVR. However, increased sediment input along all 
coastal regions (meltwater run-off, river outflows and precipi-
tation) not only leads to a reduction of PAR but also affects the 
spectral composition of the water column. Especially in Arctic 
regions, the environmental light spectrum changes drastically 
owing to accelerating glacial melt and permafrost thaw, redu-
cing the photosynthetically available radiation (Niedzwiedz 
and Bischof, 2023). Therefore, in further experimental and 
modelling research on S. latissima, the spectral composition of 
radiation should be incorporated.

The strongest impact of climate change on marine life has 
been observed in the Arctic (Masson-Delmotte et al., 2021), 
where pronounced seasonal light conditions exist. Overall, sea-
weeds in Arctic regions have been studied intensively (Lebrun 
et al., 2022). Nevertheless, the adaptive responses to polar day, 
polar night and the respective transitions are poorly investi-
gated. Furthermore, melting sea ice and glaciers change salinity 
or result in coastal darkening (Konik et al., 2021), which can 
result in additional stress for Arctic S. latissima and should be 
analysed further. In addition, increasing temperatures are espe-
cially pronounced during Arctic winters, with significant envir-
onmental consequences (Maturilli et al., 2015). However, only 
very few winter data for Arctic S. latissima are available. In 
this context, transgenerational effects in cold have been shown 
for L. digitata (Liesner et al., 2020b), and the same might hold 
for S. latissima. Data on growth rates, stress responses and bi-
otic interactions for the rear-edge populations of S. latissima 
are also lacking. The uneven distribution of studies across the 
distributional range of the species (focusing on central popu-
lations in Germany, the UK and mainland Norway) limits our 
understanding of its potential for to various environmental con-
ditions. To date, the question of whether S. latissima exhibits 
different ecotypes remains unanswered and requires further 
research.

When testing the consequences of climate change, an im-
portant and very complex topic is the interaction of drivers. 
Hence, multifactorial approaches are being applied increas-
ingly but are still a minority, despite their high ecological rele-
vance. The interplay of various altering factors might have 
synergistic or antagonistic impacts on the resilience and sus-
ceptibility of S. latissima, hence these factors are key to under-
standing survival and success in the future. Experiments testing 
the impact of ongoing climate change mostly use average 
values over large scales, e.g. average sea surface tempera-
ture increase, and fail to include relevant temporal and spatial 
variability at different scales (Seabra et al., 2015; Bates et al., 
2018). Different intensities, durations and recovery periods in 
marine heatwave experiments result in different responses of S. 
latissima. Moreover, inter-annual and seasonal variability in the 
thermal stresses of S. latissima has been shown (Niedzwiedz et 

al., 2022). In general, seasonality strongly impacts the physio-
logical and biochemical parameters of S. latissima; however, 
little is known about how phenology changes across the distri-
butional range and how it is affected by climate change. Future 
research needs to include more intricate experimental designs 
that address more variability and how it might affect the sur-
vival of S. latissima.

The application of ‘omics’ to S. latissima is expected soon 
to increase sharply, as costs decrease and technologies quickly 
improve. Nonetheless, ‘omics’ approaches to S. latissima and 
other kelps lag behind other major taxonomic groups, and there 
is still much to be explored. Recent work on the transcriptomic 
responses in S. latissima should be expanded to include more 
abiotic and biotic drivers and complex interactive responses to 
climate change. In addition, transcriptomic studies should be 
combined with metabolomics and proteomics to understand 
how regulation occurs fully. However, a major caveat to these 
approaches is the lack of functional annotation, which limits 
our interpretation of results. More efforts in the molecular and 
biochemical characterization of genes are necessary, and know-
ledge generated for S. japonica (a closely related species) will 
help to streamline progress for S. latissima (e.g. Zhang et al., 
2018b).

Another severe knowledge gap is how epigenetic mechan-
isms modulate responses in S. latissima. The modulation of 
DNA methylation in response to an environmental stimulus has 
recently been demonstrated in S. latissima (Scheschonk et al., 
2022), but whether non-coding RNAs and histone modifica-
tions are also involved has not yet been tested. Given that these 
last two mechanisms have been demonstrated in other brown 
algae (Bourdareau et al., 2021; Bai et al., 2023), studies exam-
ining these patterns in S. latissima will surely follow. In add-
ition, active gene modulation would be required to assess the 
definite impact of any given epigenetic modulation on the gene 
expression.

Regarding the microbiome, most microbiota studies for 
S. latissima have focused on describing the microbial part-
ners. Consequently, there is a need to expand the research on 
co-cultures to investigate causal relationships. Specific isolates 
of interest, such as bacterial core, specialized metabolizers and 
pathogens, can be used to study their impact on algal growth 
and morphology (Burgunter-Delamare, 2022). Furthermore, 
more research is needed on the impact of potential pathogens 
on the physiological state of S. latissima and the compos-
ition of its entire microbiota. In silico predictions of benefi-
cial metabolic network complementarity are a way to identify 
specific interactions between S. latissima and its microbiota. 
There is also a need to start cataloguing genes and their func-
tions for both the microbiome and the host, which will require 
a combination of metagenomic and metatranscriptomic studies 
linking microbial and host gene expression. Viruses have been 
described recently in Laminariales and reported to infect 
two-thirds of the host populations (McKeown et al., 2017), 
highlighting the importance of incorporating viruses in studies 
on algal microbiota.

All the ‘omic’ data recently generated are being used to im-
prove breeding of macroalgae, which still lags far behind plant 
crops. Several of these land crop techniques are expected to be 
applied to S. latissima as investment in aquaculture facilities 
is rising on both sides of the North Atlantic. However, these 
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techniques might raise social and ethical issues that will need to 
be discussed with society in the next decades (for a discussion 
on the topic, see Charrier et al., 2020).

Although the distribution of S. latissima is fairly well docu-
mented in some regions, repeated monitoring and detailed 
distribution data are lacking in other regions, e.g. south of 
Europe and Russian waters. New technologies, such as remote 
sensing, drone imagery, video by underwater vehicles and en-
vironmental DNA approaches can assist greatly in monitoring 
the occurrence of S. latissima (e.g. De Pooter et al., 2017; 
Douay et al., 2022). Studies across the biogeographical dis-
tribution range of S. latissima will help to distinguish between 
present phenotypic plasticity and adaptation patterns present 
in the species and how it might be affected by climate change 
scenarios.

Despite overwhelming evidence that S. latissima popula-
tions are declining and that this compromises the ecosystem 
services they provide, there are still few management actions in 
place. Moreover, if present, these are country or region specific, 
without international perspective and guidance. Hence, the ef-
fectiveness of management actions already applied to other 
macroalgae has not been tested for S. latissima. It is imperative 
that this is put into action if we aim to maintain the remaining 
populations and restore some of the others. Management ac-
tions tested in other seaweeds that might also prove suc-
cessful with S. latissima include improving water quality (by 
decreasing nutrient load, for example), Marine Protected Areas 
and grazer control (Strain et al., 2015; Eger et al., 2022; Peleg 
et al., 2023). As political interest and societal benefits in re-
covering kelp populations are increasing, securing the financial 
and logistical means to undergo large-scale restoration efforts 
might become more feasible (Eger et al., 2020; Filbee-Dexter 
et al., 2022c).
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