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A B S T R A C T   

Energy flexibility in buildings has the potential to reduce the grid burden of neighbourhoods, yet its practical 
implementation remains limited. This paper presents a data-based case study from Norway, examining the 
electricity flexibility potential of electric vehicles, within the context of apartment building loads and PV gen-
eration. The results highlight the significant electricity flexibility potential in apartment buildings with EVs, 
where EV charging can be shifted in time by means of a shared energy management system. Energy profiles are 
presented, showing how EV charging can increase the average electricity use in apartments by a factor of 1.5 and 
the power use by a factor of 3.5 to 8.6. Furthermore, the study demonstrates how electricity flexibility KPIs of 
optimised EV charging in apartment buildings are affected by different energy tariffs, PV generation, V2G 
technology, and the location of the billing meters. The simulated scenarios showed a maximum reduction of peak 
loads of 45 %, while a maximum of 38 % of the EV charging was covered by PV generation. The study confirms 
that residential EV charging emerges as a viable frontrunner in the practical realization of end-user flexibility, 
paving the way for effective solutions in real-life applications.   

1. Introduction 

1.1. Motivation 

Renewable energy generation and energy efficiency of buildings are 
key mitigation measures, to reduce emissions under the Paris Agreement 
[1]. An increasing share of the energy supply is variable, which chal-
lenges the security of supply in the energy system. This challenge can be 
alleviated by making the energy use more flexible. The European Union 
has projected that the demand for flexibility in the electricity system will 
rise to 24 % of the total electrical demand in the EU by 2030, increasing 
further to 30 % by 2050 [2]. Energy use in buildings represent about 
30–40 % of the total domestic energy use in many countries [3,4]. Thus, 
shifting the energy and power use in buildings represent a large po-
tential for flexibility. 

Several definitions of building energy flexibility can be found in 
literature [5,6]. IEA EBC Annex 67 defined energy flexibility of a 
building as [5] “the ability to manage its demand and generation ac-
cording to local climate conditions, user needs and grid requirements.” 
Different flexibility types include fast and medium regulation (within 

seconds or minutes, e.g. to provide frequency regulation in response to 
power grids), load shedding (within minutes/hours, with load curtail-
ment during a limited period), load shifting (within hours, with loads 
shifted to other hours), and energy generation (where loads are covered 
by local generation) [7]. 

To increase the flexibility of energy use, demand response (DR) can 
play an important role. With DR, the energy consumers adjust their 
energy use in response to signals or incentives, for example from the grid 
operator or energy provider. Flexibility markets for DR are promoted by 
e.g. the European Commission [8]. However, the implementation of DR 
has not yet been fully realized in practice, due to barriers related to e.g. 
the regulatory framework, the market, and the lack of a proper quan-
tification methodology [9]. Also, several other challenges remain, such 
as the integration of new DR systems with existing automation systems 
and the consideration of occupant comfort and satisfaction, as stated by 
[6]. 

When introducing DR in the residential sector, it is important to 
ensure it does not compromise user comfort or equipment functionality 
[10]. Smart applications described in literature often relate to space 
heating, domestic hot water (DHW) tanks, washing machines, batteries, 
and electric vehicles (EVs) [6,10,11]. In apartment buildings, the energy 
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use of such applications is either part of the energy use in the apart-
ments, or a part of the common energy use for the building association. 
In Norway, electricity use in apartments is metered hourly, with billing 
meters in each apartment [12]. Common electricity use includes energy 
use in common areas such as corridors, basements, and outdoors, elec-
tricity for running the central heating if relevant, and EV-charging. To 
realize DR in practice, it could be advantageous to start with the simplest 
and most accessible measures. The flexibility available in the common 
energy use tends to be more accessible than the energy consumption 
within individual apartments. Moreover, the common energy use might 
already be equipped with energy management systems. 

Among the common energy use, smart EV charging emerges as a 
particularly promising solution for effective DR management. With the 
continued rise in EV adoption, projected to reach a 35 % sales share 
globally by 2030 [13], the demand for smart EV charging grows, usually 
as a means to reduce strain on the grid. Real-life applications of smart 
residential EV charging have been demonstrated in trials and in com-
mercial offers [14–17]. Hildermeier et al. [14] analysed available tariffs 
and services for smart EV charging across Europe, and found that 
commercial services were mostly available in regions with general time- 
of-use tariffs, like the hourly spot prices seen in the Nordic countries. 
Norway, a frontrunner in EV adoption with an 88 % sales share in 2023 
[13], has legally granted residents in apartment buildings the right to 
charge EVs at home under specific conditions [18]. However, this pro-
vision can pose challenges to local grid infrastructure. Consequently, a 
common charging infrastructure is often incorporated in Norwegian 
apartment buildings, complemented by an energy management system 
that limits the maximum power for simultaneous EVs charging. Since the 

EVs are normally connected to the charge point (CP) for a longer period 
than the actual charging time, there is a potential to shift the EV 
charging load in time. For example, residential charging loads can be 
shifted from high load hours in the afternoon to low load hours in the 
night [19]. This can be done with minimal comfort issues and involve-
ment of residents. Using vehicle-to-grid (V2G) or vehicle-to-everything 
(V2X) technology allows for discharge of energy from EV batteries to 
the energy system.1 Bidirectional chargers are not yet commercially 
available for residential users in Norway, but it is expected that they will 
become accessible in the near future [20]. Such DR can be a response to 
grid needs, or to achieve cost, energy, or climate goals for the end-users. 

1.2. Literature review 

EV charging and its flexibility potential have become an increasingly 
important topic. Numerous research articles focus on various aspects of 
EV charging within building infrastructures, as highlighted in recent 
review papers [14,21–27]. Our literature review specifically concen-
trates on energy use and EV charging within the residential sector. 
Table 1 provides an overview of the literature review, and the review 
findings are further elaborated in the section below. 

The main data sources for EV charging studies are transportation 
surveys and data, data collected from vehicles, and CP data [24]. In 
studies that focus on residential EV charging, transportation data such as 

Nomenclature 

Abbreviations 
Apt Apartment 
CHP Combined heat and power 
CP Charge point 
CPO Charge point operator 
DH District heating 
DHW Domestic hot water 
DR Demand response 
DSO Distribution System Operator 
EV Electric Vehicle 
FF Flexibility factor 
FI Flexibility index 
IT230V 230 Volt IT system (distribution grid) 
KPI Key performance indicator 
MILP Mixed Integer Linear Programming 
PV Photovoltaic 
SD Standard deviation 
SoC State of charge 
V2G Vehicle-to-grid 
V2X Vehicle-to-everything 
VAT Value added tax 

Sets in the optimisation model 
V Set of all electrical vehicles 
E Set of all charging events 
T Set of all time steps in the model 
Te Set of all time steps per charging event e 
M Set of all months in the model 
Tm Set of all time steps per month in M 

Variables in the optimisation model 
yapt

t Electricity to the apartments (kWh/h) 

ych
v,t Electricity charged per EV (kWh/h) 

ycmn
t Common electricity use (kWh/h) 

ydch
v,t Electricity discharged per EV (kWh/h) 

yexp
t Electricity exported to grid (kWh/h) 

yimp
t Imported electricity (kWh/h) 

ymax imp
m Max imported electricity per month m (kW) 

zsoc
t SoC of the battery (%) 

Parameters in the optimisation model 
DEL

t Apartment electricity demand (kWh/h) 
YPV

t Generated PV electricity (kWh/h) 
DEV

v,t Uncontrolled charging demands per EV per timestep t 
(kWh/h) 

DEV
v,e Energy demand per charging event e (kWh/h) 

Ccomp Prosumer compensation (NOK/kWh) 
Ccons Energy consumption fee (NOK/kWh) 
Ceno Enova fee (NOK/kWh) 
cexp Export income (NOK/y) 
Cfxd Fixed costs (NOK/y) 
cimp Import cost (NOK/y) 
Cpty

m Peak load tariff per month m (NOK/kW) 
Ctot Total electricity costs (NOK/y) 
Ctrans Energy transport fee (NOK/kWh) 
CVAT Value added tax (25 %) 
EVlim

v Charging power per EV (kW) 
EVbat

v Battery capacity per EV (kWh) 
Pspot

t Spot price at hour t (NOK/kWh) 
t Timestep (h) 
ηch Battery charging efficiency 
ηdch Battery discharging efficiency 
ΛEL

v,t EV is connected to the CP (Boolean)  

1 In this study, the bidirectional utilization of EV batteries is specifically 
referred to as V2G. 
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arrival/departure time and travel distances frequently form the basis for 
modelling of loads and flexibility [35,36,45–51,37–44]. An example is 
[38], where German survey data on mobility behaviour is used for 
modelling individual mobility behaviour, using probability distributions 
and a Markov-chain. In [41], EV data are simulated based on travel 
distances applying a gamma distribution approach. In [37], a regional 
transport model from Norway is combined with data from a survey 
among EV owners. In other studies on EV charging in residential 
buildings, the needed EV charging input is simply estimated, where for 
example plug-in/plug-out times are based on fixed schedules 
[53–57,59], or modelled based on probability distributions such as the 
truncated Gaussian [52] or Poisson [58]. 

In other articles, data collected from vehicles and CP data are used to 
generate the residential charging load profiles [19,28–35]. According to 
[26], flexibility studies focussing on EV charging should incorporate 
realistic driving and plug-in behaviours. Also, the authors in [33] argue 
that it is more valuable to study the flexibility of EVs based on real-world 
EV charging records than simulation-based research. For example, many 
studies assume a standard daily EV charging session and that the EVs are 
continuously connected to the CP when they are parked at the resi-
dential location. This often leads to an overestimation of the actual 
flexibility potential from EV fleets. Therefore, it is advantageous to 
utilize real-world charging data as a basis for analysis, as in our study. 
From studies such as [19,30], actual charging demand and connection 
times for EV charging sessions are available. In [31], charging data and 
residential loads are used to study the impact of EVs on the distribution 
networks, but without utilizing flexibility. In [32], EV charging flexi-
bility is studied, but without the consideration of other residential loads. 
In [34], aggregated load data from 4 CPs is used, but not data for each 
EV charging session individually. Our literature review shows that few 

articles combine real-world charging data with residential building 
loads and flexible EV charging. 

Uncontrolled EV charging increases the electricity load during peak 
hours [27]. For the synthetic load profiles in [38], it was found that the 
peak loads from residential buildings increased by a factor of 1.1 to 3.6 
when uncontrolled EV charging was included. At the same time, EV 
charging ranks among the residential energy uses with the greatest po-
tential for flexibility [45]. Several studies have addressed flexible EV 
charging in residential buildings, frequently also integrating PV gener-
ation and V2G technology, as detailed in Table 1. Huang et al. [40,63] 
describe how minimizing the grid peak power and maximizing the self- 
utilization of PV electricity are important objectives for smart control of 
EV charging. Their case study was a building community in Sweden, 
including apartments, EV charging, and PV generation. Another 
example, [49] simulated EV charging coordination for a case study in 
South Korea, where charging of 1000 EVs was shifted in time to reduce 
the peak load of an apartment complex with 1500 apartments. The re-
searchers concluded that EV charging coordination could reduce the 
peak EV charging load below a power capacity of 5 MW and reduce costs 
for the residents. Ramsebner et al. [35] did a field test in Austria, that 
included the application of controlled EV charging in a residential 
complex. When controlling EV charging in 27 CPs, they found that an 
average charging power capacity of 1.3 kW/CP was sufficient to fulfil 
the charging needs. They identified a potential to reduce the average 
charging power even further, given that more user information was 
combined with demand forecasts and machine learning. Studies exam-
ining household energy use, uncontrolled EV charging, and PV genera-
tion in diverse locations, such as the UK [64] and Sweden [39], have 
identified a mismatch between PV generation and EV charging. The 
review [22] encourages further research to assess how smart EV 

Table 1 
Literature review comparison.  

Ref. Residential EV charging Residential 
loads 

Flexible 
charging 

V2G PV Tariff 
comparison 

Meter location 
comparison 

Estimation Transport. 
data 

CP data Vehicle data 

[28] – – – ✓ – – – – – – 
[29] – – – ✓ – – – – – – 
[19,30] – – ✓ – – – – – – – 
[31] – – ✓ – ✓ – – – – – 
[32] – – ✓ – – ✓ – – – – 
[33] – – ✓ – ✓ ✓ – – – – 
[34] – – ✓ – ✓ ✓ – ✓ ✓ – 
[35] – ✓ ✓ – ✓ ✓ – – – – 
[36] – ✓ – – – – – – – – 
[37] – ✓ – – – – – – – – 
[38] – ✓ – – ✓ – – – – – 
[39] – ✓ – – ✓ – – ✓ – – 
[40] – ✓ – – ✓ ✓ – ✓ – – 
[41] – ✓ – – ✓ ✓ – ✓ – – 
[42,43] – ✓ – – ✓ ✓ – ✓ – – 
[44] – ✓ – – ✓ ✓ ✓ ✓ – – 
[45] – ✓ – – ✓ ✓ ✓ ✓ – – 
[46] – ✓ – – ✓ ✓ ✓ ✓ – – 
[47] – ✓ – – ✓ ✓ – – ✓ – 
[48] – ✓ – – ✓ ✓ – – ✓ – 
[49] – ✓ – – ✓ ✓ – – ✓ – 
[50] – ✓ – – ✓ ✓ – – – – 
[51] – ✓ – – ✓ ✓ ✓ – – – 
[52] ✓ – – – ✓ ✓ ✓ ✓ – – 
[53] ✓ – – – ✓ ✓ ✓ ✓ – – 
[54] ✓ – – – ✓ ✓ ✓ ✓ – – 
[55] ✓ – – – ✓ ✓ ✓ ✓ ✓ – 
[56] ✓ – – – ✓ ✓ – ✓ – – 
[57] ✓ – – – ✓ ✓ – ✓ – – 
[58] ✓ – – – ✓ ✓ – ✓ ✓ – 
[59] ✓ – – – ✓ ✓ ✓ ✓ – ✓ 
[60] – – – – ✓ – – ✓ – ✓ 
[61] – – – – ✓ – – – – ✓ 
[62] – – – – ✓ – – – – ✓ 
This paper – – ✓ – ✓ ✓ ✓ ✓ ✓ ✓  
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charging can improve the match with PV generation across varying lo-
cations and occupancy patterns. 

Some of the studies in Table 1 also include the comparison of 
different end-user tariffs. Verzijlbergh [47] found that energy tariffs 
such as Day-Night or Time of Use resulted in peak loads that were about 
25 % higher than the loads from uncoordinated EV charging. Thus, 
when shifting the charging loads for an EV fleet, the grid peak loads are 
not necessarily reduced. However, in [47], the loads were shifted to low- 
load hours during the night. Muñoz et al. [48] analysed the issue of 
overloading of distribution transformers due to EV charging, and found 
that the share of transformers subject to overload increased from 32 % 
with uncontrolled charging to 100 % with Time of Use charging. Aske-
land et al. [34] investigated how grid tariff optimisation with local ca-
pacity trading can facilitate an increasing amount of EV charging. Their 
case study was a housing cooperative in Norway with 246 apartments. 
The study proposed a trading mechanism to incentivize that end-users 
with flexible EV charging would contribute to flattening the aggre-
gated grid load. 

Apartment buildings often have a billing meter structure with 
separate billing meters for common energy use and individual apart-
ments. However, there is a lack of studies addressing how this billing 
meter structure impacts the aggregated grid load and the self- 
consumption of PV electricity. In [60–62], energy use in apartment 
buildings is divided on common energy use in shared spaces, and energy 
use in apartments, but without including EV charging. To our knowl-
edge, only [59] focuses on this division, also taking EV charging into 
account. In their study, they analysed household energy use and energy 
use for common facilities in two apartments buildings. Further, they 
described how the cooperative systems, such as EV charging, V2G, PV, 
and batteries, can be integrated into the energy management system of 
the apartment buildings. The researchers highlighted that the energy 
management systems for apartment buildings are not fully understood in 
literature. 

The literature review shows that, while several studies focus on en-
ergy use and EV charging in residential settings, there remains a need for 
data-based case studies utilizing real-world data on energy and EV 
charging, studying load profiles and flexibility potentials in apartment 
buildings with EVs. We did not find any studies that also considers the 
billing meter location, under different end-user tariff options. Given the 
relevance of this scenario to numerous apartment buildings, there is a 
need for such studies to offer practical insights and provide input to 
policies. 

1.3. Contributions 

Our hypothesis is that apartment buildings with EVs have a partic-
ular potential for electricity flexibility, where coordination of EV 
charging can contribute to reducing the grid burden of the residential 
sector and increasing the self-consumption of PV electricity. This hy-
pothesis is tested in a data-based case study in Norway, where the res-
idential sector has an increasing demand for EV charging, and a growing 
PV utilisation. The selected case study is considered to be representative 
for a large share of Norwegian apartment buildings. The main research 
question is: How are the electricity flexibility KPIs of optimised EV charging 
in apartment buildings affected by different energy tariffs, PV, V2G, and the 
location of the billing meters? The contributions of this paper are as 
follows:  

1) Utilization of real-world data: Energy data from an apartment 
building with 1058 apartments and EV charging data from 35,000 
residential charging sessions are utilized in the case study.  

2) Optimised EV charging: Data for each individual charging session 
(such as energy demand, plug-in, and plug-out times) and for each 
EV (charging power and battery capacity) are employed to generate 
realistic outcomes aligned with current charging patterns.  

3) Billing meter structure consideration: The optimisation of EV 
charging considers the billing meter structure in apartment build-
ings. In the simulation scenarios, the common electricity use (EV, PV, 
V2G) is measured separately or together with the electricity use in 
apartments. Additionally, energy and peak load tariffs are compared 
in the simulation scenarios.  

4) Insights and policy implications: Various scenarios involving load 
shifting of flexible EV charging provide insights into how these can 
impact the aggregated grid load and the self-consumption of PV 
electricity in residential neighbourhoods. 

The rest of the paper is structured as follows. Section 2 presents the 
selected case study and its energy system. Section 3 describes the 
methodology, including the scenarios for optimisation, the optimisation 
model, and the electricity flexibility KPIs. The results are summarized in 
section 4, followed by discussion and policy implications in Section 5. 
Section 6 provides recommendations and future work, before the 
conclusion in Section 7. 

2. The selected case study 

2.1. Introduction to the case study 

In this work, we aimed to select a case study which was represen-
tative for a major share of Norwegian apartments. Per 2022, about 32 % 
of Norwegian residents (1.7 million) live in apartments, defined as either 
multi-dwelling buildings or linked houses with at least 3 dwellings [65]. 
The remaining residents mainly live in detached houses or houses with 
two dwellings. The selected case study is a large housing association 
located in the city of Trondheim. It includes in total 1058 apartments in 
121 low-rise apartment buildings, constructed in the 1970-ties, but has 
later been upgraded. Photos of the buildings are shown in Fig. 1. The 
floor area of the apartments varies from 53 to 107 m2 (1 to 4 bedrooms), 
and the total floor area for the entire stock of apartments is 93,713 m2. In 
2018, the housing association consisted of 2321 residents, with a diverse 
mix of genders and ages [66]. A comparison between apartments in the 
Norwegian building stock and the selected case study can be found in 
Table 2. 

2.2. Energy system and data 

An overview of the overall energy performance of the case study is 
presented in Fig. 2 and Fig. 3. These figures showcase energy mea-
surements for electricity and heating within the case study apartments, 
alongside data for residential EV charging. Additionally, Fig. 3 includes 
simulated PV generation. The purpose of these figures is to effectively 
illustrate the impact of EV charging on each individual apartment within 
the scenario involving one EV per apartment. No energy management 
system is currently in place. 

Fig. 2 illustrates a year-long timeline featuring hourly outdoor tem-
peratures, as well as the heating, electricity use in apartments, and EV 
charging. The energy loads are further described in the following sec-
tions, including space heating and DHW (section 2.2.1), electricity use in 
apartments (section 2.2.2), flexible and non-flexible EV charging and 
other common electricity use (section 2.2.3). In Fig. 3, daily average 
energy profiles for the same energy loads are depicted, along with 
simulated energy generation for four alternative PV systems (further 
described in section 2.4). The energy profiles in Fig. 3 are displayed for 
the summer (June to August) and winter (December to February), 
segmented by workdays and weekends. A summary of energy KPIs for 
the case study is presented in Table 3, and are further described in the 
upcoming sections. The primary data period is from 2018 and therefore 
predates the COVID-19 pandemic. 

2.2.1. Space heating and DHW 
Heating is a large share of building energy use in Norway. At the 
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national level, it is estimated that about 78 % of the total energy use in 
households is for space heating and domestic hot water (DHW) [70]. In 
the case study, space heating and DHW constitute 72 % of the total 
delivered energy, when not including EV charging. For the case study 
apartments, heating is provided by district heating (DH), and the heat-
ing system is described in [71]. Delivered DH to the apartments was 138 
kWh/m2 in 2018. Heating is dominating in the wintertime, with an 
average daily delivered energy of 51.1 kWh/apartment. The heat use is 
spread quite evenly during the day (in average 2.1 kWh/h), but with a 
morning peak at around 08:00 during weekdays (in average 2.9 kWh/h), 
as shown in Fig. 3. During the summer months, the average daily 
delivered energy is reduced to 13.1 kWh/apartment, and with an 
average morning peak of 0.9 kWh/h at around 08:00. The morning 
peaks and the heat use during summer are mainly related to DHW use. 
DHW was metered in one of the sub-districts (74 apartments) in the case 
study in 2021 and 2022, and we found in average 8.3 kWh/apartment/ 
day of delivered heat for DHW. 

2.2.2. Electricity use in apartments 
Electricity use in the apartments is metered behind billing meters in 

each apartment. Analysing electricity data from 505 of the apartments, 
the average daily energy use was found to be 14.3 kWh/apartment 
(standard deviation (SD) 8.5 kWh/apartment) during winter and 10.4 
kWh/apartment during summer (SD 6.4 kWh/apartment). For hourly 
peak values, this is in average 1.4 kW during winter (SD 0.8 kW) and 1.1 
kW during summer (SD 0.7 kW). During afternoons and evenings, 
electricity use increased by around 50 % compared to mid-day and 
roughly doubled compared to nighttime. 

In 2018, the average electricity use in the apartments in our case 
study was 51 kWh/m2, or 4527 kWh per apartment (505 units). In Fig. 4, 
we have compared this to the electricity use in 4 other cases studies of 
Norwegian apartment buildings where hourly electricity data was 
available from the research project COFACTOR [72]. Fig. 4 shows the 
daily electricity use as a function of outdoor temperature. For the 
apartment buildings with Apt. ID 1 to 4, the average electricity use in the 
apartments varied from 37 to 53 kWh/m2/year, corresponding to 
2868–4551 kWh per apartment. There is a significant seasonal differ-
ence in the electricity use, showing higher use with cold temperatures, 
even though all of the buildings use thermal energy for heating. We may 
assume that the difference is partly caused by electric floor heating in 
the bathrooms, and partly caused by higher electricity use for lighting 
and indoor activities during the winter. 

2.2.3. EV charging and other common electricity use 
Common electricity use in the case study includes EV charging in the 

garages and other electricity use in common areas (both indoor and 
outdoor). Excluding the electricity use in garages, we found that other 
common electricity uses accounts for a relatively small share of the total 
energy use in the case study (1 %). 

In our study, we use an extended dataset for EV charging, including 
residential EV charging data from 12 residential locations in Norway 
(including the case location). The EV charging data is described in [30], 

Fig. 1. Photos of apartment buildings in the case study.  

Table 2 
The Norwegian building stock and the selected case study.   

Apartments in the Norwegian 
building stock 

Selected case study 

Building 
category 

Multi-dwelling buildings or 
linked houses with at least 3 
dwellings: 37 % of dwellings  
[67]. 

Low-rise apartment buildings 
with in average 8.7 dwellings 
per building. 

Construction 
year 

Before 1970: 35 %, between 
1971 and 2000: 31 %, after 
2001: 33 % [67]. 

1970–1973. Renovations 
1993–1998 (insulation and 
windows) [68]. 

Floor space 
area 

70 % have floor space between 
50 and 120 m2 [69]. 

In average 88.6 m2 per 
apartment. 

Residents, 
average 

1.8 residents per household  
[65]. 

2.2 residents per household.  

Fig. 2. Hourly energy loads in Norwegian apartment buildings during a year, with 1 EV per apartment.  
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and is based on EV charging reports with energy and time information 
for 35,000 EV charging sessions and 271 EV users. In [30], a charging 
power for each individual EV user is predicted, and the session energy is 
distributed hourly for each EV charging session. In the case of uncon-
trolled EV charging, the session energy is distributed hourly starting 

from the plug-in time. 
The electricity use for EV charging shown in Fig. 2 and Fig. 3 is 

divided into flexible and non-flexible EV charging. About 25 % of the EV 
charging sessions have idle times less than 1 h (35 % less than 3 h) and 
may consequently be considered as non-flexible EV charging (in average 
1.2 kWh/day). The flexible EV charging (in average 4.6 kWh/day) has in 
average 9.3 h idle time, and may therefore be shifted to other hours 
within the connection period, without necessitating changes in user 
behaviour. 

2.3. Comparison of power and energy use for apartments and EVs 

Fig. 5 shows histograms for annual and maximum hourly electricity 
use for each of the apartments and EVs, not including heating and other 
common energy use. The histograms are based on hourly measurements 
for electricity and heat use in about 500 apartments, together with the 
large dataset of residential EV charging (271 EV users). The energy 
histogram illustrates how the average annual electricity use in the 
apartments is about twice as large as the electricity use for EV charging. 
Adding average EV charging to average electricity use in apartments, the 
total energy use is increased by a factor 1.5 compared to electricity use 
in apartments alone. The power histogram in Fig. 5 shows how the 

Fig. 3. Daily average energy profiles for Norwegian apartment buildings, with 1 EV per apartment.  

Table 3 
Energy KPIs for the apartment building of the case study.   

Delivered energy (kWh/apt/year) Delivered energy (kWh/m2/year) Energy share 

Space heating and DHW 12 200 138 63 % 
Electricity use in apartments 4 527 (SD 2 283) 51 24 % 
EV charging (1 EV/ 

apartment) 
2 314 (SD 1 445) 25.5 12 % 

Other common electricity use 250 2.8 1 %  
Energy generation (kWh/apt/year) Self-consumption (Self-sufficiency): PV to Apt and EV Self-consumption (Self-sufficiency): PV to EV only 

PV roof 1 kWp: 
2.5 kWp: 

754 
1 885 

98 % (11 %) 
75 % (21 %) 

51 % (17 %) 
29 % (24 %) 

PV façade 1 kWp: 
2.5 kWp: 

799 
1 998 

96 % (11 %) 
65 % (19 %) 

43 % (15 %) 
23 % (21 %)  

Fig. 4. Daily electricity use in 5 apartment associations, as a function of out-
door temperature. 
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maximum hourly electricity use for EV charging often is higher than the 
hourly electricity use in the apartments. The three peaks for EV charging 
in the power histogram illustrates the typical charging power levels for 
home charging in Norway, i.e. approximately 3.5 kW, 7 kW, and 11 kW 
[30]. In our case study, we found that approximately 46 % of the EVs 
used a charging power of 3.5 kW, 38 % used a charging power of 7 kW, 
and 16 % used a charging power 11 kW. The charging power of these 
EVs is typically limited by the onboard charging power. New EVs nor-
mally have a higher onboard charging power, and the charging power is 
more frequently limited by the CP [30]. Adding a charging power 7 kW 
to the average maximum power of 1.4 kW per apartment, results in a 
maximum power increase by a factor 6. 

2.4. Simulated PV generation and self-consumption 

PV generation in apartment buildings vary with PV size, location, 
and weather conditions. As there are no PV systems connected to the 
buildings in our case study, we have simulated the PV electricity that 
could be generated by PV systems on the buildings. In general, there are 
few examples of PV systems in Norwegian apartment buildings, since the 
regulations did not allow sharing of electricity across billing meters until 
2023. The residential PV systems currently installed in Norway are 
therefore mainly installed on detached houses. For the buildings in our 
case study, the available PV area on the roofs is estimated to be in the 
range of 4 kWp per apartment (estimated for 12 of the buildings/117 
apartments, using the commercial solar map [73]). Since the economic 
potential for PV normally is smaller than the technical potential [74], we 
have chosen to focus on PV sizes of 1 kWp and 2.5 kWp per apartment. 
Two alternative PV system are simulated: A rooftop system with 15◦ tilt 
orientated east and west, and a façade system with 90◦ tilt orientated 
south. The PV generation is simulated in [60], using the software PVsyst 
[75] and with climate data from 2018. The global radiation in Trond-
heim in 2018 (870 kWh/m2) is higher than the Trondheim average from 
2016 to 2022 (827 kWh/m2), but lower than the Oslo average (953 
kWh/m2) [76]. 

For the simulated PV generation, we found some significant varia-
tions between the roof-mounted and façade-mounted PV systems with 
respect to the annual and daily energy profiles. In summer, the roof- 
mounted east–west system outperformed the south-facing façade- 
mounted system, generating an average of 4.0 kWh/kWp/day compared 
to 2.9 kWh/kWp/day, respectively. Conversely, in winter, the façade- 
mounted system delivered an average of 1.0 kWh/kWp/day compared to 
0.3 kWh/kWp/day for the roof-mounted system. 

The KPIs for self-consumption in Table 3 are based on hourly values, 
showing how PV generated electricity is utilised directly by electricity 
loads in apartments and for EV charging. The self-consumption of PV 
from the roof-mounted systems are slightly higher than those from the 

façade-mounted systems. This is mainly due to the fact that the roof 
mounted PV generates more electricity than the façade system during 
morning and afternoons, when there is high energy need in the apart-
ments, as shown in Fig. 3. By increasing the size of the roof-mounted PV 
system from 1 to 2.5 kWp per apartment, the self-consumption is 
reduced from 98 % to 75 %. By using generated PV electricity for EV 
charging only, the self-consumption is reduced from 51 % to 29 %, 
accordingly. Since a minority of the uncontrolled EVs are charging 
during daytime, the self-sufficiency of the generated electricity reaches a 
maximum of 24 % for the PV systems illustrated in Fig. 3 (roof-mounted 
system with capacity 2.5 kWp/apartment). 

2.5. Data selection for optimisation of residential EV charging. 

Table 4 gives an overview of the data used in the optimisation. Since 
the main focus of the work is electricity flexibility, energy for space 
heating and DHW were not included in the data selection. EV charging 
data from 82 EV users were used in the analysis, with a full year of EV 
data. Electricity data from 117 apartments were included in the analysis, 
assuming that 70 % of the apartments were equipped with an EV. The EV 
rate per apartment is based on the available parking spaces for EV 
charging in the case study, where a common infrastructure for EV 

Fig. 5. Histograms with annual energy use (left) and maximum power (right) per EV and per apartment.  

Table 4 
Input data used in the optimisation.  

Data Description Data selection 

Heating in 
apartments 

Space heating and DHW are 
provided by district heating. 

Not included. 

Electricity in 
apartments 

Electricity use in apartments in 
2018, metered behind billing 
meters in each apartment [78]. 

Hourly data for 117 
apartments. 

EV charging Dataset of residential EV 
charging from [30], with 271 
EV users and 35,000 EV 
sessions in 12 residential 
locations in Norway, 
monitored from February 2018 
to August 2021. Input data 
from EV charging reports: User 
ID, session ID, plug-in time, 
plug-out time, connection time 
(h), energy charged (kWh). 

Predicted hourly EV charging, 
based on EV data for 82 EV 
users with full year data, pre- 
covid time period, transformed 
to fit 2018. 

Other 
common 

Other common electricity uses 
in the case study in 2018 [78]. 

Not included. 

PV electricity Simulated PV electricity 
generation [60], with climate 
data [76] from 2018. Location: 
Trondheim (Latitude 63.39◦ N, 
Longitude 10.44◦ E, Altitude 
116 m). 

117 kWp roof (1 kWp/apt).  
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charging was installed in 2018. In total it is possible to activate up to 764 
CPs on the parking spaces, used by residents from 1113 apartments. The 
assumption of 70 % parking spaces for EVs is in line with the parking 
norms in Trondheim city (min. 0 to 0.84 parking spaces per 100 m2 

apartment building area [77]). For PV generation, the optimisation in-
cludes the roof-mounted PV system with capacity 1 kWp per apartment. 

3. Methodology 

3.1. Scenarios for the optimisation 

The research question of this study was addressed through a behind- 
the-meter optimisation of residential EV charging. The reference sce-
narios illustrate uncontrolled EV charging in the apartment buildings, 
while the simulated scenarios demonstrate a time-shifted approach for 
EV charging, with static electricity use in the apartments. Such EV 
charging control can be implemented using a common energy man-
agement system, designed to interfere as little as possible with the res-
idents’ habits. In all the scenarios, the electricity use for EV charging and 
the electricity use in apartments are included as key components. The 
scenarios for optimisation are developed considering two grid tariffs 
options, two billing meter locations, and two technology options 
(whether PV or V2G is included), as shown in Fig. 6. This makes in total 
16 scenarios, as listed in Table 5. 

In Norway, there is an ongoing discussion regarding the most 
effective tariff structure to incentivize end-user flexibility. Presently, 
residential customers are charged based on a combination of hourly spot 
prices, a monthly peak load tariff, and fixed costs. To evaluate the effect 
of different tariff structures, all the scenarios are analysed with the 
optimisation model using either the energy or peak tariff option. The 
tariffs that were used are described in Table 6, and are based on the 
tariffs that were used in the location of the case study in 2018 [79]. With 
the energy tariff option, it is favourable to charge the EVs during hours 
with low spot prices. The peak load tariff option also takes the hourly 
spot prices into account, in addition to reducing the monthly peak load. 
The optimisation was limited to the operational phase, so investment 
costs were not included. 

Two billing meter locations are included. For the meter location 
labelled ’Separate’, the electricity use in the apartments is measured 
separately from the common electricity use (EV, PV, V2G), and is not 
considered in the optimisation. Additionally, a common billing meter 
measures the shared energy systems, including EV, PV, and V2G. This 
billing meter option is most similar to the real-world billing location 
used in Norway. The option labelled ’Total’ has a single billing meter for 
all energy options: EV, Apt, PV and V2G, meaning that the electricity use 
in the apartments is taken into account for the optimised control. 

The technology options considered are ’PV systems’ and ’V2G 
technology’. For PV generation, it is more profitable to use the generated 
electricity for energy uses behind the billing meter, compared to 

exporting the electricity to the grid. For V2G technology to be profitable, 
the cost reduction related to using V2G needs to be higher than the cost 
of charging, due to the round-trip efficiency losses [80]. It is most 
profitable to use the discharged electricity behind the billing meter, 
compared to exporting the electricity. 

In this study, our primary focus is to examine the impact of flexible 
EV charging on the KPIs in various scenarios. Given the diverse range of 
optimised scenarios, involving different energy/peak tariffs, variations 
in the location of billing meters, and the presence of PV/V2G, several 
reference scenarios are needed to isolate the effect of EV charging in the 
performance. All the reference scenarios include uncontrolled EV 

Fig. 6. Overview of the options in the optimisation scenarios.  

Table 5 
Overview of scenarios for the optimisation.  

Ref Ref Uncontrolled EV charging in apartment buildings 
RefPV Uncontrolled EV charging in apartment buildings with PV- 

systems 

EV-Apt ENsep EV charging optimised with 
energy tariffs. 

EVs are metered separately 
from apartments. 

ENtot EV charging optimised with 
energy tariffs. 

EVs + apts. are metered 
together. 

PKsep EV charging optimised with 
peak tariffs. 

EVs are metered separately 
from apartments. 

PKtot EV charging optimised with 
peak tariffs. 

EVs + apts. are metered 
together. 

EV-Apt- 
PV 

ENsep
PV EV charging optimised with 

energy tariffs. 
EVs + PV are metered 
separately from apts. 

ENtot
PV EV charging optimised with 

energy tariffs. 
EVs + PV + apts. are 
metered together. 

PKsep
PV EV charging optimised with 

peak tariffs. 
EVs + PV are metered 
separately from apts. 

PKtot
PV EV charging optimised with 

peak tariffs. 
EVs + PV + apts. are 
metered together. 

EV-Apt- 
V2G 

ENsep
V2G EV charging + V2G 

optimised with energy 
tariffs. 

EVs are metered separately 
from apts. 

ENtot
V2G EV charging + V2G 

optimised with energy 
tariffs. 

EVs + apts. are metered 
together. 

PKsep
V2G EV charging + V2G 

optimised with peak tariffs. 
EVs are metered separately 
from apts. 

PKtot
V2G EV charging + V2G 

optimised with peak tariffs. 
EVs + apts. are metered 
together. 

EV-Apt- 
PV- 
V2G 

ENsep
PV,V2G EV charging + V2G 

optimised with energy 
tariffs. 

EVs + PV are metered 
separately from apts. 

ENtot
PV,V2G EV charging + V2G 

optimised with energy 
tariffs. 

EVs + PV + apts. are 
metered together. 

PKsep
PV,V2G EV charging + V2G 

optimised with peak tariffs. 
EVs + PV are metered 
separately from apts. 

PKtot
PV,V2G EV charging + V2G 

optimised with peak tariffs. 
EVs + PV + apts. are 
metered together.  
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charging, with charging immediately after plug-in. When PV generation 
is included in a scenario, it is also included in the reference scenario. 
Since the tariff options and billing meter locations make an impact on 
the operational costs also for the reference scenarios, they are included 
in the reference scenarios as well. 

3.2. Optimisation model 

The optimisation problem is solved using Mixed Integer Linear Pro-
gramming (MILP), with the optimisation model developed in [81]. 
Within the model, each EV charging session is simulated separately in an 
optimal manner, respecting the real-world values of energy demand for 
charging sessions, and related plug-in and plug-out times. The main 
objective of the optimisation is to minimize the energy costs in the 
operational phase, as described in Eq. (1), where the total operational 
electricity costs Ctot is the sum of annual fixed costs Cfxd, the import cost 
cimp (bought electricity) and the export income cexp (sold electricity). The 
import cost (Eq. (2)) varies for each month m and timestep t, and in-
cludes energy fees, monthly peak load tariff (if included in the scenario), 
and hourly spot prices. The export income (Eq. (3)) includes hourly spot 
prices and a prosumer compensation. 

min Ctot = Cfxd +
(
cimp − cexp) (1) 

where 

cimp =
∑

m∈M

∑

t∊Tm

(Ceno + Ccons

+ Ctrans)yimp
t + δpeak( Cpty

m ymax imp
m

)
+Pspot

t yimp
t CVAT) (2)  

cexp = Pspot
t yexp

t (1 + Ccomp) (3) 

The optimisation is subject to constraints. The energy balance con-
straints are described in Eqs. (4)–(6). Eq. (4) describes how imported 
electricity each hour yimp

t is the sum of electricity to the apartments yapt
t 

and the common electricity use ycmn
t . Eq. (5) describes how the common 

electricity use is the sum of the electricity charged and discharged for 
every EV, the generated PV electricity, and the electricity exported to 
the grid. In this work, the electricity use in the apartments is not 
considered to be flexible, and is set equal to the electricity demand of the 
apartments DEL

t , as shown in Eq. (6). Depending on the location of the 
billing meter, as described in section 3.1, the on-site PV electricity 
generation and the V2G electricity can be used for EV charging only 
(boolean δapt = 0), or for the whole building, including both EV charging 
and the apartments’ energy demand (boolean δapt = 1). 

yimp
t = (1 − δapt)yapt

t + ycmn
t , ∀ t ∈ T (4)  

ycmn
t − yexp

t =
∑

v∈V

(
ych

v,t − δV2Gydch
v,t ηdch

)
+ δaptyapt

t − δPV YPV
t , ∀ t ∈ T (5)  

yapt
t = DEL

t , ∀ t ∈ T (6) 

The charging and discharging of each EV, v, are described in Eqs (7) 
and (8), where ΛEL

v,t is the availability of the EV at time step t (boolean), 
EVlim

v is the fixed charging power per EV, and δch
t is a boolean that has a 

value of 1 when the EV is charging. Eq. (9) ensures that the energy 
charged within a charging session is greater or equal to the reference 
charging demand (UNC). Eq. (10) ensures, for each charging session e, 
that the net charging (charging minus discharging) is greater or equal to 
the total demand of the charging session. Allowing V2G activates dis-
charging of the EVs. Eq. (11) restricts the energy content of the battery at 
any hour t to be within the limits of its available SoC capacity, for EVs 
connected to the CP, ΛEL

v,t . Eqs. (12) and (13) reflect the energy balance of 
the battery. Battery degradation is not included in the model. The values 
of all Λ s and δs are predefined according to real world data and/or 
scenario option, prior to running the model. 

ych
v,t ≤ ΛEL

v,t EVlim
v δch

t , ∀t ∈ Te (7)  

ydch
v,t ≤ δV2GΛEL

v,t EVlim
v (1 − δch

t ), ∀t ∈ Te (8)  

ych
v,t ≥ δUNCDEV

v,t , ∀t ∈ Te (9)  

∑

t∊Te

(ych
v,t − ydch

v,t ) ≥ DEV
v,e , ∀e ∈ E, ∀v ∈ V (10)  

zsoc
t ≤ 100% × ΛEL

v,t , ∀t ∈ Te (11)  

zsoc
t = zsoc

t− 1 +
ych

v,t

EVbat
v

× 100% × ηch −
ydch

v,t

EVbat
v

× 100%, ∀e ∈ E, ∀v ∈ V (12)  

zsoc
t = zsoc

init +
ych

v,t

EVbat
v

× 100% × ηch −
ydch

v,t

EVbat
v

× 100% (13)  

3.3. Selection of energy flexibility indicators for characterizing electricity 
flexibility of aggregated EV charging in the case study 

Different stakeholders, such as end-users, aggregators and grid op-
erators, require different kinds of flexibility indicators [86]. While end- 
users often aim to reduce their total energy costs, grid operators need to 
know the aggregated flexibility potential of a building stock. There is a 
lack of consensus and standardization about the quantification of energy 
flexibility in buildings [56,86,87]. The authors of [87] recommend that 
several methodologies should be tested when quantifying energy flexi-
bility for a specific case study. In our case study, energy flexibility in-
dicators from [6,83,84] are tested on the case study data, with equations 
and definitions as listed in Table 7. 

The Energy flexibility indicators from [6] are based on a systematic 
review of energy flexibility KPIs for residential buildings. The energy 
flexibility KPIs used in our case study are listed by [6] as the five most 
popular KPIs found in literature, and include peak power reduction, self- 
consumption and self-sufficiency of locally generated energy, flexibility 
factor (FF), and flexibility index (FI). The FF indicates a quantity of 
energy during high load versus low load hours. Often the FF is used to 
describe the flexibility of heating systems [6,82,88], but it can also be 
used to describe different aspects of flexible EV charging [89]. In our 
study, FF is used to describe the capability to shift EV charging to periods 
with low load (21:00 to 6:00), to periods with PV generations, or to low- 
cost periods (below monthly median spot price). The FF values range 
from 1 to − 1, where use during only low load hours gives a quantity of 1 
(highest flexibility), and use during only high load hours gives a quantity 
of − 1. The FI is the percentage of the operation cost with optimised 

Table 6 
Tariff options: Energy and Peak per month. VAT is included in all prices.     

Energy 
(EN) 

Peak (PK) 

Grid Cfxd Fixed cost, apartments [NOK/year] 1875 1875  
Cfxd Fixed cost, garage [NOK/year] 10,000 10,000  
Ceno Enova tariff [NOK /kWh] 0.0125 0.0125  
Ccons Consumer tariff [NOK /kWh] 0.20725 0.20725  
Ctrans Energy transport tariff [NOK /kWh] 0.20625 0.0625 

Peak Cpty
m Peak load tariff (Jan,Feb,Nov,Dec) 

[NOK/month/kW] 
0 75  

Cpty
m Peak load tariff (Mar-Oct) [NOK/ 

month/kW] 
0 56.25 

Energy Pspot
t Spot price at hour t [NOK/kWh] Spot 

(2018) 
Spot 
(2018) 

PV  Self-consumed PV-electricity [NOK/ 
kWh] 

0 0  

cexp Exported electricity from PV or V2G 
(Jan,Feb,Nov,Dec) [NOK/kWh] 

Spot x 
1.065 

Spot x 
1.065  

cexp Exported electricity from PV or V2G 
(Mar-Oct) [NOK/kWh] 

Spot x 
1.05 

Spot x 
1.05  
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control, compared to a reference case. 
The Research Centre on Zero Emission Neighbourhoods in Smart 

Cities (FME ZEN) [90] is developing a ZEN KPI assessment tool to 
monitor the performance of a neighbourhoods. Within the Power- 
category in ZEN, the KPIs refer to the energy flows between the neigh-
bourhood and energy grids in the operational phase [83,84]. Four KPIs 
present the difference between a reference case and a case with flexible 
operation: Delivered energy difference, operational cost difference, en-
ergy stress difference, and peak load difference. In our case study, the 
four flexibility KPIs are summarised in a graph, showing the effect of the 
KPIs together, as proposed by [83,84]. These KPI graphs include two of 
the indicators from [6] described above; peak power reduction (named 
peak power difference) and FI (named operational cost difference). In 
our study, the peak power difference and operational cost difference are 
presented with a negative sign when there is a reduction (similar to 
[83,84], opposite to [6]). 

4. Results 

This section presents the results from the optimisation scenarios. 

4.1. Uncontrolled EV-charging (Reference scenarios) 

Fig. 7 shows the average daily load profiles for the reference sce-
narios. The load profiles include electricity use in the apartments, un-
controlled EV-charging, and alternatives with and without PV 
generation. The lines representing the net delivered electricity in the 
figures (“Grid”) were calculated by subtracting the hourly PV generation 
from the total hourly electricity use (including electricity use in apart-
ments and EV charging). Consequently, net delivered electricity repre-
sents the aggregated grid load for the apartment buildings, summarizing 
all the billing meters. Table 8 presents the reference scenarios, including 
the absolute values used to calculate the KPIs for the optimised sce-
narios. For the two reference scenarios with PV, the different metering 
locations result in varying quantities of imported and exported energy, 
while the net delivered electricity to the apartment buildings remains 
constant. The operational costs are influenced by the applied tariffs 
(energy tariff EN or peak tariff PK), and the placement of billing meters 
(tot or sep). These distinctions are captured in the reference scenarios, so 
the effects of optimised EV charging can be evaluated specifically, 
without simultaneously considering the other differences between the 

Table 7 
Energy flexibility indicators used in the case study analysis, calculated over a period of one year.  

Energy flexibility KPIs from [6] Equation eq. nr Ref. 
case  

Peak power (kW) Ppeak   Power demand during peak hour. 

Peak power 
reduction (%) 

ΔP% = 1 −
Ppeak flexible

Ppeak ref 

(14) Yes Percentage of reduced power demand during peak hour due to the optimised control, taking the total 
reference power into account. 

Self-consumption 
(%) 

SC =

PV generation directly consumed
total PV generation 

(15) No SC: The share of PV generation that is used behind the same billing meter (“sep”: For EV charging, 
“tot”: For apartments and EV charging). SCEV: SC for EV charging only. 

Self-sufficiency (%) SS =

PV generation directly consumed
Energy use 

(16) No SS: The share of the energy use that is covered by PV generation (behind the same billing meter). 
SSEV: SS for EV charging only. 

Flexibility factor 
FF =

(
Elow load − Ehigh load

)

(
Elow load + Ehigh load

)
(17) No FFEV-low: EV charging during low load hours versus high load hours. As in [82], the low demand 

hours were defined as between 21:00 and 6:00 the following day. 
FFEV-PV: EV charging during hours with PV generation (representing Elowload) versus EV charging with 
electricity from the grid (representing Ehighload). 
FFEV-cost: EV charging during periods with low spot prices compared to EV charging during periods 
with high spot prices. As in [82], the low and high spot price hours were defined as the hours when 
the spot price was below and above the monthly median. 

Flexibility index 
(%) FI = 1 −

(
Costflexible

)

(
Costref

)
(18) Yes The operation cost with optimised control, compared to the reference case. 

Energy flexibility KPIs from [83,84] Ref. 
case  

Peak power 
difference (%) 

− ΔP% (19) Yes The difference in peak power, compared to the reference case. Equation (19) equals (14), but (14) is 
positive when there is a reduction and (19) is negative. 

Energy stress hours 
difference (%) 

ΔEstress% =
Estressflexible

Estressref 

(20) Yes The difference in delivered energy during hours that are predefined as stressful for the energy system. 
In Norway, this is typically in the morning (7:00–11:00) and afternoon (17:00–19:00) [85]. In this 
case-study, the period 17:00–19:00 is selected, since this is a period with peaks in both apartment 
electricity use and residential EV charging. 

Delivered energy 
difference (%) 

ΔE% =
Eflexible

Eref
− 1 (21) Yes The difference in delivered energy with optimised control, compared to the reference case. 

Operational cost 
difference (%) 

Δcost% =
costflexible

costref
− 1 = − FI  (22) Yes The difference in operational cost due to energy use with optimised control, compared to operational 

cost due to energy use in the reference case.  

Fig. 7. Average daily profiles for uncontrolled EV-charging, without PV (left) and with PV (right).  
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scenarios. 
The average daily peak is about 125 kW for the reference scenarios, 

both with and without PV. EV charging comprises 24 % of the average 
energy load during the year. The yearly peak load is 219 kW, occurring 
in January from 17:00 to 18:00, whereof uncontrolled EV charging 
contributes to 48 % of the peak. Annual delivered energy during stress 
hours (17:00–19:00) is 90 MWh in the reference scenarios without PV, 
whereof 30 % is related to EV charging. The flexibility factor value, FFEV- 

low, is − 0.08 for uncontrolled EV charging during low/high-load hours, 
as shown in Fig. 8. For the reference scenarios with PV, the delivered 
energy during stress hours is reduced from 90 to 81 MWh. The FFEV-PV 
value is − 0.64, indicating that only a small proportion of the uncon-
trolled EV charging is supplied by PV generation. The self-consumption 
of PV is 38 % in Refsep

PV , when the generated PV electricity is used for EV 
charging only (metering location “separate”). When PV generation, EV 
charging, and apartments electricity use are metered together (metering 
location “total”), the self-consumption increases to 98 %. The FFEV-cost 
value is − 0.02, for charging during low/high-cost periods. 

For the operational costs, we found small differences between the 
reference scenarios. The operational costs for the reference scenario 

with peak tariffs, RefPK, is 2 % higher than for the reference scenario 
with energy tariffs, RefEN. For the scenarios with PV generation, the 
operational costs depend on if the generated PV electricity is used on-site 
or exported. When EV charging and PV generation are metered sepa-
rately from apartment electricity use (Refsep

PV ), the operational costs are 
about 3 % higher than when also apartment electricity use is behind the 
same meter (Reftot

PV). 

4.2. Optimised EV charging and energy loads in apartments (“EV, Apt” 
scenarios) 

Fig. 9 and Fig. 10 show average daily load profiles for the scenarios 
when the EV charging is optimised according to energy and peak tariffs 
(not including PV or V2G technologies). Fig. 11 presents the KPIs for the 
scenarios, with peak power difference, energy stress hours difference, 
delivered energy difference, and operational cost difference. 

When EV charging is controlled according to energy tariffs, named 
EN, a large share of the EV charging is moved to the night-time, when the 
hourly spot prices are lower. The average daily load profile in Fig. 9 
shows how this shifting creates a new peak during the night. We found a 

Table 8 
Reference scenarios.   

Energy use 
(MWh) 

PV generation 
(MWh) 

Net delivered 
electricity (MWh) 

Imported from 
grid (MWh) 

Exported to grid 
(MWh) 

Energy, stress 
hours (MWh) 

EV charging 
(MWh) 
Low load 
High load 

EV 
charging 
(MWh) 
Low price 
High price 

Cost 
(kNOK) 
EN 
PK 

Ref 760 – 760 760 – 90 85 
99 

90 
93 

956 
976 

Refsep
PV 760 88 672 727 55 81 85 

99 
90 
93 

897 
922 

Reftot
PV 760 88 672 673 2 81 85 

99 
90 
93 

870 
902  

Fig. 8. Flexibility Factors and annual peak power for the scenarios.  

Å.L. Sørensen et al.                                                                                                                                                                                                                             



Energy & Buildings 305 (2024) 113878

12

yearly peak of 289 kW at night (02:00), which is 32 % higher than for the 
yearly peak in the reference scenarios, which occurred in the afternoon 
(17:00). Energy use during stress hours (17:00–19:00) is reduced by 20 
% compared to the reference scenarios. FFEV-low is improved from 
− 0.08 to 0.41, since a larger share of the EV charging occurs during low 
demand hours (21:00 to 6:00). 

The shift in EV charging is triggered by the fact that the spot prices 
are different, not the magnitude of the difference. All flexible EV 
charging is therefore shifted to the cheapest hours, even if the profit for a 
certain day is small. In the case study period (2018), the differences in 
spot price were quite small, and the ΔCost was only − 1%, compared to 
the reference scenarios with energy tariffs. As illustrated in Fig. 8, the 
FFEV-cost value increases from − 0.02 to 0.54, showing how energy is 
shifted from periods with high spot prices to low spot prices. For the 
scenarios with energy tariffs, the location of the billing meters (separate 

or total) does not change the daily profile. 
When controlling EV charging according to peak-tariffs, i.e. the 

scenarios labelled PK, the EV charging is optimised to reduce the 
monthly peak. In addition, hourly spot-prices are considered in the PK 
scenarios. In Fig. 10, the average daily profiles for PKsep and PKtot are 
presented. For these scenarios, the location of the energy meter affects 
the results. When EV charging is metered separately from electricity use 
in apartments (PKsep), the EV charging is spread nearly evenly through 
the day, and the total yearly peak is 161 kW. When there is a single 
meter for both EV charging and apartment electricity use (PKtot), a larger 
share of the flexible EV charging is moved to the night-time, and the 
yearly peak is reduced to 133 kW, 39 % lower than for the reference 
scenarios. Compared to the reference scenario, we found that the sce-
narios PKsep and PKtot show a reduction of the energy use during stress 
hours by 15 % and 21 % respectively. The ΔCost is − 3% for PKsep and 

Fig. 9. Average daily profiles: “EV, Apt”-scenarios with energy tariffs.  

Fig. 10. Average daily profiles: “EV, Apt”-scenarios with peak tariffs.  

Fig. 11. Energy flexibility KPIs for the “EV, Apt”- scenarios.  
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− 5% for PKtot, compared to the reference scenario with peak tariffs. The 
amount of shifted energy is reflected in the values for FFEV-low and FFEV- 

cost (Fig. 8), where FFEV-low is improved from − 0.08 to 0.37 and FFEV-cost 
is improved from 0.17 to 0.5, going from the PKsep scenario to the PKtot 

scenario. 

4.3. Optimised EV charging, energy loads in apartments, and PV (“EV, 
Apt, PV” scenarios) 

In this section, PV technology is added to the scenarios, combining 
optimised EV charging, energy loads in apartments, and PV generation. 
The energy flexibility KPIs are summarized in Fig. 12. It is economically 
beneficial to increase the self-consumption of generated PV electricity, 
since this energy is free of charge in the operational phase. With separate 
metering, flexible EV charging is therefore moved to daytime for both 
energy and peak scenarios. Since a majority the EVs are disconnected 
during daytime, the share of the EV charging which could be moved to 
sunny hours is limited. With separate metering, the self-consumption of 
PV electricity is 72 % for both ENsep

PV and PKsep
PV , using generated PV 

electricity for EV charging only. When EV charging, PV generation and 
apartment electricity use are metered together (ENtot

PV and PKtot
PV), the self- 

consumption of PV increases to 100 %, because the PV electricity is also 
used in the apartments. However, in these scenarios, the flexible EV 
charging is not moved to daytime due to the introduction of PV, since the 
daytime electricity demand of the aggregated apartments exceeds the 
generated PV electricity. The shifting of the flexible EV charging is 
therefore similar to the scenarios without any PV, i.e. a shift of charging 
to hours with low spot prices. This is illustrated in Fig. 13, which shows 
the average daily profiles during summer for the scenarios with energy 
tariffs (ENsep

PV and ENtot
PV). The yearly peaks are the same as for the “EV, 

Apt”-scenarios, since these occur during the winter when there is little 
PV electricity generated. During summer, the average daily peaks are 
reduced from about 125 kW to 90 kW going from ENsep to ENsep

PV and from 
about 100 kW to 80 kW going from PKsep to PKsep

PV . This is reflected in the 
peak loads per month, and has a positive economic consequence for the 
peak-scenarios. 

4.4. Optimised EV charging, energy loads in apartments, and V2G (“EV, 
Apt, V2G” scenarios) 

In this section, V2G technology is included in the optimisation. The 
use of V2G technology has an operational cost due to the round-trip 
efficiency of 77 %, leading to an increased charging demand of 0.23 
kWh for every discharged kWh. The use of V2G technology therefore 
depends on the variations in energy prices during the connection time. It 

has to be economical beneficial to discharge energy from the EV batte-
ries during hours with higher spot-prices, before charging a higher 
amount of energy during hours with lower spot-prices. Since 2018 was a 
year with small variations in daily spot-prices, our results show limited 
use of V2G in the energy tariff-scenarios during this period. For the 
scenario ENsep

V2G, we found that only 11 526 kWh was discharged during 
the year, while 33 191 kWh was discharged for the scenario ENtot

V2G, i.e. 
when also apartment electricity is placed behind the same meter. The 
reason for this is that there is a higher energy demand during the hours 
when V2G is profitable. For both scenarios (ENsep

V2G and ENtot
V2G), the 

discharged energy is more than doubled when using the 2021-spot pri-
ces for the Oslo-region, which had more daily variations. Fig. 14 shows 
the “EV, Apt, V2G”-scenarios with energy tariffs during the winter sea-
sons, which is the seasons with the largest spot price differences. Spot 
prices in 2018 are compared with spot prices in 2021, showing how the 
larger spot price variations in 2021 led to an extended use of V2G. When 
V2G technology is utilised with energy-tariffs, the daily peaks during 
night-time increased (from 289 kW with ENtot to 299 kW with ENtot

V2G), 
since the charging demand is increased by the round-trip efficiency. The 
total energy use due to the round-trip efficiency increased by 1 %, 
comparing the reference scenario with ENtot

V2G scenario. 
The results also show that there is not much difference between the 

peak-scenario with separate metering (PKsep
V2G), and the scenario without 

V2G (PKsep), since the charging demand is already more or less flat 
during the days with monthly peaks (3 700 kWh discharged). When 
apartment electricity is included (PKtot

V2G), V2G technology is used more 
(18 828 kWh discharged), to shift electricity from afternoons during the 
days with highest peaks during the month, and thereby reduce the 
monthly peaks. Fig. 15 shows the average daily profiles during winter 
for PKsep

V2G and PKtot
V2G (2018-tarrifs). The energy flexibility KPIs for the 

“EV, Apt, V2G”- scenarios are shown in Fig. 16, with FF-values in Fig. 8. 

4.5. Optimised EV charging, energy loads in apartments, PV, and V2G 
(“EV, Apt, PV, V2G” scenarios) 

In this section, both PV generation and V2G technology are included 
in the scenarios. The average daily profiles are shown in Fig. 17 and 
Fig. 18, and energy flexibility KPIs in Fig. 19. For the scenarios with 
separate metering (ENsep

PV,V2G and PKsep
PV,V2G), the combination of PV and 

V2G increases the self-consumption of PV (increased to 83 %, from 72 % 
in scenarios with PV only). V2G technology provides electricity for 
charging other EVs during nighttime, followed by charging the EVs the 
day after, utilizing PV generated electricity. For the scenarios with one 
billing meter for the total electricity use (ENtot

PV,V2G and PKtot
PV,V2G), the 

Fig. 12. Energy flexibility KPIs for the “EV, Apt, PV”-scenarios.  
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self-consumption of PV electricity is 100 %, and the self-consumption 
KPI does not benefit from the V2G-PV combination. If the PV system 
had been larger, the self-consumption would have increased also for 
these scenarios. The scenario ENtot

PV,V2G uses V2G-technology more than 
PKtot

PV,V2G, mainly to shift EV charging until hours with low spot prices 
during the night. Compared to the “EV, Apt, PV” scenarios without V2G, 
the energy use during stress hours is reduced from –23 % to –32 % going 
from ENtot

PV to ENtot
PV,V2G, and from –22 % to − 28 % going from PKtot

PV to 
PKtot

PV,V2G. 

5. Discussion and policy implications 

This section discusses the potential for electricity flexibility from EVs 
under various scenarios, and how coordinated EV charging in apartment 
buildings can affect the aggregated grid load and the self-consumption 
of PV electricity in residential neighbourhoods. 

5.1. How grid tariffs may impact the grid burden of residential EV 
charging 

Uncontrolled EV charging contributed 48 % to annual peak load in 

Fig. 13. Average daily profiles (summer): “EV, Apt, PV”-scenarios with energy tariffs.  

Fig. 14. Average daily profiles (winter): “EV, Apt, V2G”-scenarios with energy tariffs from 2018 and 2021.  
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Fig. 15. Average daily profiles (winter): “EV, Apt, V2G”- scenarios with peak tariffs.  

Fig. 16. Energy flexibility KPIs for the “EV, Apt, V2G”- scenarios.  

Fig. 17. Average daily profiles: “EV, Apt, PV, V2G”-scenarios with energy tariffs.  

Fig. 18. Average daily profiles: “EV, Apt, PV, V2G”-scenarios with peak tariffs.  
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our case study of apartment buildings with EVs. However, through 
optimised EV charging strategies, energy use during stress hours can be 
reduced. Yet, solely shifting flexible loads based on energy tariffs could 
induce new aggregated peaks. Implementing energy tariffs increased the 
annual peak for apartment buildings with EVs by up to 37 %. The peaks 
occurred during the night when there is typically less pressure on the 
grid. With energy tariffs, the billing meter location did not affect the 
load shifting. Peak per month tariffs reduced grid peaks by up to 39 %. 
With peak-tariffs, the peak loads for the total energy use (including EV 
charging and apartment energy) were about 20 % lower when the billing 
meter also included the apartment electricity use (in addition to EV 
charging). 

Considering the practical implementation EV charging management, 
energy tariffs offer the advantage of simplicity, as spot prices are known 
the day-ahead, requiring no coordination with other EVs or building 
loads. Optimising EV charging loads according to peak tariffs is more 
challenging, as monthly peak values are not known in advance. In our 
study, the annual optimalisation of EV charging resulted in savings of up 
to 800 NOK per EV. Flexible energy loads were shifted to the most cost- 
effective hours, even when the price differences between hours (for spot) 
or between peak power levels (for peak) were small. However, building 
owners may hesitate to invest in energy management systems if the 
economic benefits are limited. 

5.2. Self-consumption of PV electricity 

Self-consumption of PV electricity is economical beneficial for 
building owners and aids to reduce high feed-in power to the grid. With 
uncontrolled EV charging, little residential EV charging will be covered 
by PV generation (18 % in our study), since few EVs are charging during 
the daytime. Most of the “PV-to-EV” therefore happens during the 
weekends, since the EVs then are more frequently connected during the 
daytime. With an appropriate control strategy, EV charging can be 
shifted to sunny hours, for EVs connected during the daytime. Our study 
observed this mainly in scenarios where shared energy systems (PV, EV, 
V2G) were metered separately, resulting in up to 38 % of EV charging 
using PV generation. Conversely, when apartment electricity was 
included behind the same billing meter, generated PV electricity was 
primarily consumed in the apartments. The EV charging was instead 
shifted to hours with low spot prices. To encourage increased use of 
generated PV-to-EV charging, it can therefore be an advantage to meter 

EV charging and PV generation separately from apartment electricity 
use. However, using PV electricity also in the apartments have an 
economical positive consequence for building owners, due to the 
increased self-consumption, and may therefore motivate PV 
investments. 

5.3. Integrating V2G in the EV charging optimisation 

Under energy tariffs, V2G is hardly used in our case due to small 
differences in daily spot prices. V2G, due to its round-trip efficiency, 
increases the night-time peaks induced by energy tariffs. However, V2G 
can reduce monthly peaks under peak tariffs. In practical scenarios 
where monthly peaks are not known in advance, this management 
approach is more complex, necessitating increased reliance on V2G- 
technology to achieve similar peak power reductions. V2G has greater 
potential when apartment energy loads are included behind the same 
energy meter, allowing discharged energy to cover apartment loads 
during expensive hours. Compared to EV charging alone, days with 
sufficient variations in daily energy prices can therefore more frequently 
take advantage of the V2G capacity. 

In our study, V2G improves the KPIs, but to a limited degree, and it 
may not justify the needed investments in V2G technology, battery 
degradation, and advanced energy management systems. However, in 
real life, the use of V2G may be more frequent than shown in our study, 
since the study has some limitations: 1) Charging can happen in several 
locations, not only in the building where the discharging happens as in 
our study, 2) EV users can facilitate for V2G by applying longer 
connection times and employing more flexibility when it comes to end- 
SoC, 3) In the future, the spot prices will most likely be higher, with 
larger differences during a day. 

When introducing V2G, the energy management system should 
consider user needs, to make sure that the SoC level is at an acceptable 
level at plug-out time. In addition, battery conditions should be taken 
into account. The battery stress during V2G operation depends on a 
number of factors, such as SoC usage range, the number of cycles, cur-
rent throughput, and battery temperature [91]. Wei et al. [92] 
concluded that for V2G-operation, a SoC range of 30–70 % is most 
beneficial for the battery life. They found that discharging the battery 
from 90 to 65 % SoC may actually extend the battery life, compared to 
parking the car with 90–100 % SoC, due to calendar aging. These factors 
should therefore be considered when developing an energy management 

Fig. 19. Energy flexibility KPIs for the “EV, Apt, PV, V2G”-scenarios.  
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system for EV charging and V2G. 

6. Recommendations and future work 

Our study highlights the potential for coordinating EV charging in 
apartment buildings. Current CP management systems, commonly 
available in these buildings, could play a major role in load shifting. 
Such management systems control the charging loads of the EVs, e.g., to 
keep the loads below a specific power limit. Effective implementation of 
DR requires information about building energy loads, local energy 
generation, and price/grid signals. In addition, information from the 
users is required, i.e., regarding expected plug-out times and charging 
needs per session. In real life implementation it is not feasible to have 
complete knowledge of the building energy use, PV generation, and EV 
plug-out times and energy charged, as we have in this study. Thus, the 
real potential for EV charging coordination may be lower than our cal-
culations indicate. Nonetheless, the potential for coordinating residen-
tial EV charging remains significant. Achieving this in practice favours 
simple yet effective solutions, ensuring primary benefits such as cost 
reduction, grid load reduction, and increased self-consumption of PV 
electricity. As we have demonstrated in this study, several KPIs can be 
combined to address the needs of various user groups, including apart-
ment building associations, CPOs/energy management companies, 
DSOs, authorities, and entities facilitating end-use flexibility. Areas for 
further research include:  

• Research on real-life implementation of smart and robust EV 
charging solutions in apartments buildings.  

• Research on energy profiles and EV charging flexibility in other 
building categories, such as office buildings, utilizing real-world data 
on energy loads and EV charging.  

• Research on the interaction between different building categories, 
with e.g. PV generation in commercial buildings and V2G technology 
in residential buildings.  

• Research on the impact of varying EV charging facilities and tariff 
structures, such as those at residences, workplaces, and public 
charging stations, on energy profiles and the flexibility of EV 
charging across different building categories. 

7. Conclusion 

In this study, we examined the energy profiles and electricity flexi-
bility potential in apartment buildings with EVs. Our analysis was based 
on residential energy and EV data from an extensive case study in 
Norway. The work acknowledged how apartment buildings differ from 
detached houses, due to their more complex structure in ownership and 
energy metering. Adding EV charging to household electricity use 
(excluding heat demand), delivered electricity increased by a factor of 
1.5 for an average apartment and EV. The impact on load peaks was even 
larger, increasing the power demand by a factor of 3.5 to 8.6. For 117 
apartments with uncontrolled EV charging from 82 EVs, the aggregated 
annual peak was 219 kW, whereof 48 % were caused by uncontrolled EV 
charging. The annual peak appeared in the afternoon at wintertime, 
during high load hours in the grid. 

Our study investigated optimisation of the residential EV charging 
with the objective to minimize the energy costs. The grid burden of EV 
charging was affected by different tariffs (energy tariffs or monthly peak 
tariffs), billing metering locations, and the introduction of PV and V2G 
technologies. We found that energy tariffs shifted EV charging to low 
price hours, increasing the peaks by up to 37 % compared to uncoor-
dinated charging. The shifted peaks occurred during night hours, which 
are typically low load periods for the grid. The peak tariff scenarios 
reduced the peak loads by up to 45 %. For apartment buildings with PV, 
the study confirmed how relatively few residential EVs are connected to 
a CP during daytime. In our case study, maximum 38 % of the EV 
charging was covered by PV generation. Utilisation of V2G depends on 

differences in daily spot prices, and our study showed that V2G had a 
limited effect due to small daily variations in spot price. 

This study strengthened the hypothesis that apartment buildings 
with EVs have a considerable potential for electricity flexibility. It is 
common that apartment buildings have CP management tools in place, 
to make sure that the aggregated EV charging load does not exceed a 
certain power limit. Such CP management tools can be further devel-
oped, providing opportunities to shift EV charging loads in time, e.g. to 
reduce the grid burden of the neighbourhood, and/or to reduce the 
energy costs for the residents. Residential EV charging is therefore a 
viable frontrunner in the practical realization of end-user flexibility, 
paving the way for effective solutions in real-life applications. 
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[88] K. Foteinaki, R. Li, T. Péan, C. Rode, J. Salom, Evaluation of energy flexibility of 
low-energy residential buildings connected to district heating, Energy Build. 213 
(2020) 109804, https://doi.org/10.1016/j.enbuild.2020.109804. 

[89] Y. Zhou, S. Cao, Investigation of the flexibility of a residential net-zero energy 
building (NZEB) integrated with an electric vehicle in Hong Kong, Energy 
Procedia. 158 (2019) 2567–2579, https://doi.org/10.1016/j.egypro.2019.02.005. 

[90] NTNU, SINTEF, FME ZEN - Research Centre on Zero Emission Neighbourhoods in 
Smart Cities, Homepage. (2023). https://fmezen.com/ (accessed March 7, 2023). 

[91] M. Jafari, A. Gauchia, S. Zhao, K. Zhang, L. Gauchia, Electric vehicle battery cycle 
aging evaluation in real-world daily driving and vehicle-to-grid services, IEEE 
Trans. Transp. Electrif. 4 (2017) 122–134, https://doi.org/10.1109/ 
TTE.2017.2764320. 

[92] Y. Wei, Y. Yao, K. Pang, C. Xu, X. Han, L. Lu, Y. Li, Y. Qin, Y. Zheng, H. Wang, 
M. Ouyang, A comprehensive study of degradation characteristics and mechanisms 
of commercial li(nimnco)o2 ev batteries under vehicle-to-grid (v2g) services, 
Batteries. 8 (2022), https://doi.org/10.3390/batteries8100188. 

Å.L. Sørensen et al.                                                                                                                                                                                                                             

https://doi.org/10.1016/j.enbuild.2022.111916
https://doi.org/10.1016/j.enbuild.2022.111916
https://doi.org/10.1016/j.jobe.2023.106809
https://doi.org/10.1088/1755-1315/352/1/012008
https://doi.org/10.1088/1755-1315/352/1/012008
https://doi.org/10.1016/j.enbuild.2011.10.038
https://doi.org/10.1016/j.enbuild.2011.10.038
https://doi.org/10.1016/j.enbuild.2012.02.015
https://doi.org/10.1016/j.enbuild.2012.02.015
https://doi.org/10.1016/j.apenergy.2020.114983
https://doi.org/10.1016/j.apenergy.2020.114983
https://doi.org/10.1016/j.enbuild.2014.10.006
https://doi.org/10.1016/j.enbuild.2014.10.006
https://doi.org/10.1051/e3sconf/202124605005
https://doi.org/10.1051/e3sconf/202124605005
https://www.ssb.no/en/statbank/table/06513
https://www.regjeringen.no/contentassets/31249efa2ca6425cab08130b35ebb997/no/pdfs/stm201520160025000dddpdfs.pdf
https://www.regjeringen.no/contentassets/31249efa2ca6425cab08130b35ebb997/no/pdfs/stm201520160025000dddpdfs.pdf
https://www.regjeringen.no/contentassets/31249efa2ca6425cab08130b35ebb997/no/pdfs/stm201520160025000dddpdfs.pdf
https://doi.org/10.1088/1757-899X/609/5/052009
https://doi.org/10.1088/1757-899X/609/5/052009
https://doi.org/10.1016/j.apenergy.2018.09.176
https://doi.org/10.1016/j.apenergy.2018.09.176
https://doi.org/10.1088/1742-6596/1343/1/012057
https://doi.org/10.1088/1742-6596/1343/1/012057
https://doi.org/10.1109/SEST48500.2020.9203459
http://refhub.elsevier.com/S0378-7788(23)01108-8/h0405
http://refhub.elsevier.com/S0378-7788(23)01108-8/h0405
http://refhub.elsevier.com/S0378-7788(23)01108-8/h0405
https://doi.org/10.1016/j.enbuild.2020.110074
https://fmezen.no/wp-content/uploads/2023/02/ZEN-Report-no-44E.pdf
https://fmezen.no/wp-content/uploads/2023/02/ZEN-Report-no-44E.pdf
https://www.regjeringen.no/no/dokumenter/nou-2023-3/id2961311
https://doi.org/10.1016/j.enbuild.2020.110027
https://doi.org/10.1016/j.enbuild.2020.110027
https://doi.org/10.1016/j.buildenv.2022.109461
https://doi.org/10.1016/j.buildenv.2022.109461
https://doi.org/10.1016/j.enbuild.2020.109804
https://doi.org/10.1016/j.egypro.2019.02.005
https://doi.org/10.1109/TTE.2017.2764320
https://doi.org/10.1109/TTE.2017.2764320
https://doi.org/10.3390/batteries8100188

	Energy profiles and electricity flexibility potential in apartment buildings with electric vehicles – A Norwegian case study
	1 Introduction
	1.1 Motivation
	1.2 Literature review
	1.3 Contributions

	2 The selected case study
	2.1 Introduction to the case study
	2.2 Energy system and data
	2.2.1 Space heating and DHW
	2.2.2 Electricity use in apartments
	2.2.3 EV charging and other common electricity use

	2.3 Comparison of power and energy use for apartments and EVs
	2.4 Simulated PV generation and self-consumption
	2.5 Data selection for optimisation of residential EV charging.

	3 Methodology
	3.1 Scenarios for the optimisation
	3.2 Optimisation model
	3.3 Selection of energy flexibility indicators for characterizing electricity flexibility of aggregated EV charging in the  ...

	4 Results
	4.1 Uncontrolled EV-charging (Reference scenarios)
	4.2 Optimised EV charging and energy loads in apartments (“EV, Apt” scenarios)
	4.3 Optimised EV charging, energy loads in apartments, and PV (“EV, Apt, PV” scenarios)
	4.4 Optimised EV charging, energy loads in apartments, and V2G (“EV, Apt, V2G” scenarios)
	4.5 Optimised EV charging, energy loads in apartments, PV, and V2G (“EV, Apt, PV, V2G” scenarios)

	5 Discussion and policy implications
	5.1 How grid tariffs may impact the grid burden of residential EV charging
	5.2 Self-consumption of PV electricity
	5.3 Integrating V2G in the EV charging optimisation

	6 Recommendations and future work
	7 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


