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H I G H L I G H T S  

• Review methodologies and assumptions commonly used in power market models. 
• Identify model design features critical to analyzing the clean energy transition. 
• Survey current state-of-the-art in modeling low-carbon power markets. 
• Identify key model improvements needed for future deep decarbonization scenarios. 
• Highlight importance of tailoring tools for specific power market applications.  
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A B S T R A C T   

As power systems around the world are rapidly evolving to achieve decarbonization objectives, it is crucial that 
power system planners and operators use appropriate models and tools to analyze and address the associated 
challenges. This paper provides a detailed overview of the properties of power market models in the context of 
the clean energy transition. We review common power market model methodologies, their readiness for low- and 
zero‑carbon grids, and new power market trends. Based on the review, we suggest model improvements and new 
designs to increase modeling capabilities for future grids. The paper highlights key modeling concepts related to 
power system flexibility, with a particular focus on hydropower and energy storage, as well as the representation 
of grid services, price formation, temporal structure, and the importance of uncertainty. We find that a changing 
resource mix, market restructuring, and growing price uncertainty require more precise modeling techniques to 
adequately capture the new technology constraints and the dynamics of future power markets. In particular, 
models must adequately represent resource opportunity costs, multi-horizon flexibility, and energy storage ca
pabilities across the full range of grid services. Moreover, at the system level, it is increasingly important to 
consider sub-hourly time resolution, enhanced uncertainty representation, and introduce co-optimization for 
dual market clearing of energy and grid services. Likewise, models should capture interdependencies between 
multiple energy carriers and demand sectors.   
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1. Introduction 

The global urgency to decarbonize is typified by the rapid growth in 
research and deployment of new low-carbon infrastructure throughout 
the energy economy. These changes are driven by national initiatives 
such as the United States' commitment to create a carbon-free power 
sector by 2035 and a net-zero emissions economy by 2050, the European 
Union's law to cut emissions 55% by 2030 and to be net-zero by 2050, 
and China's goal to achieve net-zero emissions by 2060 [1]. Meeting 
these goals will require energy infrastructure changes at an unprece
dented rate, a process that is already well underway. The power sector is 
the linchpin in these efforts because of the potential to deploy zero- 
carbon electricity generation technologies and supporting technologies 
such as energy storage and for its role in decarbonizing other sectors of 
the economy, such as transportation, heating, and manufacturing. Thus, 
the power sector is undergoing a paradigm shift characterized by the 
rapid deployment of variable renewable energy (VRE) resources. Such 
rapid change creates several integration challenges for power grids and 
markets, where maintaining system reliability with increasing shares of 
variable and uncertain power production is a critical high-level chal
lenge. Power market models help to identify effective solutions to these 
challenges by simulating the planning and operation of different future 
power system configurations. 

One crucial aspect of securing a reliable energy transition is ensuring 
that the increasing demand for system flexibility is met. Flexibility can 
be broadly defined as the system's ability to adjust to variability and 
uncertainty across all time scales, from milliseconds to days, weeks, and 
years [2,3]. Traditionally, many components of system flexibility, such 
as fast-start resources or ramping capabilities, have been taken for 
granted and not provided with direct incentives or compensation due to 
either low system requirements or high supply levels. However, in future 
grids with high levels of VRE, demand for flexibility may increase while 
availability decreases. It will therefore be essential to revisit market- 
based incentive mechanisms for flexibility to ensure sufficient in
vestments are made in flexible technologies, e.g., energy storage, flex
ible generation such as hydropower, demand-side management and 
demand response, transmission infrastructure, and infrastructure that 
enables sector-coupling [2–5]. 

In addition to requiring additional flexibility, future zero-carbon 
systems will likely be characterized primarily by resources that have 
zero or close to zero marginal costs. This may substantially impact price 
formation in markets for energy and ancillary services, and some studies 
have already found a significant reduction in prices in areas with high 
VRE penetration, i.e., the so-called “merit order effect” [6]. Reduced 
short-term prices caused by increasing shares of zero-carbon resources 
may decrease incentives for investments in new generation capacity, 
which can ultimately impact system resource adequacy and reliability. 
Several market design approaches have been proposed to ensure 
resource adequacy and revenue sufficiency in future low-carbon power 
systems [7]. Proposed ideas range from refinements to existing market 
solutions, such as improving price formation in energy and capacity 
markets and increasing reliance on long-term auctions and contracts to 
reduce risk exposure for investors, to more substantial re-design of 
electricity markets. However, no consensus has emerged regarding 
optimal electricity market design solutions for the energy transition. In 
reality, multiple market designs and regulatory mechanisms will likely 
be needed to accelerate investments in clean energy resources and 
maintain reliability in the power system cost-effectively. 

Addressing these challenges requires power system models that 
accurately represent the nuances of a rapidly changing grid and provide 
insights into the dynamics of future power markets. Specifically, power 
market models, a subset of power system models, aim to provide insights 
into the scheduling, dispatch, and pricing of energy and reserves. These 
models are critical tools to help power system planners, operators, 
policymakers, and regulators assess future system needs and understand 
how evolving market designs and price formation mechanisms impact 

the incentive-driven investment and operational decision-making of 
market participants. Power market models are already evolving in 
response to these challenges and the specific needs that have emerged 
from the ongoing transition. For example, in recent years, new models 
have been developed to assess long-term market contracts for energy 
and capacity, to provide price forecasting and resource valuation, to 
study resource participation in ancillary markets, to integrate the power 
system with other energy sectors, to optimize microgrid design and their 
interaction with power markets, and more [3,8,9]. These models serve 
different purposes and are driven by different assumptions and mathe
matical formulations. Therefore, their results and conclusions may 
differ, even when applied to analyze the same system. Identifying, dis
cussing, and understanding the differences between power market 
models will elucidate new insights that are important for improving 
models and implementing innovative solutions in future power markets. 

It is critical for power market models to accurately represent re
sources such as hydropower and energy storage that provide real-time 
balancing and essential grid services with fast response time and low 
marginal cost, yet such resources are often misrepresented or under
valued in power market models [10–12]. Specifically, studies must ac
count for the future availability and operational strategies of these 
resources and their effect on market prices to ensure proper remunera
tion and incentives for flexible resources. Hydropower is given partic
ular attention in this study as it is the most widely available and utilized 
source of dispatchable zero-carbon generation capacity and accounts for 
more than 90% of all energy storage capacity globally [13]. 

In practice, limits on computational resources and data availability 
constrain the level of detail that can be included in a power market 
model. It is therefore important for modelers to consider the intended 
application of the model and assess cost-benefit tradeoffs when deter
mining how to structure model formulations and simplifying assump
tions. Model developers face many challenges, including the need to 
capture highly resolved spatial and temporal representation, accurately 
represent resource cost and performance characteristics, incorporate 
new market designs and grid services, model long-term contracts for 
ancillary services, energy, and capacity, overcome data limitations, 
maintain computational tractability, and more [14]. 

In this paper, we review power market models, identify key model 
design characteristics, and how they affect the model's ability to provide 
insights into market dynamics and inform decision-making for the clean 
energy transition. As previous model reviews primarily focus on general 
energy system modeling, we target power market modeling in this re
view. In particular, we address the limited understanding of how the 
design features of models translate to their ability to represent future 
power markets and to provide insights into specific questions about 
market design. Through our review, we identify how power market 
models need to evolve to study next-generation low- and zero-carbon 
power markets. 

The main contributions of the manuscript include:  

• A comprehensive literature review of market model methodologies, 
design features, and market trends as they pertain to future low- 
carbon power systems. 

• Identification of how the ongoing energy transition and corre
sponding electricity market trends translate into design characteris
tics and needs for future power market models.  

• Identification of the various approaches in representing system 
flexibility in power market models and a discussion of their benefits 
and drawbacks.  

• A discussion of the model representation of hydropower and storage 
resources and their growing role in low-carbon power markets. 

In Section 2, we provide a summary of previous related work and 
elaborate on how our review offers additional insights. Section 3 pro
vides a basic review of power market model methodologies, defining 
general approaches to optimizing or simulating power markets. The 
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section is focused on providing a foundation of several fundamental 
methodologies commonly utilized in current literature and sets the stage 
for the design features we introduce in Section 4. In Section 4, we pro
vide more detail on the common treatment of different model design 
features as well as their respective limitations and benefits. We then 
draw upon these insights to identify tradeoffs across current market 
models, highlight how model methodologies correlate with their results 
across different applications, and establish key considerations for future 
model development and application. Section 5 reviews how power 
market models have been applied to analyze and address decarbon
ization goals, with a focus on how the design features introduced in 
Section 4 have been utilized and how market trends correspond to future 
model needs. Finally, Section 6 concludes with a summary of key find
ings, including proposed directions for future work. 

2. Previous work 

Energy and power system models are receiving increasing attention 
in the existing literature. Fig. 1 shows how the number of review pub
lications has grown over the last 20 years and illustrates the importance 
of assessing modeling tools under fast-changing conditions. The figure 
also reveals that the broader scope of energy system modeling has 
gained the most attention. There are fewer review publications related 
to power systems and fewer yet related to power markets. 

Review papers on modeling tools serve different purposes and cover 
a wide range of perspectives, ranging from providing a classification of 
models to assessing the suitability of models for various applications and 
identifying challenges or trends [15,16]. Many papers review specific 
models or frameworks, some consider models proposed by academia, 
and others focus more on general findings. We find that most model 
review papers focus more broadly on energy system modeling and the 
challenges they face in the energy transition [17–21]. These challenges 
are dominated by issues related to VRE integration, although some 
recent papers focus on the ability of models to account for social aspects 
and energy justice [22,23]. Some review papers focus specifically on a 

subset of models, like open source/access models and their performance 
compared to conventional models [24,25]. In contrast, others focus on a 
specific technology, like nuclear [26] or hydrogen [27]. Some review 
papers on energy system modeling also cover power market models. For 
example, Pfenninger et al. review different categories of energy system 
models, including power system and power market models [28]. Sav
vidis et al. classify energy system models, including power market 
models, to identify gaps between low-carbon energy policy challenges 
and modeling capabilities [16]. Chang et al. identify current trends in 
energy system modeling and review 54 tools, including power market 
models [15]. Yoro et al. review recent advances in modeling and 
simulation for renewable and sustainable energy systems, including 
those related to power market models, with a particular focus on current 
approaches, challenges, and prospects [29]. Després et al. focus both on 
power sector and long-term energy system models and the need to 
evaluate long-term scenarios for energy system decarbonization [30]. 

Other review papers focus strictly on the power sector. Foley et al. 
review power system models broadly in the context of market liber
alization and VRE integration and also discuss several existing models, 
including some power market models [31]. Koppelaar et al. review the 
characteristics of power system models in general, and German models 
in particular, and study their suitability for policy analysis [32]. Deng 
and Lv review the evolution of optimization models for power system 
planning with increasing shares of VRE and find a need for more detailed 
modeling of flexible generation, energy storage, and demand response 
[33]. Oikonomou et al. review power system models ranging from 
power flow, and production cost to planning models, classify the re
lationships between them, and suggest a range of model improvements 
[34]. Many review papers provide an overview or survey of existing 
tools and address their suitability for different use cases, for example, to 
study VRE integration, expansion planning, or to inform policy de
cisions. Both Connolly et al. and Ringkjøb et al. describe and review a 
wide range of energy and power system modeling tools and focus on 
their suitability for analyzing VRE integration [8,35]. Neither of the 
above-mentioned papers provide an in-depth review of specific market 

Fig. 1. Total yearly publications reviewing models used in energy and/or power systems related to decarbonization or energy transition. Based on searches in the 
Scopus database for papers including variants of the words “power/electricity/energy system/market model”, “power/electricity system/market model”, or “power/ 
electricity market model” along with “review/survey” and “decarbonization/low-carbon/zero-carbon/renewable/transition/green”. (Source: Scopus). (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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modeling challenges. 
A smaller subset of the review literature focuses specifically on 

power market models. Early on, Ventosa et al. classified models as 
single-firm optimization, equilibrium, or simulation models and pro
vided a detailed discussion on subtopics, including strategic in
teractions, Nash equilibrium, electricity price projections, stochasticity 
and risk analysis, and agent-based models [36]. The work is an excellent 
starting point for introducing the scope and dynamics of power market 
models. More recent market model reviews have followed a similar 
structure, covering new power system challenges, such as the need for 
higher time resolution, time-domain reduction methods, sector- 
coupling, and new market products [2,37,38]. 

Many reviews focus on specific aspects of power systems, such as 
power market design, the representation and valuation of VRE and en
ergy storage, expansion planning, uncertainty modeling, or flexibility- 
related challenges. Hu et al. [39], Sequeria et al. [40], and Johnathon 
et al. [41] reviewed market design problems and political barriers in 
high VRE systems but left out consideration of market modeling. Hon
kapuro et al. review European market design and examine methods used 
for modeling market mechanisms [42]. Menegaki et al. studied early 
methods for VRE valuation but didn't consider other aspects of power 
market modeling, such as dispatch considerations, resource represen
tation, and grid service representation [43]. 

Other VRE modeling reviews focus more on the planning problem 
and less on market issues [44,45]. Bistline et al. review the represen
tation of VRE in long-term power sector models and complementary 
technologies like energy storage [46]. Levin et al. review challenges and 
opportunities for capacity expansion modeling with a particular focus on 
the role of energy storage in decarbonizing the grid [47]. In Oree et al., 
the authors reviewed how environmental considerations are integrated 
into planning models and categorized methods based on external costs 
and constraints, multi-objective approaches, methods for handling un
certainty in VREs, and dispatch and pricing behavior under high VRE 

penetration [45]. Ballireddy and Modi reviewed solution algorithm 
techniques for planning models in the context of reliability and uncer
tainty [48]. However, they do not discuss the design characteristics of 
market models, the challenges they face in integrating solutions, or how 
they are used in practice. Siala et al. compare five power market models 
applied to analyze generation expansion in Europe, but the investigation 
is limited to how model type (optimization or simulation), planning 
horizon, and temporal and spatial resolution affect model results [49]. 
Gacitua et al. also review expansion planning models but focus on their 
potential for energy policy analysis with an emphasis on policy in
struments for VRE integration [50]. There are also power market model 
reviews specifically focused on agent-based power market models, 
reviewing both the methodologies and availability of these tools 
[9,51–53] or more specific details like the use of machine learning in 
such tools [54]. 

Flexibility and uncertainty have attracted increasing focus as power 
systems and markets adopt higher levels of weather-dependent pro
duction, and some papers study how uncertainty can be or is represented 
in current models [55,56]. Lund et al. reviewed trends in alleviating 
flexibility issues, including demand-side management, supply-side so
lutions, and grid services, but did not cover the design consideration of 
models and how their characteristics affect their ability to model such 
solutions accurately [3]. Villar et al. reviewed system flexibility, grid 
services, and market design but did not cover related challenges of 
modeling tools, particularly the main design features representing these 
critical areas [57]. Other reviews focus on modeling specific flexible 
technologies, like the ability of models to accurately represent and value 
energy storage resources with different technology types and opera
tional practices [11,46,58–60]. Similarly, there have been several re
views on hydropower modeling, including pumped storage hydropower 
(PSH) [61], resource utilization, and sustainability [12,62,63]. There 
are also reviews on demand response and sector-coupling, focusing on 
the utility these mechanisms provide [64–70]. However, these 

Fig. 2. Three fundamental model methodologies from which a power market model can be formulated: optimization [71–76], simulation [36,77,78], and equi
librium [36,44,79–82]. 
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technology-specific reviews only lightly touch on the larger scope of 
power markets and how accurate representation of these resources fits 
within the requirements of future market models. 

As demonstrated by our review of previous related research outlined 
above, a growing emphasis in literature lies in the capability of models 
to keep up with different needs brought on by the energy transition. 
Nevertheless, it is evident that most literature reviews concentrate on 
energy system models, while the specific details of power market 
modeling have gained less attention. Furthermore, numerous studies 
delve into specific tools, a subset of models, the representation of a 
particular technology, or specific aspects of market modeling without 
covering a broader picture of the underlying design considerations. In 
this paper, we address this gap in the literature by providing new in
sights through an up-to-date review of power market modeling, with a 
special focus on model design features we identify as critical for accurate 
representation of future renewables-dominated systems that are likely to 
follow from the clean energy transition. 

3. Power market model methodologies 

It is common to distinguish power market models based on their 
mathematical foundation, solution approach, and target application 
[8,36,38,44,45]. In this section, we review several different power 
market models methodologies and provide a brief overview of common 
use cases. A variety of optimization and modeling methodologies are 
utilized in power market modeling. Modeling approaches can be 
grouped into three categories (Fig. 2): optimization-based, simulation- 
based, and equilibrium-based methodologies. Optimization models are 
typically used in power systems and markets that are planned and 
operated to achieve specific objectives, usually related to system cost. 
Simulation methods are applied when investigating interactions among 
subsystems or market participants with different objectives. They can 
model detailed interactions between physical system components and 
strategic behaviors, such as bidding behaviors of generation resources in 
a competitive wholesale market. Alternatively, if economic equilibrium 
solutions emerging from strategic interactions are of particular interest, 
the problems can be formulated as equilibrium models. These three 
groups of methodologies are not mutually exclusive, as simulation- and 
equilibrium-based models can be embedded with optimization-based 
subproblems or converted to traditional optimization-based models. 

These three categories are intended to provide a structure for 
introducing how models are commonly constructed and applied. A 
detailed review of all solution approaches and use cases is beyond the 
scope of this manuscript. Rather, we provide this general description of 
model methodologies and typical uses to give context for the key model 
characteristics introduced in Section 4. This may aid in understanding 
the tradeoffs between key characteristics and model results as they 
pertain to the different model methodologies. 

3.1. Optimization models 

Optimization models seek to capture the dynamics of a power market 
and individual power system assets by minimizing/maximizing an 
objective function subject to a set of constraints. It is common to cate
gorize optimization models as linear or nonlinear and deterministic or 
stochastic. The linearity refers to the relationship between decision 
variables in the objective function and model constraints, while the 
stochasticity of a model refers to whether uncertainty is modeled in 
selected input parameters or if inputs are treated deterministically. The 
most straightforward market models are deterministic and linear and 
can be solved with linear programming (LP) methods. Often, these 
models include integer variables to better represent operational con
straints in the system and are, therefore, solved with mixed integer 
linear programming (MILP) methods. These models do not consider 
strategic behaviors among market participants, and decision variables 
are solved for by minimizing the total system cost based on the reported 

cost structure of generation resources. They are commonly adopted by 
current electricity market operators. 

In the research literature, nonlinear objectives have been applied 
recently for modeling demand response and time-of-use retail rates 
[83–85]. Stochastic optimization has been used to manage various 
power market uncertainties, including but not limited to demand, 
weather, and renewable energy [86,87]. A variety of stochastic 
modeling techniques have been proposed to model uncertainties in a 
market, including stochastic programming [73,88], robust optimization 
[74,89,90], and chance-constrained optimization [75,91–93]. In addi
tion to different mathematical formulations, each stochastic modeling 
technique may represent different risk preferences. For example, sto
chastic programming models are typically risk-neutral since they 
consider all possible scenarios based on their probability. In contrast, 
robust optimization models are more risk-averse since they make de
cisions based on the possible outcome of the worst scenario. In addition, 
market models can be single- or multi-stage, based on the decision- 
making process of underlying systems [76,94–96]. 

The main challenge in applying optimization models in power 
market analysis lies in the computational requirements of solving 
problems with highly resolved spatial, temporal, or system representa
tion. Generally, the more variables and constraints in a problem 
formulation, the harder the problem is to solve. Thus, these models must 
be developed and applied with the tradeoffs between design feature 
choices and computational difficulty in mind. On the other hand, in 
addition to conventional exact solution search techniques, heuristic 
search algorithms have been proposed, such as particle-swarm optimi
zation [97], genetic algorithms [98–100], and machine learning tech
niques recently [101–106]. Aguila-Leon et al. utilizes particle-swarm 
optimization to optimize a set of artificial neural networks managing 
self-adaptable energy microgrids, demonstrating the potential of 
learning algorithms in contained energy systems [97]. Additional pro
cesses may also be used to overcome computational challenges. Teich
graeber et al. utilized a time-series aggregation method that reduces 
computational time by 1–3 orders of magnitude while maintaining 
similar or more granular results across multiple optimization methods 
[107]. 

3.2. Simulation models 

Other reviews of power market models have clearly distinguished 
between simulation-based models and optimization models [36,77]. In 
general, simulation-based models do not utilize a single system objective 
function but instead establish rule structures that govern interactions 
between system components. These interactions can be iterated algo
rithmically or can be determined by solving sets of independent opti
mization problems. Hence, optimization and simulation models are not 
necessarily mutually exclusive. One example of this is an agent-based 
model, in which the behavior of each individual market participant - 
or agent - is parametrized and solved for based on their assumptions 
regarding the behaviors of the other agents. This iterative process is 
completed for each time step until a convergence or another stopping 
criterion is reached [36,78]. Some of the advantages of simulations 
include the flexibility to configure interactions, in certain cases reduced 
computational burden and therefore the possibility of including more 
detailed operational constraints, and the ability to represent asymmetric 
market behavior. Drawbacks include the inherent difficulty of general
izing simulation results to all markets, especially systems that have time 
dependencies, such as those relying on long-duration storage 
technologies. 

3.3. Equilibrium models 

Power market equilibrium models are based on the formal economic 
definition of solving for market equilibria. Equilibrium models can be 
used to analyze the design of an individual market or multiple related 
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markets. In a partial equilibrium model, feedback from related markets 
is either fixed or ignored, while a general equilibrium model in
corporates feedback mechanisms from related markets. For instance, 
agents' bidding strategies in day-ahead and real-time energy markets can 
be highly interdependent. However, a partial equilibrium model of day 
ahead market behavior will typically assume fixed behavior in the real- 
time market and not capture the dependencies between the two markets 
[36,44]. More complex examples can include interactions and feedback 
between long-term capacity markets and financial transmission rights 
markets. 

Equilibrium models are usually applied to analyze the strategic in
teractions of multiple agents in either a partial or general equilibrium 
framework. The concept of equilibrium in these models is based on the 
known or assumed competitive environment in the market of interest, 
and agents compete by strategically submitting bids and offers into the 
market. For instance, in a power market model based on Cournot 
competition, the equilibrium model determines generator quantities or 
outputs. The distinction between equilibrium and optimization models 
can also be blurred, as often, market equilibria are determined by 
formulating and solving multiple optimization problems. 

The type of optimization approach that is utilized determines how 
these models are mathematically constructed and how their equilibrium 
outcomes are determined. In general, equilibrium models are formu
lated as some form of a mixed complementarity problem to account for 
the interactions between different markets or multiple agents' strategic 
behaviors within the markets. For instance, the strategic bidding 
behavior of multiple agents in a day-ahead energy market can be 
formulated as an equilibrium problem with equilibrium constraints 
(EPEC). In such a setup, an individual agent's optimization problem 
consists of equilibrium constraints representing known or assumed 
response functions, which guide the choice of optimal price and/or offer 
quantity. 

In summary, equilibrium models incorporate feedback between 
different markets and between multiple agents in a single market or 
multiple interdependent markets. These models can be used to analyze 

market designs by identifying conditions under which participants can 
exert market power or test incentive compatibility based on known or 
assumed agent behaviors. 

3.4. Market model use cases 

The results generated from applications of the three categories of 
models discussed above may reveal market trends, system requirements, 
and other nuanced behaviors of power markets and their agents under 
projected or hypothesized future system conditions. These model out
puts inform decisions in the power sector, complementing information 
obtained from other sources, including analysis of historical market 
data, economic and political trends, and results from production cost 
simulations and long-term power system planning models. The value of 
power market models resides in their ability to analyze how different 
operational strategies, participant behavior profiles, uncertainty repre
sentation, policy decisions, market design options, and system sensi
tivities impact outcomes for the market as a whole and for different 
individual resources. Since it is impossible to model every dependency 
and uncertainty in a power market, the main benefit of market models is 
found in their ability to identify trends and understand the behavior of 
power markets under a range of different assumptions. A summary of 
selected market model use cases and how they support decision-making 
in the electric power sector is given in Fig. 3. 

4. Power market model design features 

This section reviews key design features of power market models that 
are particularly relevant to the clean energy transition. We identify 
trends in how markets are represented and propose considerations for 
modelers to evaluate when balancing tradeoffs in model design. The 
design features we cover are shown in Fig. 4. Each feature plays a critical 
role in developing high-fidelity model representation when modeling 
low-carbon power markets. We start each review with a basic intro
duction of the design feature and its tradeoffs, then summarize trends in 
the relevant literature and describe how these tradeoffs should be 
considered when designing a power market model. In Section 5, we 
review studies of low-carbon power markets to illustrate the importance 
of these design features and analyze the advantages and limitations of 
different design choices. 

Fig. 3. Examples of different market model use cases and ways they can be 
used to inform decision-makers in the power sector, e.g., to analyze market 
structures [75,94,99,108,109], resource operation [110–112], uncertainty 
[86,87], policy decisions [32,113–116], the role of different resources [8,44]. 

Fig. 4. Illustration of selected power market model characteristics of particular 
relevance for the clean energy transition and the tradeoff between key char
acteristics and computational tractability. 
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4.1. Temporal structure 

Temporal structure is one of the most fundamental design features of 
a power market model. It provides a framework for model constraints, 
defines the representation of the dynamics of dispatch and generator 
behavior, and dictates how markets will be cleared. The fundamental 
temporal structure of a model (described in Fig. 5) has many compo
nents, including the study horizon, the market clearing horizon, and the 
market clearing resolution. The choice of this structure presents a 
tradeoff in model design, where increasing the detail of any of these 
components also increases the computational burden of the model 
[77,117]. The study horizon defines the entire timeframe that the model 
considers and analyzes. The market clearing horizon represents the time 
period during which decisions are simultaneously made or optimized by 
the market operator. In contrast, the market clearing resolution repre
sents the granularity of individual model time steps, i.e., the resolution 
of decision variables. 

The market clearing resolution in a model should ideally reflect the 
time resolution used in the actual market clearing. Likewise, the market 
clearing horizon should be aligned with the actual market clearing 
timeframe, although it is sometimes shortened to reduce the underlying 
problem size or lengthened to mitigate edge effects at the end of the 
clearing timeframe. A short-term market is cleared for a fixed horizon (e. 
g., 24 h for day-ahead and one to a few hours for real-time). This can be 
changed, especially when considering resources with longer decision 
horizons, such as long-duration energy storage (e.g., hydro reservoirs) 
[11]. The decision horizon influences problem size and the size of each 
time step within this horizon. Commonly, day-ahead markets have 24-h 
decision horizons with 1-h time steps, meaning that each hour, a new 
decision is made regarding the state of the system 24 h in the future. 
Additional look-ahead periods are sometimes added to address inter
temporal constraints and end effects. Models that resolve on sub-hourly 
scales can capture the dynamics of intra-hour market contracts, which 
would have their own decision horizon, separate from the fundamental 
time structure components in Fig. 5. Importantly, changing the temporal 
structure of a model may impact the model results. Reducing a model's 

time resolution to improve computational performance is a standard 
process, though this can influence model results across multiple di
mensions [77,117–121]. 

Another common approach that can be used to reduce the time 
domain of a model is to consider representative time periods, e.g., a set 
of days less than 365 that collectively approximate the characteristics of 
an entire year. When using this method, the results obtained from 
modeling the representative time periods ideally are similar to those 
obtained from modeling the whole year. This approach is common in 
long-term planning models and less common in short-term market 
models. The main difficulty in representative time period selection is 
accurately capturing daily and seasonal changes in demand and 
weather-driven variables such as wind and solar availability. Repre
senting a year with a set of non-sequential representative hourly periods 
can also eliminate consideration of intraday volatility in time series 
parameters, such as demand or renewable generation profiles, and 
hinder the ability to capture the operational capability of long-duration 
energy storage resources. Furthermore, by considering fewer non- 
sequential representative days, a modeler may sacrifice important 
multi-day considerations like the effects of extreme weather conditions, 
such as the so-called “Dunkelflaute” when periods of low VRE produc
tion extend for multiple days. Hence, there has been work on developing 
methods for the proper selection of representative days, the most com
mon of which involve hierarchal clustering or error quantification 
metrics [118,122]. It is challenging to generalize methods for choosing 
the optimal model time reduction, as this decision depends significantly 
on the specific choice of model and the application. Modelers exploring 
time domain reduction should be aware that their results may depend on 
their choice of temporal representation and should, therefore, take care 
to perform robust sensitivity analyses and interpret results in the context 
of these limitations [123]. 

4.2. Representation of other grid services, products, and markets 

Models may represent the provision of several grid services in 
addition to energy; these include operating reserves, flexibility products, 

Fig. 5. The three basic temporal dimensions within a power market model.  
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long-term capacity, and demand response. Traditionally, market models 
are designed with the primary objective of representing the energy 
market clearing process, but as power markets continue to decarbonize 
and evolve to allow greater operational flexibility, modeling these 
additional services will become increasingly important. These markets 
can be cleared separately or co-optimized [124,125] with energy or 
other products. Operating reserve products are the most commonly 
considered non-energy grid services, however, they are often repre
sented in a relatively straightforward manner. For example, the full 
spectrum of physical and opportunity costs that market participants face 
when providing these services, may be overlooked [5]. Moreover, 
reserve requirements may be determined through simplified heuristics 
based on a percentage of anticipated peak demand or anticipated hourly 
demand, which may not be fully reflective of reserve procurements in 
actual market operations or the physical need for reserves to maintain 
system reliability [126,127]. Furthermore, the underlying uncertainty 
driving operating reserve requirements is typically not explicitly rep
resented in market models [128]. 

Capacity products are largely underrepresented in short-term power 
market models but are a growing and critical market modeling feature 
[129,130]. It can be challenging to model competitive capacity markets 
since market rules and market processes can vary significantly in 
different regions, and it may be hard to capture all such distinctions in a 
single model framework. When these products are modeled, capacity 
requirements are often represented by implementing one or more ca
pacity demand curves [131]. 

Capturing demand response in models is increasingly important as 
power systems look to become more flexible. Demand response can be 
modeled in wholesale power market models by including price-elastic 
demand as a portion of the total demand [64,65,69,132]. The price- 
responsive demand portion is represented as a stepwise curve for 
power demand so that less energy is required during periods of supply 
scarcity. However, price-responsive demand changes the independent 
nature of the demand input and tends to increase the size of the opti
mization problem. Other demand response models include retail pricing 
models, typically large nonlinear optimization models directly inter
acting with wholesale markets and their corresponding optimization 
problems [65,69]. Pricing schemes such as time-of-use, real-time pric
ing, and critical peak pricing are challenging to linearize without losing 
significant accuracy or limiting the scope of the model. 

4.3. Uncertainty representation 

Many power market parameters are inherently uncertain, and these 
uncertainties must be accounted for in order to represent system 
behavior properly. Such uncertainties arise from multiple sources in the 
power market, including demand, VRE generation profiles, assumptions 
about technology and fuel costs, and other input parameters. A variety 
of uncertainty techniques are commonly applied in power market 
modeling, including stochastic modeling, probabilistic modeling, pos
sibilistic modeling, information gap decision theory, robust optimiza
tion, modeling to generate alternatives, and interval modeling 
[4,86,88]. In general, there are two main challenges in uncertainty 
modeling: 1) representation of the individual uncertainties and their 
correlations (e.g., as scenarios or probability distributions), and 2) how 
this uncertainty is considered when the power market model is formu
lated and solved (e.g., through stochastic or robust programming). 
These considerations are summarized in Fig. 6. In both cases, there are 
numerous tradeoffs across the various uncertainty representation ap
proaches related to data requirements, computational limitations, and 
the fidelity of model outputs. 

The representation of uncertainty in a power market model depends 
on the type of modeling problem at hand and the assumed risk prefer
ences of the decision-makers, as different approaches are tailored to 
specific risks and tolerances. With a deterministic model formulation, 
the most common way to consider uncertainty is to perform sensitivity 
analysis on input parameters. However, new advancements in uncer
tainty representation and computational capabilities are paving the way 
for modelers to explore other options. For example, one approach called 
“modeling to generate alternatives” allows modelers to determine the 
maximally different investment decisions that fall within a set error 
tolerance of the objective function [133]. This allows for considerations 
of maximum variety in decision mixes that meet the same objective. 

In the case of formulating models under uncertainty, such as in 
stochastic programming, models can be configured to augment risk 
constraints and objective functions, for example, to understand how 
reserve requirements may change with increasing VRE penetrations 
[79,88,134]. In this case, one must characterize the probability distri
butions of stochastic input parameters such as demand, unit outages, or 
weather-driven electricity generation. These uncertainties may have 
different probability distributions and can be modeled using different 
approaches [135]. Uncertain parameters can generally be represented in 
various forms, depending on data availability and the problem 

Fig. 6. Distinction of the two main steps in addressing uncertainty in power market models: 1) representing uncertain parameters and 2) formulating a decision 
problem under uncertainty. 

M. Haugen et al.                                                                                                                                                                                                                                



Applied Energy 357 (2024) 122495

9

formulation of the power market model. For example, uncertain wind 
power generation can be represented by a set of scenarios [125], a set of 
intervals [136], or an uncertainty set [137]. 

Lastly, some uncertainty measures can be incorporated into deter
ministic formulations directly. For example, Monte Carlo simulation can 
be utilized. Here an uncertain input parameter space is sampled 
repeatedly, and multiple executions of the deterministic model yield a 
joint distribution of results over the parameter space [138]. Other ap
proaches to address uncertainty require more significant departures 
from deterministic models. For example, a stochastic optimization 
model is implemented by optimizing over a set of scenarios representing 
the uncertainty of stochastic parameters within the model formulation. 
In robust optimization the distribution of the uncertain parameter is 
similarly unknown, and an uncertainty set is defined. The problem is 
then optimized over all possible realizations to yield a least-cost solution 
that is robust against a worst-case future, even if it is unlikely, e.g., to 
minimize the system cost given the worst-case realization of a technol
ogy's future capital cost [110,137,139]. Including uncertainty measures 
enhances a model's ability to represent the risk preferences of decision- 
makers, thereby providing improved insights into the dynamics of these 
complex systems. 

4.4. Energy storage representation 

As power systems restructure, new storage technologies are contin
ually developed and deployed to address future flexibility needs. Storage 
resources, such as PSH, batteries, flywheels, and compressed air, are also 
being utilized in new ways to provide flexibility to the grid. As storage 
resources become increasingly diverse and gain access to new revenue 
streams in electricity markets, simple storage formulations will fail to 
capture the optimal utilization and full value of these resources 
[11,140]. For example, storage technologies vary in terms of effi
ciencies, power limits, ramp rates, and lifetimes, and these parameters 
also vary as a function of usage patterns and, therefore, require 

individual treatment [10]. Furthermore, these resources can participate 
in wholesale markets, reserve markets, and retail markets as a distrib
uted resource and demand response provider. This means models cannot 
simply represent storage as a combined energy producer and consumer 
with one revenue stream and expect proper valuation and dispatch of 
these technologies [10,11,140]. While balancing markets and distrib
uted energy provision currently constitute a relatively small portion of 
the revenues many storage assets earn, they may provide a more sig
nificant fraction of storage revenues in future systems. 

The temporal representation of storage resource operations also 
plays a critical role in accurately modeling their dispatch and evaluating 
their role in the power system [141]. In a short-term setting, these re
sources benefit from sub-hourly operational resolution as they can uti
lize their fast response time to stabilize the grid and take advantage of 
price fluctuations in intraday and real-time markets with high time 
resolution [123]. At the same time, it is essential to consider inter
temporal constraints, like ramping and unit commitment constraints, to 
capture the actual price volatility in markets and to ensure that models 
consider how storage operation in one period affects its dispatch in 
another [10]. This is particularly important for long-duration storage 
technologies, as their storage capacities may exceed the study horizon. 
As for hydropower reservoirs, proper calculation of opportunity cost (i. 
e., also called water values for hydropower [142]) is necessary for 
efficient scheduling and pricing of energy storage in the power market. 

4.5. Hydropower representation 

Hydropower resources are critical to future low-carbon power mar
kets as they provide dispatchable power, short- to long-term flexibility, 
and storage with zero carbon emissions. However, hydropower and 
other energy storage resources are often over-simplified in power mar
ket models and, in turn, end up being under-valued because the model 
either lacks sufficient time resolution or has an inadequate representa
tion of all the grid services that storage provides [10,11,141]. In power 

Fig. 7. Key challenges in modeling hydropower flexibility.  
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market models, hydropower resources are impacted by each of the 
model design features in Fig. 4, and their representation provides an 
excellent example of how model design features influence power market 
model outcomes. For example, the temporal structure of a model in
fluences a hydropower resource's dispatch as well as its connection to 
long-term watershed conditions and ability to provide long-duration 
energy storage. Moreover, the fast ramping and storage capabilities of 
hydro resources allow them to provide many grid services, and the 
choice of uncertainty representation for water inflows/outflows greatly 
influences operating behavior. The representation of PSH and its asso
ciated opportunity costs influences the dispatch of other resources and 
the overall market model outcome. Lastly, hydropower resources also 
impact energy price formation as studied in the traditional hydrother
mal coordination problem, i.e., determining how to schedule and 
dispatch a portfolio of hydropower and thermal power generation re
sources within an area with minimum costs. As the model design choices 
affect the operation and flexibility provided by hydropower resources, 
tailoring the model design toward a specific problem will allow for a 
more accurate representation and assessment of these resources. Key 
challenges for modeling hydropower flexibility are summarized in Fig. 7 
and further discussed below. 

4.5.1. Hydropower constraints 
Modeling individual hydropower plants accurately within a broader 

power system context is challenging. The main reason for this is the 
computational burden of representing all technical, watershed, and 
environmental constraints, as well as managing uncertainty in inflows, 
the multi-purpose use of water, and the future value of water. An ac
curate description of the hydropower production function, i.e., the 
relationship between electricity production for each plant or unit and 
discharge, head, and turbine efficiency, is challenging due to non
linearities and state dependency [111]. This is usually represented in 
detail in short-term decision tools but is often simplified in long-term 
power market models. Operational practices for different hydropower 
plant types are site-specific, and acquiring accurate site-specific data is 
challenging [12,143,144]. In addition, environmental and regulatory 
constraints can be hard to describe mathematically and can greatly in
crease model complexity [12]. While the main technical constraints that 
directly influence the power generation of hydropower resources are 
typically considered in power market models, watershed and environ
mental constraints are often largely ignored or greatly simplified. These 
constraints limit hydropower flexibility, affect operations, and are 
important in assessing the ability of hydropower to participate in 
different markets and, therefore, determining its true value 
[12,144,145]. Since the ability of a hydropower plant to provide 
different grid services is directly linked to how its constraints are rep
resented, the choice of hydropower resource representation directly 
influences model results. 

4.5.2. Hydropower plant types and topology 
Hydropower systems vary widely in terms of topology and plant 

types. The three main types of hydropower plants include reservoir, 
PSH, and run-of-river. These are often modeled as dispatchable gener
ation units, storage resources, and non-dispatchable resources, respec
tively, and the constraints outlined in the previous section may be 
implemented differently for each type. Since each resource behaves 
differently in a power market, the tradeoff between design features, 
computational tractability, and accuracy of results may differ based on 
the mix of hydropower plant types and their configuration in a given 
study. 

PSH has traditionally been utilized to shave demand peaks and 
provide black-start capability in power systems, supplementing base
load assets that are costly to stop or inefficient to operate at part load. 
Peak-shaving PSH, which is the most common type of PSH, is less 
complicated to manage compared to seasonal PSH, which can transfer 
energy over several months and from season to season. These same 

seasonal challenges also face reservoir hydropower. 
Run-of-river hydropower plants are less flexible than reservoir plants 

because they have very limited storage capabilities and are often 
modeled as non-dispatchable resources, similar to VRE. Run-of-river 
hydropower plants will often bid fixed energy quantities into the mar
ket [143,146,147]. However, the need for flexibility makes it important 
for run-of-river plants to consider an operational strategy that enables 
them to contribute to the power system with inertia and short-term re
serves. In general, PSH and run-of-river hydropower can be modeled 
with good approximation in short-term dispatch studies without 
considering watershed constraints. However, time delays can compli
cate the planning of run-of-river assets, particularly exemplified in sit
uations with long rivers where water can take weeks to travel between 
plants. 

Reservoir hydropower is commonly modeled similar to a dis
patchable thermal unit with unit commitment constraints in short-term 
models [10,119]. For these plants, modelers should be aware that poor 
quality boundary conditions can lead to overestimates of resource 
flexibility and inaccuracies in dispatch. Such boundary conditions can 
include a target reservoir level or an end-valuation of the stored water. 
In short-term frameworks where exogenously determined periodic 
water allotments are used to decide production volumes, dispatch stra
tegies can become sub-optimal [144,148]. Considering the future value 
of water in the dispatch increases the possibility of finding flexible and 
optimal solutions. The future value of water can be represented by a cost 
function that describes the opportunity cost of water use beyond the 
planning horizon. Determining future cost functions requires dedicated 
models due to the many associated dependencies, including the long 
planning horizons required for reservoirs containing multiple years of 
inflow, future avoided fuel costs, and uncertain future inflows and 
power prices [12,144,149]. 

In longer rivers, hydropower plants are often cascaded, meaning the 
outflows of an upstream plant directly impact the inflows of one further 
downstream. Lack of consideration of the topology when scheduling 
resources in the same river may lead to sub-optimal resource planning, 
unit commitment, and overestimation of short- and long-term resource 
flexibility [112]. 

Detailed hydropower representation includes a description of 
watercourse topologies, each individual hydropower reservoir and 
power plant, and the associated production functions, constraints, and 
inflow. In practice, hydropower resources are often aggregated into 
hydropower equivalents to reduce model complexity and computation 
time, e.g., by using clustering [150] or bi-level optimization [151]. 
Currently, applied aggregation techniques may not be adequate for 
future grids, and appropriate techniques must be developed to avoid 
overestimating the flexibility and to properly account for PSH [152]. 

The uniqueness of hydro assets and watercourses increases the 
complexity of power market models, and it is common for some models, 
like hydrothermal coordination models, to be tailored to hydropower- 
dominant areas, allowing for greater hydropower detail and enhanced 
uncertainty representation. 

4.5.3. Hydrothermal coordination 
The optimal coordination of hydropower resources and thermal 

power plants over a given time horizon, hydrothermal coordination, is a 
good example of how power market models can be tailored to solve a 
type of problem. These models are typically applied to hydro-dominated 
systems, where detailed hydropower representation is critical to repli
cate real-world system operations. The problem easily becomes 
computationally intractable as it is a large-scale stochastic multi-stage 
problem and is often solved by a combination of optimization and 
simulation. Both the model methodology and a range of model design 
choices significantly impact model results. First, the most important 
technical and limiting constraints for both the thermal system and hy
dropower system must be considered in the problem formulation. Sec
ond, the temporal resolution of the model must be sufficient to capture 
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important thermal constraints, and the study horizon must be long 
enough to capture the long-term dynamics of reservoir hydropower 
storage. Finally, it is important to capture uncertainty in hydro inflows, 
fuel costs and constraints, emission constraints, and representation of 
co-generation of heat and power when finding the joint least-cost 
strategy for both thermal, nuclear, and hydropower units. 

Long-term and short-term hydrothermal coordination also each 
present distinct challenges. Short-term coordination problems are often 
treated as deterministic and solved by unit commitment and economic 
dispatch models considering more operational details [153]. In the long- 
term coordination problem where uncertainty representation plays a 
key role, the model is typically solved by stochastic dynamic program
ming (SDP) [154,155] or stochastic dual dynamic programming (SDDP) 
[156,157]. Long-term models typically calculate the future value of 
water to use as boundary conditions in short-term models. Methods 
based on linear programming (LP) and dynamic programming (DP) are 
classical approaches for solving such hydrothermal coordination prob
lems. Other mathematical programming variants exist (e.g., successive, 
integer, mixed integer) and are sometimes used to represent non
linearities and non-convexities. The dimensionality issues of DP often
times require the use of aggregation techniques when modeling 
complicated hydropower systems or the unit commitment of many 
thermal units to make the problem tractable. Decomposition methods 
based on Lagrange relaxation and Benders' decomposition are used to 
divide large-scale optimization problems into smaller sub-problems and 
to incorporate uncertainty represented by scenarios. Heuristic methods 
such as evolutionary algorithms, fuzzy set theory, and artificial neural 
networks are promising techniques that can be combined with tradi
tional optimization techniques to overcome different complexities and 
computational challenges in hydrothermal coordination [153,158]. 
Current trends in hydrothermal coordination involve enhancing uncer
tainty representation [159], increasing temporal and spatial resolution, 
and including representation of multiple market products [160]. Work 
to improve the solution algorithms and thereby reduce computation 
time is also a continual focus in literature [161,162]. 

Flexibility is also a critical consideration in hydrothermal coordi
nation [163]. The cost of short-term flexibility is typically high in 
thermal systems and low in hydropower systems. This is one of the 
reasons why thermal and hydropower systems traditionally were 
designed to complement each other, but it also simultaneously compli
cates joint optimization and coordination as many technical constraints 
must be included to capture the synergies between these technologies. In 
the context of the clean energy transition, several studies have demon
strated the benefit of utilizing hydropower flexibility to facilitate the 
integration of large shares of VRE and highlight the shortcomings in 
existing hydrothermal coordination tools. Graabak et al. emphasize that 
utilizing simplified aggregation and heuristics in SDP-based models 
instead of optimizing each individual reservoir underestimates the 
short-term flexibility of hydropower resources [164]. Tveten et al. apply 
a deterministic partial equilibrium model with fine temporal resolution 
to capture realistic thermal ramping constraints and demonstrate that 
VRE integration benefits from coordination between thermal and hydro 
systems [165]. As always, there is a tradeoff between model detail and 
computation times. 

4.6. Energy price formation 

Price formation in power market models involves determining the 
price for energy or other grid services, such as flexibility products and 
reserves, in a given time period. These prices are the key driver for both 
operational strategies and investment decisions. It is therefore critical 
that markets prices provide sufficient revenues to support investments in 
the resources that are required to support the clean energy transition. 
Market models must therefore be able to capture these price dynamics 
with high fidelity. For instance, an increasing share of VRE resources 
may increase short-term price volatility which may in turn impact 

perceived investor risks and therefore influence investment decisions 
related to flexible resources like batteries and PSH. At the same time, 
there are concerns about the merit order effect from increased levels of 
VRE, which would lower energy prices and possibly reduce incentives to 
invest. 

The prices that a power market model produces will be affected by 
modeling details and choices made regarding all design features dis
cussed above, but also by the market clearing mechanism that is rep
resented by the model, e.g., marginal-cost based pricing or pay-as-bid. 
Markets may be cleared with either nodal or zonal spatial resolution, 
depending on how the physical grid is represented [166]. The spatial 
resolution of a market is established by the number of nodes or zones 
where distinct prices are determined, and power market models should 
be designed to reflect the resolution and associated constraints of the 
system being assessed. 

Nodal market clearing is based on a detailed representation of the 
grid and is common for competitive short-term markets in the U.S., 
where price formation involves determining locational marginal prices 
(LMPs) [167]. The mathematical foundation for determining LMPs is 
well-developed, but the difficulty in predicting costs associated with 
losses and congestion and determining appropriate prices for other grid 
services can be challenging [168]. The LMP is made up of three com
ponents: energy, congestion, and losses. The energy component is found 
by taking the shadow price (dual variable) of the power balance 
constraint, while the congestion component is found by summing the 
shadow prices of the transmission constraints connecting the node of 
interest. Losses are more challenging to quantify because accurate 
modeling of transmission losses requires the use of AC power flow 
equations that are nonlinear and non-convex. Because of the computa
tion challenges introduced by nonlinearities, transmission networks are 
typically approximated by linear DC power flow equations, a simplified 
zonal representation of the transmission network, or a transport model, 
all with a simplified representation of losses, e.g., a fraction of the flow 
or zero losses. Zonal market clearing is implemented in Europe and does 
not reflect congestion and losses within each market zone in price for
mation. In either case it is important to properly represent transmission 
constraints between coupled zones or nodes in order to ensure market 
efficiency. To calculate the available transmission capacity between 
market zones, Europe is currently moving away from a simplified 
Available Transfer Capacity method toward a Flow-Based Market 
Coupling where the physical transmission constraints are better 
accounted for in the market clearing [166]. Power market models 
should reflect the coupling method that has been implemented in 
practice in order to accurately capture price formation in these markets. 

In addition, the choice of mathematical formulation and solution 
technique used to establish and solve the corresponding market clearing 
problem also has a great impact on price formation. For example, in an 
agent-based simulation, all agents act strategically to maximize their 
profit, and the resultant prices can differ greatly from those generated by 
a centralized cost-minimization model that assumes a market with 
perfect competition. The electricity market clearing problem also has 
many non-convexities due to economic (e.g., startup and shutdown cost) 
and physical (e.g., minimum output requirements and run times) con
straints. There are many ways of formulating these aspects of the 
problem, and similarly many different methods to determine approxi
mate solutions, e.g., by relaxing the non-convex solution space. These 
include Lagrangian relaxation [169], integer relaxation [170], and 
convex hull relaxation [171–173]. Furthermore, some power market 
models represent other market products, as discussed in Section 4.2, and 
can thus consider price formation for capacity, operating reserves, and 
ramp products in addition to energy. Lastly, more complicated formu
lations for determining LMPs may also be implemented, e.g., to account 
for look-ahead schedules and additional system and asset constraints. 
These formulations require a deeper technical treatment, which is 
omitted herein [5,167,174]. 
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5. Power market trends and model needs 

Power market models are utilized to study future power markets, 
which are evolving due to multiple factors, including the influence of 
high VRE penetrations, increasing use and deployment of energy stor
age, the growth of demand response, and the coupling of the power 
sector to other industries such as heating, transport, and industry. In the 
next sub-sections, we review how power market models have been 
applied to analyze these emerging issues and identify current market 
modeling trends in each of these four key areas of development. We also 
highlight the importance of different model design features in accurately 
representing the evolving dynamics of future power systems. 

5.1. High VRE penetrations 

In recent years, a number of different studies have analyzed the 
impact of increasing VRE penetrations on wholesale electricity market 
outcomes. These have generally found that price volatility increases 
with increasing VRE penetration [6,175–179]. As a result, market par
ticipants are exposed to increased price risk, which may exacerbate the 
difficulty in incentivizing new capacity investment [180]. Higher price 
volatility, along with the possibility of lower average energy prices due 
to the merit order effect of VRE, has motivated an ongoing discussion 
around the need for revised resource adequacy mechanisms, such as 
capacity markets [6,180]. Hence, there is a need to improve the repre
sentation of these mechanisms in power market models, as they may 
play an increasingly important role in determining revenues and 
incentivizing firm and flexible generation capacity investments and re
tirements [50,52,53]. 

Increasing VRE penetrations are also driving the restructuring of 
reserve markets [181,182]. For example, in some European markets 
such as Belgium and the Netherlands, there is a trend of overcapacity 
procurement by system operators who procure operating reserves well 
in advance (up to months or a year) of day-ahead market clearing and 
hence deal with large uncertainties in future demand and VRE avail
ability at the time of the market clearing [182,183]. Recent studies show 
significant market efficiency improvements, quantified in terms of sys
tem cost reduction and resource allocation, when reserve markets are 
cleared simultaneously with or after day-ahead energy markets, similar 
to what is typically done in U.S. electricity markets [181,182]. Overall, 
markets for reserves and flexibility may play a more important role in 
future low-carbon systems, and it is therefore increasingly important to 
develop tools that can co-optimize service provision across multiple 
markets in a computationally efficient fashion. 

Lastly, high VRE penetrations introduce greater levels of generation 
uncertainty and market price volatility, which collectively increase 
revenue uncertainty for market participants [3,4,182]. This demands 
enhanced uncertainty modeling and improved representation of bidding 
behaviors across a wide range of different operating conditions [6]. 
Importantly, VRE generation uncertainties also occur on sub-hourly 
time scales, highlighting the need for enhanced uncertainty represen
tation at finer temporal resolutions. 

5.2. The role of energy storage 

Energy storage is a technology class that brings multiple challenges 
to power market models, as discussed in Section 4.4. As energy storage 
penetrations in power systems increase, there is a need to improve the 
representation of storage resource opportunity costs in power market 
models to ensure that their operational strategies are properly captured, 
and their value is adequately recognized [184]. Similarly, finer temporal 
resolutions may be needed to capture the value that storage resources 
can provide in terms of balancing the system over short time scales 
[11,123,141]. Specifically, power market models need to evolve to 
consider the key characteristics that distinguish different energy storage 
technologies, including interactions between operational strategies and 

resource degradation, appropriate representation of operating costs, 
consideration of sequential time steps, and dispatch logic that properly 
optimizes the operation of storage resources within their technical 
constraints across hours, days, weeks or months depending on the 
duration of the respective storage assets [10,11,47,140,185]. In addition 
to improving traditional market models that simulate the system as a 
whole, alternative models may be developed and specifically tailored to 
address these key storage considerations. We identify three types of 
tailored models that will assist in properly quantifying the value of 
storage in power markets throughout the clean energy transition:  

• Price-taker models: focused solely on storage valuation and 
participation in markets, properly accounting for opportunity costs 
and including all appropriate revenue streams.  

• Short-term system-level market models: focused on the dynamics 
of resource scheduling, dispatch, and pricing, considering opportu
nity costs of short- and long-duration storage and the interplay with 
various supply and demand resources at different levels in the grid.  

• Sector-coupled models: tailored to study the change in operational 
dynamics and revenues of storage resources in a power system 
coupled to other energy demand sectors (e.g., transportation, 
heating). 

5.3. Increasing demand response 

Demand response (DR) describes the group of mechanisms that allow 
for electricity demand to be adjusted to better match supply, thereby 
creating demand flexibility. DR will be an important source of grid 
flexibility in future low-carbon power grids with high VRE penetrations 
and may also become a more dominant factor in future price formation. 
Power market models have already been used to study many market 
trends surrounding DR. Some applications include analyzing the optimal 
design and structure of DR participation programs, managing uncer
tainty associated with DR, understanding the effect DR has on wholesale 
market prices, modeling the participation of DR in ancillary services 
markets, analyzing how DR impacts the market value of renewables, and 
determining the cost-efficiency, cost-allocation, and remuneration of DR 
[65,66,124,186–191]. However, to better understand DR in future 
power markets, models need to evolve by 1) developing a better un
derstanding of costs and risk, willingness to pay, participant size and 
type, and potential strategic behavior of DR participants, and 2) 
improving the representation of technical DR constraints, opportunity 
costs, and price coupling with other resources and sectors [66]. 

Several types of DR mechanisms and technologies exist, each 
requiring unique modeling treatment depending on their respective 
participation strategies, costs, and related uncertainties. These mecha
nisms include utility and wholesale market DR programs, which may be 
based on prices or other incentives and vary for different consumer 
types, demand aggregators that cluster consumers demand, Load 
Serving Entities (LSEs) that facilitate DR participation in wholesale 
markets on behalf of consumers, and integrated DR which utilizes the 
electrification of technologies in adjacent sectors to provide flexible 
demand through load-shifting [64]. Power market models are most 
commonly applied to assess wholesale market participation of aggre
gators and LSEs, DR in microgrids, integrated DR in sector-coupling, 
optimizing utility management of consumer demand, smart building 
management, and retail pricing program structures [66]. In the context 
of power market modeling, the most relevant of these is the participation 
of LSEs and aggregators in wholesale markets since the demand bids 
from these entities have an influence on grid flexibility and power prices 
[187,191,192]. Such market participation is commonly modeled as 
some combination of price-responsive demand, shiftable load, or virtual 
generation with an associated cost function. It is difficult to model the 
bulk effect of individual consumer participation on wholesale markets 
because consumer needs and risk preferences vary [66,192]. 

The main challenges with modeling DR include properly 
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understanding and representing related costs, uncertainties, and tech
nical constraints. Furthermore, DR modeling requires an understanding 
of how cost allocation shifts both benefits and risks and thereby impact 
the consumers' willingness to pay as well as their participation in spot 
and forward markets [192]. Consumer costs include their initial in
vestment in enabling DR technologies and any rescheduling or 
discomfort costs, while the utility/LSE experiences costs associated with 
metering, system upgrades, administrative procedures, and incentive 
payments [66]. Energy generation costs are allocated differently 
depending on the wholesale entity and the program. Understanding 
these costs and incorporating them into power market models is not 
straightforward since participation programs vary, the cost of energy 
purchased in the spot market varies based on forward contracts, and 
because enabling technologies vary in size, scope, and cost [64,192]. 
The amount of risk exposure in markets also varies with costs and 
contracts, which affects the willingness to pay and benefit of consumers, 
which is uncertain. Participation also requires estimates of consumers' 
baseline consumption patterns, which introduces significant uncertainty 
to aggregators and LSEs [193]. Lastly, the types of technologies used for 
distributed generation and load-shifting vary in type and size, and their 
technical constraints associated with consumer network operation, 
supply limits, or market participation are not always transparent 
[64,66,192,193]. A better understanding of all these effects is needed to 
fully capture the impacts of DR in power market models as participation 
grows in future systems. 

As DR participation grows to appreciable levels, its ability to influ
ence price formation in wholesale markets will increase. DR tends to 
decrease the average power prices in wholesale markets since it shifts 
generation scheduling away from high marginal cost resources that are 
called upon in times of peak demand [64,66,192]. The extent to which 
DR will impact the spot price and create system flexibility will vary 
based on the type of remuneration mechanism that is provided to DR 
participants. Market prices and system efficiency are also tied to the 
behavior of DR in forward markets. LSEs and aggregators participating 
in wholesale markets use a mix of bilateral forward contracts with 
generators and purchases on the spot market to facilitate DR, inherently 
coupling the amount of energy purchased in each market. To properly 

understand the effect that DR has on price formation, these coupled 
market dynamics need to be captured alongside endogenous wholesale 
price formation. This represents a major challenge in developing power 
market models for future grids with more active demand-side 
participation. 

5.4. Sector-coupling 

The ability to electrify adjacent energy demand sectors such as 
transport and heating represents a cornerstone of the clean energy 
transition that will impact the power sector resource mix, its operational 
dynamics, and electricity prices. Sector-coupling arises when the con
sumption profiles of electrified technologies like heat pumps, electric 
broilers, hydrogen electrolyzers, and electric vehicles, among others, are 
adjusted in coordination with power system operations in order to shift 
electricity demand and, in some cases, provide energy storage [67]. 
These mechanisms allow sector-coupling to unlock significant system 
flexibility and reduce emissions [2,67]. 

Some common trends emerge from studies that have analyzed the 
impacts of enhanced sector-coupling, including decreased CO2 emis
sions, increased system flexibility, decreased renewable curtailment, 
and increased value of energy storage technologies [186,194–203]. 
Other studies have shown that the coupling of sectors influences thermal 
plant operation and retirement, that internalizing the cost of CO2 pro
motes sector-coupling and decreases emissions without necessarily 
increasing system costs, that power-to-gas conversion can increase the 
provision of ancillary services, and that coupled sectors can influence 
average power prices and price distributions, though these results are 
heavily system dependent [186,195,197,198,201,202]. 

In general, the results from sector-coupling studies are highly 
dependent on geography, the sectors included in the study, their 
respective representation, system resource mix, resource constraints, 
dispatch logic, system uncertainties, and time and space resolution. This 
makes it difficult to generalize results and properly identify trends from 
existing studies and is consequence of the sheer magnitude of de
pendencies caused by the large number of configurations a sector- 
coupled system can have. For this reason, market models should 

Table 1 
Summary of key considerations in power market model design features and selected technology features for applications to analyze important trends, including VRE 
integration, energy storage, demand response, and sector-coupling.    

5.1 Variable Renewable 
Energy 

5.2 Energy Storage 5.3 Demand Response 5.4 Sector-Coupling 

Model Design 
Features 

Temporal 
Resolution 

Wind and solar generation 
profiles vary across all 
timescales, including sub- 
hourly 

Opportunity costs and 
flexibility benefits occur across 
multiple timescales, including 
sub-hourly 

Increased scope of models 
challenges their ability to capture 
adequate temporal resolution 

Increased scope of models 
challenges their ability to 
capture adequate temporal 
resolution 

Grid Services 

Variability and uncertainty, as 
well as impacts from 
transmission bottlenecks, may 
increase the need for local grid 
services 

A substantial share of storage 
revenues may come from 
capacity and ancillary service 
markets 

DR is allowed to participate in 
energy and ancillary markets, and 
revenue/cost savings contribute to 
system efficiency 

Some coupled sectors can 
provide price-responsive 
demand and ancillary services 
provision 

Uncertainty 
Representation 

Wind and solar generation 
profiles are inherently 
uncertain 

Important for planning and 
operation of energy storage; 
impacts its opportunity cost 

Multiple uncertainties in DR, 
including costs, participation, and 
response levels, consumer 
preference, willingness to pay 

Inclusion of multiple markets 
adds new dimensions of 
uncertainty 

Price Formation 
Low marginal cost VRE 
changes the supply curve 
(merit order effect) 

Price impacts driven by 
opportunity costs may have a 
stabilizing effect on prices 

DR shifts load away from peak 
periods, thereby reducing peak 
prices. Prices are influenced by 
willingness to pay and energy 
purchased in forward markets 

Closely coupled sectors can 
influence power prices 

Model 
Technology 
Features 

Storage 
Representation 

Hybrid solutions combining 
VRE and storage contractually 
or physically can be important 
for system operation 

Important to capture 
opportunity costs, operational 
strategies, revenue streams, 
intertemporal constraints, 
technology distinction 

Facilitates DR participation – needs 
accurate technical, network, and 
market constraints and opportunity 
cost 

Electrolyzers, EVs, district 
heating, and other technologies 
can provide short- and long- 
duration energy storage for 
multiple markets 

Hydropower 
Representation 

Importance grows with VRE 
penetrations for the ability to 
provide clean firm capacity 

Energy storage problems can 
learn from hydropower 
modeling 

The role of hydropower will 
increase as DR shifts dispatch away 
from high marginal cost resources 

Hydropower has an impact on 
water availability, storing 
water, and mitigating floods  
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evolve so they can be tailored to specific problems in sector-coupling, 
such as assessing the effects of price coupling between sectors or the 
ability of a coupled sector to provide ancillary services. For example, 
some models could evolve to specifically focus on the representation of 
ancillary service markets and cross-sectoral price formation. This con
trasts with current general sector-coupled models that utilize coarse 
geographic resolution to try to analyze a myriad of different system 
behaviors across multiple sectors. With a more tailored approach, 
sector-coupled market models can reveal trends in niche areas, such as 
the operational strategies of energy storage in power-heat markets. 
Moreover, these tailored sector-coupled market models can complement 
one another to identify broader trends. The value of such model speci
ficity stems from the core need to properly balance model design fea
tures against data needs and computational requirements, i.e., making 
sure that the most important and impactful features related to the target 
application are accurately represented with sufficient detail. For 
instance, the operating rules and time resolution of markets differ be
tween sectors (e.g., electricity markets typically operate at a higher time 
resolution than natural gas markets), and information flow between 
markets may be limited. These characteristics need to be reflected in the 
corresponding model formulations. Moreover, it is particularly impor
tant that future models accurately represent resource constraints in the 
context of coupled markets. This can improve model accuracy and 
robustness and help to better understand implications for market prices 
and resource valuation across multiple sectors. Lastly, multi-stage 

formulations, such as bi-level formulations of capacity expansion and 
production cost models that incorporate complimentary in sector- 
coupling structures may provide new directions for future market 
models [204,205]. 

Current models, if they consider sector-coupling at all, typically 
struggle to capture the full network, resource, and market details of all 
coupled sectors, and largely ignore significant resource constraints, 
uncertainties, and coupled price dependencies between markets. Future 
models will benefit from enhancing these network details and from 
improved techniques to co-optimize the coupled markets. 

5.5. Key needs for future power market models 

The discussion above illustrates the importance of model design 
features in analyzing different challenges in future power markets. 
Table 1 summarizes considerations for each of the six critical model 
design and technology features introduced in Section 4 and each of the 
four key emerging issues discussed above. Table 2 summarizes a set of 
future power market trends and prioritizes the different power market 
modeling needs associated with each. 

6. Conclusion and future research needs 

In this paper, we reviewed power market models and their readiness 
to support analysis of the clean energy transition and future low-carbon 

Table 2 
Future power market model trends and an associated prioritization of their respective power market modeling needs. 
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electricity markets. We identified a set of model design features critical 
to the energy transition and analyzed how current models are typically 
applied to market analysis and the challenges they face to stay relevant 
for the energy transition. We conducted our review with an emphasis on 
the various approaches for representing flexibility in power markets, as 
flexibility needs are increasingly important with the emergence of low- 
carbon systems dominated by VRE. Particular attention was paid to 
accurately representing the largest flexible low-carbon resource avail
able today, hydropower, but our findings will apply to other energy 
storage technologies as well. We discussed how energy storage repre
sentation affects a power market model's ability to adequately capture 
system flexibility and the importance of including different grid service 
markets for calculating optimal operational strategies for storage tech
nologies. We also elaborate on how a changing resource mix and new 
power market dynamics influence price formation and the complicating 
role of uncertainty in power market models. Through our review, we 
identified tradeoffs between different model design features and their 
importance for modeling future clean power markets dominated by 
VRE. Our review reveals several research needs to improve power 
market models, including:  

• Enhanced models to consider sub-hourly operational resolution to 
adequately represent short-term VRE variability and corresponding 
constraints on flexibility in supply, demand, and storage resources. 

• Improved representation of long-term markets for capacity, oper
ating reserves, and other ancillary services alongside day-ahead and 
real-time energy markets.  

• Improved co-optimization methods to coordinate market clearing 
across products (e.g., energy and reserve products) and interactions 
between sectors (e.g., electricity, heating, transportation).  

• Enhanced representation of uncertainty in supply, demand, and 
technology cost and characteristics.  

• Improved representation of operational constraints, opportunity 
costs, and intertemporal dynamics for hydropower and storage 
resources. 

• Representation of the full range of revenue streams for flexible hy
dropower and energy storage.  

• Improved representation of transmission networks and their impact 
on price formation in different market nodes or zones.  

• Implementation of advanced approaches for solving large-scale 
optimization problems to enable tractable power market models 
with improved granularity and resolution. 

One thing is clear, throughout the clean energy transition, a variety 
of dedicated power market models will be needed to address the full 
range of future power system challenges. It is, therefore, critical that the 
research and modeling community work diligently on these challenges 
to ensure improved guidance to the electric power industry, electricity 
market operators, regulatory agencies, and other stakeholders in the 
clean energy transition. 
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