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Abstract. A thorough regulation of building energy systems translates in relevant energy
savings and in a better comfort for the occupants. Algorithms to predict the thermal state of a
building on a certain time horizon with a good confidence are essential for the implementation
of effective control systems. This work presents a global Transformer architecture for indoor
temperature forecasting in multi-room buildings, aiming at optimizing energy consumption and
reducing greenhouse gas emissions associated with HVAC systems. Recent advancements in
deep learning have enabled the development of more sophisticated forecasting models compared
to traditional feedback control systems. The proposed global Transformer architecture can be
trained on the entire dataset encompassing all rooms, eliminating the need for multiple room-
specific models, significantly improving predictive performance, and simplifying deployment
and maintenance. Notably, this study is the first to apply a Transformer architecture for
indoor temperature forecasting in multi-room buildings. The proposed approach provides a
novel solution to enhance the accuracy and efficiency of temperature forecasting, serving as
a valuable tool to optimize energy consumption and decrease greenhouse gas emissions in the
building sector.

1. Introduction and Related Work
According to the latest IPPC report [2] the building industry has the potential to reduce its
GHG emissions by up to 66%. Building operation is one of the main contributor to this impact,
and most of it is to be attributed to heating and cooling of residential and commercial building.

Indoor temperature forecasting plays a critical role in optimizing the performance of HVAC
systems, which are responsible for a significant portion of the energy consumption and associated
greenhouse gas emissions in buildings. Traditional feedback control systems based on a set-point
value do not always take into account the dynamic nature of the thermal environment and can
result in inefficient energy use, including overshooting the set-point and unnecessary heating or
cooling.

Recent advancements in machine learning and deep learning [8] have enabled the development
of more sophisticated indoor temperature forecasting models that can capture the complex
interactions between internal and external factors that influence the thermal state of a space.
These models are based on a range of inputs, including weather data, occupancy patterns,
building characteristics, and HVAC system performance, and use advanced algorithms to
generate accurate and reliable predictions of the thermal state of a space.
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In this work, we propose a global Transformer architecture, based on the original vanilla
Transformer [9], to forecast indoor room temperature in a multi-room building. The Transformer
architecture offers several advantages over other statistical machine learning approaches and
other deep learning based architecture, such as LSTM networks, including the ability to
manage inputs of different lengths and include future covariates. Additionally, the Transformer
architecture is highly parallelizable, allowing us to perform experiments on a large-scale dataset.
The proposed model is trained on the total set of data over all the rooms, providing the advantage
of having a single model for all rooms, as opposed to a single model per room, which can be
challenging to maintain. To incorporate the room ID information into the unified architecture,
we introduce a novel approach that avoids the need for a separate model for each room. To
the best of our knowledge, we are the first to employ a Transformer architecture for indoor
temperature forecasting in a multi-room building. It also offers several benefits over traditional
approaches to indoor temperature forecasting. By utilizing a single model for all rooms, we
can reduce the burden of maintaining multiple models and improve the overall efficiency of the
forecasting process.

2. Methods and Dataset
2.1. Dataset
We considered a dataset containing data from 133 rooms r ∈ R in a single building, with a total
of 839 time series. These are distributed as follows:

• 29 building sensors that are common across all rooms, such as water flows, water
temperatures, solar shading, among others.

• 5 weather forecast variables shared across all rooms such as solar radiation, relative
humidity, air temperature, dew point and cloud coverage.

• 7 variables related to the date and time, such as the day of the week and hour of the day,
shared across all rooms.

• 5 room-specific variables, such as air temperature setpoint and whether cooling was applied
to the room.

• The target variable: room air temperature.

The dataset has an hourly resolution and covers approximately two years, consisting of 19,115
hours. The data is split into train, validation, and test sets with an 82%, 14%, and 4% split,
respectively, in chronological order.

The time series are categorized into two sets based on their availability at inference time.
The target series Yri and past covariates Cp

ri are known only until the inference point, while the

future covariates Cf
ri are known for the forecasting horizon and the input window. All timeseries

are past covariates, while only the weather forecasts, date and time related variables and the
known setpoints are future covariates.

Finally, each room is assigned with an id value of id 0 < i ≤ |R| − 1.

2.2. Proposed Models
The goal is to produce a model that is able to predict the room temperature of 133 rooms in a
large office building using building sensors, weather forecasts and other available data. In this
study, we compare three different types of models, namely a baseline persistence model, a multi-
layer LSTM neural network, and a proposed transformer model. For each neural network, we
perform a hyperparameter search to determine the best hyperparameters. For all the considered
models (a part from the persistence model) the objective is to approximate the function

f(Yri,(t−k...t), C
p
ri,(t−k...t), C

f
ri,(t+1...t+n)) = Yri,(t+1...t+n) (1)
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In Equation 1, Yri denotes the temperature of room ri, C
p
ri represents the covariates that are

known only within the range [t− k, t], and Cf
ri is the set of covariates that are known within the

range [t− k, t+ n], known as future covariates.
Both neural network models are residual models relative to the persistence model, this means

they predict

F (Yri,(t−k...t), C
p
ri,(t−k...t), C

f
ri,(t+1...t+n), i|θ) = Ȳri,(t+1...t+n) (2)

where
Yri,(t+1...t+n) ≈ Ȳri,(t+1...t+n) + 1Yri,(t) (3)

Here follow more details about the model considered.

Persistence model. Given that indoor room temperatures are highly correlated in time, a
simple and reasonable baseline mode is a persistence model. This model is defined as

F (Yri,(t−k...t), C
p
ri,(t−k...t), C

f
ri,(t+1...t+n)) = 1Yri,(t) (4)

meaning the model simply uses the room temperature Yri,(t) as the estimate for the room
temperature for the next n hours.

LSTM. This neural network is based on an encoder-decoder architecture that uses LSTM [4]
layers. The network includes 8 LSTM layers in both the encoder and decoder, with each layer
having 32 units. To feed the encoder, the past covariates Cp and target Y are concatenated
along the channels axis. The hidden state and cell state of the last encoder layer are used to
initialize the first decoder layer’s hidden state and cell state. The decoder layer’s input consists
of future covariates Cf . The output of the last decoder layer at each timestep is flattened and
passed through a linear layer with a RELU non-linearity and a size of 256. The resulting output
is then passed through another linear layer with a size of n to produce the final output.

Transformer. The proposed model is an encoder-decoder transformer [10] improved using
well known modern methods. The original sinusoidal positional encoding is replaced with a
rotary position encoding (RPE) [7], the RELU activation is replaced with gated linear units
(GLU) [3] activation, the LayerNorm [1] is replaced with ScaleNorm [5], finally the normalization
layer is moved to be the first layer of a block instead of the last (PreNorm) [11]. These
improvements were chosen as they have been shown to increase the performance of Transformers
when modeling sequences [7, 6, 5, 1, 11].

Each encoder block is comprised of a ScaleNorm layer, followed by a self-attention layer of
size 32, a linear layer of size 128 and finally a GLU activation. There are residual connections
between the encoder blocks. The encoder consists of 4 encoder blocks. Similary, each decoder
block is comprised of a ScaleNorm layer, followed by a self-attention layer of size 32, a cross-
attention layer of size 32 with the output of the encoder, a linear layer of size 128, and finally a
GLU activation. The output of the decoder is flattened and passed to a linear layer of size n.

3. Experimental Settings
In order to fairly compare the methods, each experiment is repeated 8 times with different
random seeds.

3.1. Hyperparameter selection
The input window k was set to 96 hours using an informal hyperparameter search. The
forecasting horizon n was set to 12 hours as this was a requirement.

Other hyperparameters of the neural networks were tuned using random search with 128 runs
each. These hyperparameters are tuned on the global model version of each neural network and
not re-tuned for other experiments.
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Figure 1. Encoder decoder transformer model following the original paper [10] with the addition
of the room id.

3.2. Global vs local models
To assess the effectiveness of global models, we evaluated two versions of each model. The first
version is a global model that predicts the room temperature for all rooms using a single model
trained with all the data. The second version is a local model where a separate model is trained
for each room, denoted by the underscore p. Additionally, we evaluated an alternative version
of the transformer model that does not utilize a room embedding, denoted by the underscore
ne.

We set the input window k to 96 hours into the past, and the forecasting horizon n to 12
hours into the future. Both the LSTM and Transformer models are residual models, and we
followed Equation 3 as this improved model performance.

3.3. Data Pre-processing
To fairly compare global and local models, two different scaling strategies were used. An
individual scaling strategy, in which each of the 839 time series are individually scaled to be
in the range [0, 1] and a common scaling strategy in which all air temperatures, including room
temperature, outside temperature, common areas, among others, are all scaled together to be
in the range [0, 1] while all other time series are scaled individually.

3.4. Evaluation Metrics
The performance of the models was assessed using the mean average error (MAE) of the predicted
room temperatures, this is is defined in Equation 5.
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MAE(Y, Ŷ ) =
1

N

N∑
n=1

|Yn − Ŷn| (5)

Overall, the proposed models were evaluated and compared based on their ability to
accurately predict the room temperature in industrial buildings.

Due to compute limitations each model was trained 8 times with different seeds, these results
are reported in Table 1.

4. Results and discussion
A summary of the results of our experiments is reported in Table 1.

Model MAE Std

Persistence 0.007400 –
LSTMp 0.007163 0.000140
Transformerp 0.006995 0.000061
Transformer 0.004180 0.000052
LSTM 0.004161 0.000036
Transformerne 0.004033 0.000027

Model MAE Std

Persistence 0.049500 –
LSTMp 0.039025 0.000339
Transformerp 0.037900 0.000203
LSTM 0.028783 0.000404
Transformerne 0.027735 0.000223
Transformer 0.027012 0.000215

Table 1. Averaged results across 8 runs for each model for the common scaling (left) and
individual scaling (right).

We find that the best Transformer model outperforms the best LSTMmodel for both common
and individual scaling, with statistical significance (p<1.11e − 06 for common scaling, and
p<2.98e − 08 for individual scaling). These results indicate that Transformer models are more
effective than LSTM models for our task.

In terms of the impact of the room embedding, we find that for common scaling, including the
room embedding significantly improves the performance of the global transformer model, with
statistical significance (p<5.49e − 06). However, for individual scaling, the global transformer
model without the room embedding performs significantly better (p<1.19− 05) than the model
with the room embedding. The common scaling strategy simplifies batch inference by uniformly
scaling all outputs, eliminating the need to track the room ID for each sample in a batch.
This approach ensures consistent scaling across all outputs, facilitating the process of output
interpretation and analysis.

Our results also show that the global models outperform the local models. Specifically, the
global model lead to a performance increase of 16% for the LSTM model and 40% for the
Transformer model for common scaling. For individual scaling, the global models perform 8%
better for the LSTM model and 27% better for the Transformer model.

Finally, we find that the choice of scaling strategy depends on the specific model being used.
For the Transformer model, individual scaling performs 4% better than common scaling. For
the Transformerne model, common scaling provides a 1.5% performance increase. In the case
of the LSTM model, individual scaling performs the best, with a 1% improvement over common
scaling.

Overall, our results suggest that Transformer models are superior to LSTM models in terms
of performance for our task, and that the choice of scaling strategy should be tailored to the
specific model being used.
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5. Conclusion and future work
This work presented a global Transformer architecture for indoor temperature forecasting
in multi-room buildings, aiming to optimize energy consumption and reduce greenhouse gas
emissions. The results demonstrated that Transformer models outperform LSTM models,
with statistical significance, for both common and individual scaling approaches. The
inclusion of room embedding significantly improves performance for common scaling, while
the global Transformer model without room embedding performs better for individual scaling.
Notably, the global models consistently outperformed the local models, offering the additional
advantage of employing a single model for the entire building and resolving maintenance
complexities. The choice of scaling strategy depends on the specific model used. Overall,
the proposed Transformer architecture provides an efficient solution for accurate temperature
forecasting, enabling energy optimization and emissions reduction in the building sector. Future
research directions include analyzing the topology of the room embedding space, exploring
the representation of the embedding, incorporating interpretability techniques, and leveraging
pretrained Transformer models for generating synthetic data. These efforts will enhance
the interpretability, performance, and robustness of the proposed approach for temperature
forecasting in multi-room buildings.
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