
Event-Based Customization
of Multi-tenant SaaS Using Microservices

Espen Tønnessen Nordli1, Phu H. Nguyen2(B) , Franck Chauvel2,
and Hui Song2

1 University of Oslo, Oslo, Norway
espentno@ifi.uio.no

2 SINTEF, Oslo, Norway
{phu.nguyen,franck.chauvel,hui.song}@sintef.no

Abstract. Popular enterprise software such as ERP, CRM is now being
made available on the Cloud in the multi-tenant Software as a Service
(SaaS) model. The added values come from the ability of vendors to
enable customer-specific business advantage for every different tenant
who uses the same main enterprise software product. Software vendors
need novel customization solutions for Cloud-based multi-tenant SaaS. In
this paper, we present an event-based approach in a non-intrusive cus-
tomization framework that can enable customization for multi-tenant
SaaS and address the problem of too many API calls to the main soft-
ware product. The experimental results on Microsoft’s eShopOnContain-
ers show that our approach can empower an event bus with the ability
to customize the flow of processing events, and integrate with tenant-
specific microservices for customization. We have shown how our app-
roach makes sure of tenant-isolation, which is crucial in practice for SaaS
vendors. This direction can also reduce the number of API calls to the
main software product, even when every tenant has different customiza-
tion services.

Keywords: Microservices · Architecture · Event-based · Cloud ·
SaaS · Customization · IoT · Edge · Security

1 Introduction

Most businesses and public services rely on enterprise software such as enter-
prise resource planning (ERP) or customer relationship management (CRM),
to name a few. Because every company has its unique organization, processes
and culture, no off-the-shelf software directly fits. Companies eventually cus-
tomize these software systems to meet their specific requirements. For simple

The research leading to these results has received funding from the European Com-
mission’s H2020 Programme under the grant agreement number 780351 (ENACT),
and from the Research Council of Norway under the grant agreement numbers 296651
(ASAM) and 256594 (Cirrus).

c© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
S. Bliudze and L. Bocchi (Eds.): COORDINATION 2020, LNCS 12134, pp. 171–180, 2020.
https://doi.org/10.1007/978-3-030-50029-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50029-0_11&domain=pdf
http://orcid.org/0000-0003-1773-8581
https://doi.org/10.1007/978-3-030-50029-0_11


172 E. T. Nordli et al.

scenarios, software vendors predict where and how their software products may
be customized, and provide their customers with application programming inter-
faces (API), extension points or configuration choices. However, there are always
customers whose requirements overstep the embedded customization capacity.
These customers need the vendors to provide mechanisms for performing deep
customization, that goes beyond the vendors’ prediction.

Deep customization may affect any parts of a software product, including the
user interface (UI), the business logic (BL), the database schemas (DB) or any
combination thereof. When a software product used to be deployed on the cus-
tomers’ premises, each customer naturally ran its own customized version, in full
isolation. Nowadays, software vendors are migrating their software products to
the Cloud. In the Cloud-based multi-tenant software-as-a-service (SaaS) model,
however, every customer must run the same code base (main product), which
cannot be directly modified for one customer without affecting other customers.
Software vendors desperately need novel deep customization solutions for the
Cloud-based multi-tenant SaaS model.

More recently, leveraging the microservices architecture [1,6,14] for enabling
deep customization of multi-tenant SaaS is a very promising direction as pre-
sented in [8–12]. These microservices-based customization approaches vary in
how they balance isolation and assimilation. Isolation guarantees tenant-specific
customization only affects that one single tenant, whereas assimilation guar-
antees that customization capability can alter anything in the main software
product. Intrusive microservices [9,10,12] provide tight assimilation at the
cost of security (tenant isolation), whereas the non-intrusive approach called
MiSC-Cloud [7,8,11] trades assimilation for higher security. MiSC-Cloud orches-
trates customization using microservices via API gateways.

In this paper, we present an event-based non-intrusive deep customization
approach for multi-tenant SaaS using microservices as part of the MiSC-Cloud
framework [8]. The event-based approach, in combination with the synchronous
way of customization in [8], shows how the MiSC-Cloud framework can coordi-
nate the execution of the BL components (microservices) of the main product
as well as the customization microservices of tenants to obtain the desired cus-
tomization effects in the multi-tenant context.

The remainder of this paper is structured as follows: Sect. 2 defines deep
customization. Then, Sect. 3 presents the event-based customization approach
with key techniques. In Sect. 4, we show a proof-of-concept for the proposed
approach by applying it on a reference application for microservice architecture
by Microsoft . Section 5 discusses related work. Finally, we provide in Sect. 6 our
conclusions and possible future research directions.

2 Deep Customization

By contrast with other customization means such as settings, scripting languages
or API, deep customization demands that one can possibly make any change to
the system, as one can do with direct access to the source code. Changes can,



Event-Based Customization of Multi-tenant SaaS Using Microservices 173

therefore, affect the user interface (UI), the business logic (BL), the database
schema (DB), or any combination thereof. Deep customization turns out difficult
in multi-tenant SaaS environments, where all tenants originally run the same
code (UI, BL and DB). Tenant-specific customization must affect only one single
tenant. This work focuses on the customization of BL, especially based on events.
In this way, customization microservices communicate with the main product,
either in a synchronous way by requesting data and waiting for the response
(RPC-like), or in an asynchronous way, by publishing and subscribing to events
(pub/sub). The customization of UI and DB can be found in [8–12].

3 Event-Based Customization Approach

In this section, we first present the main components for enabling event-based
customization of multi-tenant SaaS in Sect. 3.1. Then, Sect. 3.2 details how the
event-based customization approach works. In Sect. 3.3, we discuss how the
event-based customization fulfils the requirements of tenant isolation.

3.1 Main Components for Enabling Event-Based Customization

Among the five main components of the MiSC-Cloud framework as presented
in [7,8], we focus on presenting the Tenant Manager and the Event Bus as the
key parts of the event-based customization approach. The API gateways, IAM
Service, and WebMVC Customizer are the same as we described in [8].

The Tenant Manager is a service that manages the registration of customiza-
tion microservices including the events registered for customization for different
tenants. The service has a simple database that stores all the tenants that are
using the application, all the different events that exist in the main product
and finally all the customization microservices that exist for tenants and specific
events. Additionally, it stores an endpoint for each customization that is used
for halting the flow of events to be discussed further in the next section.

The Event Bus is key to enable event-based customization. Therefore, the
prerequisite for enabling event-based customization is that the main product
already has (part of) its logic flow orchestrated via events. If the main product
already has an Event Bus, such an Event Bus can be extended to enable event-
based customization. If the main product does not have an Event Bus, a new
one can be introduced as presented in [8]. It is important to note that a software
product can be re-engineered to enable event-based logic orchestration at the
back-end via an Event Bus. Different migration approaches from monolithic to
microservices architecture already show some patterns and practices to migrate
from synchronous calls into event-based communication between microservices
[4,13]. Moreover, software vendors can also create user or system events within
their software product to allow authorized event-based integration with exter-
nal systems (of their customers). This event-based integration is similar to the
traditional way of offering a rich REST API for synchronous integration, e.g.,
using traditional GET-PUT-POST statements.



174 E. T. Nordli et al.

3.2 Event-Based Customization Flow

A customization microservice can subscribe to an event that is published to the
Event Bus when something notable happens, such as when another microservice
(of the main product or another tenant-specific customization) updates a busi-
ness entity. When a microservice receives an event, it can update its business
entities, which might lead to the publishing of more events. We design the event
bus as a multi-tenant interface with the tenant-specific APIs needed to subscribe
and unsubscribe to events and to publish events.

The flow of processing events in the original Event Bus implementation must
be changed for customization purposes. Before publishing events to the con-
sumers, it checks with the Tenant Manager for any customization that has been
registered for any event and tenant (see Fig. 1). If an event is not customized,
then the event is processed in the standard fashion. In the case that an event is
customized, the event is sent to the endpoint that is part of the response from
the Tenant Manager. At this point, the tenant’s microservice is responsible for
storing the event until the required customization has been achieved. Then, the
tenant’s microservice can republish the event to the Event Bus, along with a flag
that instructs the Event Bus to not check for customization again, to avoid an
infinite loop.

Fig. 1. Event-based customization flow.

In some cases, customization microservices would require some execution con-
text from the main product that does not exist in the events that they receive.
To obtain such context, customization microservices can make authorized syn-
chronous calls to the APIs of the main product as presented in [8]. In fact, events
often contain enough execution context for customization microservices to exe-
cute customization scenarios. This means that only a few special customization
scenarios would require such synchronous calls from customization microservices
to the API of the main product. Combining the synchronous and asynchronous
ways of customization can offer a more complete non-intrusive customization



Event-Based Customization of Multi-tenant SaaS Using Microservices 175

approach for multi-tenant SaaS. However, we recommend the use of event-based
customization for as many customization scenarios as possible to reduce the traf-
fic of API calls to the main product, which often leads to performance bottleneck
when there are many customized tenants with unpredictable loads.

3.3 Tenant-Isolation and Tenant-Specific Event-Handlers

The Event Bus implementation and architecture in the main product must
ensure that tenant isolation is still preserved. Instead of having one connection
to a single event bus, there must be multiple connections, one per tenant. One
example of such an event bus implementation is based on RabbitMQ that can
make use of virtual hosts1. This way allows us to have a logical separation per
tenant, and the permission can easily be set so that each tenant is only allowed
to interact with its own virtual host.

4 Proof-of-Concept and Evaluation

In this section, we show a proof of concept of our approach for enabling deep
customization of the eShopOnContainers by extending the Event Bus in the
application. The .NET Microservices Sample Reference Application eShopOn-
Containers2 has been chosen for a couple of reasons. First, eShopOnContainers
has a clear separation between the user interface and the business logic of the
application as a prerequisite of the MiSC-Cloud framework. Secondly, the appli-
cation follows the microservices architecture, and as such, has loose coupling
as compared to a monolithic application. Finally, the collaboration between the
microservices that the application as a whole is made up of is done using events
and a publish/subscribe system.

An Event Bus implementation must be associated with the authentication
and authorization mechanisms of the IAM service for multi-tenant SaaS-based on
Open ID Connect or OAuth 2.0. As an implementation of RabbitMQ already
exists in the eShopOnContainers, we have extended it to enable event-based
customization.

Let us consider the original eShopOnContainers in the GitHub repository as
the main product being customized. We show how our event-based customization
approach can enable different customization scenarios for two tenants as the
representatives of multi-tenant context3. The first use case in Sect. 4.1 adds
new logic to the main flow of the ordering process, without altering any of the
existing functionality. The second use case in Sect. 4.2 requires a modification of
the existing logic of the ordering process by halting the flow of the order.

1 https://www.rabbitmq.com/vhosts.html.
2 https://github.com/dotnet-architecture/eShopOnContainers.
3 https://github.com/Espent1004/eShopOnContainersCustomised.

https://www.rabbitmq.com/vhosts.html
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/Espent1004/eShopOnContainersCustomised


176 E. T. Nordli et al.

4.1 Tenant A’s Customization of the Ordering Process

The original ordering process is straightforward. After having logged in, a cus-
tomer can add items in the shopping cart and then create an order with card
payment and shipping address. What happens at the back-end is that the Basket
service of the eShopOnContainers publishes a UserCheckoutAcceptedIntegra-
tionEvent, which is consumed by the Ordering service to create and process the
order, e.g., generating OrderSubmittedIntegrationEvent. Tenant A wants to
change the original ordering process of eShopOnContainers to incorporate the
shipping information from external (third-party) systems. This means that after
the Basket service has published a UserCheckoutAcceptedIntegrationEvent,
the Ordering service validates the order request before creating an order and
an OrderSubmittedIntegrationEvent to trigger this customization. Here, we
demonstrate the customization of Tenant A using the asynchronous way. The
synchronous way of customization has been presented in [8].

The asynchronous way of customization has been used for the customiza-
tion scenario in which the user has checked out (UserCheckoutAcceptedInte-
grationEvent), and the corresponding order has been made (OrderSubmitted-
IntegrationEvent). The customization microservice Shipping of Tenant A
intercepts the OrderSubmittedIntegrationEvent and queries an external sys-
tem for an estimated time for delivery. This information is then stored in the
microservice’s database, which can then be retrieved whenever the My Orders
page is displayed. The customization result can be seen in Fig. 2. The parts in
red, e.g., SHIPPING DATE, are the customized content, which are only available
for the users of Tenant A. What happens in the background is that we have
added a new Event Handler that consumes the OrderSubmittedIntegration-
Event. Whenever this event is published by the main product to the event bus
of Tenant A, the Event Handler consumes the event and calls the customiza-
tion microservice Shipping, which is responsible for calculating the shipping
information by integrating with an external system.

Fig. 2. Customization of Tenant A: An estimated time for delivery.



Event-Based Customization of Multi-tenant SaaS Using Microservices 177

4.2 Tenant B’s Customization of the Ordering Process

Tenant B wants to customize the ordering process with some additional steps to
mark all the items with RFID. Before the order status is set to confirmed, all
the order lines in the order should be scanned. Further, the order status should
only be set to confirmed when all the items in the order have been scanned.

The second use case requires that the status of the order is not set to
confirmed until all the items in the order have been scanned. To ensure this,
we need to halt the flow of the application by capturing the OrderStatus-
ChangedToAwaitingValidationIntegrationEvent. This is done by registering
this event for the specific tenant in the Tenant Manager, as well as the endpoint
that we want the event to be sent to. Figure 3 shows the customization flow trig-
gered by the OrderStatusChangedToAwaitingValidationIntegrationEvent.
This event is then stored in the database of the microservice for this cus-
tomization until the RFIDTagScannedIntegrationEvent is published by the
TenantARFIDService.

Fig. 3. Customization of Tenant B: The customization flow around the OrderStatus-
ChangedToAwaitingValidationIntegrationEvent.

The customization scenario depicted in Fig. 3 starts when the Ordering ser-
vice publishes the OrderStatusChangedToAwaitingValidationIntegration-
Event. Next, the Event Bus implementation checks for any customization
for this event by querying the Tenant Manager. As Tenant B has cus-
tomized this event, the Event Bus sends the event to the endpoint speci-
fied in the response from the Tenant Manager rather than publishing to the
RabbitMQ instance. At this point, the tenant has control of the event and
can save it to the local database of Tenant B’s Event Service before pub-
lishing OrderStatusChangedToAwaitingValidationEventSavedEvent to the



178 E. T. Nordli et al.

Fig. 4. Customization of Tenant B: After all the RFID tags have been scanned.

Event Bus. The OrderStatusChangedToAwaitingValidationEventSavedEv-
entHandler in Tenant B’s RFID Service consumes this event, and stores the
necessary data in its database.

The next step of the use case is triggered whenever the endpoint in Ten-
ant B’s RFID Service is used to indicate that all the order lines have been
scanned. The use of this endpoint also triggers RFIDTagScannedIntegration-
Event, which is then consumed by the RFIDTagScannedIntegrationEvent-
Handler in Tenant B’s Event Service. At this point, the original OrderStatus-
ChangedToAwaitingValidationIntegrationEvent is re-published to the Event
Bus, and the handlers in the main product can perform their operations. Then,
the event is re-published to the Event Bus, and it is processed normally by the
main product. The result of the customization, after the RFID tags are scanned
can be seen in Fig. 4.

The asynchronous customization approach is based on the events in the appli-
cation. Because all the events are isolated so that each tenant is only able to
interact with their own events. This means that tenant isolation is still preserved.

5 Related Work

The notion of customizable SaaS applications with explicit support for vari-
ability management has been proposed and explored extensively [3]. There are
many technical approaches addressing these complexities, such as design pat-
terns, dependency injection (DI), software product lines (SPL), or API. While
these approaches help predefining customization at design time, they do not have
sufficient support for the complex and unanticipated behavioural coordination
between the custom code and the main product at runtime.

The majority of SaaS customization approaches focus on a high-level modifi-
cation of the service composition. Mietzner and Leymann [5] present a customiza-
tion approach based on the automatic transformation from a variability model
to BPEL process. Here customization is a re-composition of services provided
by vendors. Tsai and Sun [15] follow the same assumption but propose multiple
layers of compositions. All the composite services are customizable until reaching
atomic services, which are assumed to be provided by the vendors.

Middleware techniques can also support the customization of SaaS. Guo et
al. [2] discuss, in a high abstraction level, a middleware-based framework for the



Event-Based Customization of Multi-tenant SaaS Using Microservices 179

development and operation of customization, and highlighted the key challenges.
Walraven et al. [16] implemented such a customization, enabling middleware
using Dependency Injection. The dependency injection way for customization
allows the custom code developers to introduce arbitrary coordination behaviour
with the main product, and thus achieve a strong expression power. However, it
also brings tight coupling between the custom code and the main product. Oper-
ating the custom code as an external microservice eases performance isolation,
misbehaviour of the custom code only fails the underlying container, and the
main product only perceives a network error, which does not affect other ten-
ants. Besides, external microservices ease management: scaling independently
resource-consuming customization and eventually billing tenants accordingly.

6 Conclusions

In this paper, we have presented an event-based customization approach that is
part of our non-intrusive customization framework for multi-tenant SaaS. This
asynchronous way of customization means that customization microservices can
have event-based communication with the main product BL components for cus-
tomization purposes. Using event-based communication between customization
microservices and the main product BL components is important not only for the
microservices architecture but also for non-intrusive deep customization capabil-
ity. Enabling customization both synchronously and asynchronously provides a
more flexible way of coordinating the customization logic between the BL com-
ponents (microservices) of the main product and the customization microservices
of tenants to obtain the desired customization effects in the multi-tenant context.
Our event-based customization approach makes sure of tenant-isolation, which
is crucial in practice for SaaS vendors. This approach can also help reducing the
number of API calls that may lead to performance bottleneck when there are
many customized tenants with unpredictable loads. We planned to collaborate
with two SaaS vendors and their customer companies for an empirical study.
Enabling event-based customization is also a way to prepare for offloading cus-
tom code to the Edge devices. The event bus could be open to events from
microservices on Edge devices and maybe even to “things” in the IoT context.

References

1. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. Present and
Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

2. Guo, C.J., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: A framework for native multi-
tenancy application development and management. In: The 9th IEEE International
Conference on E-Commerce Technology and the 4th IEEE International Confer-
ence on Enterprise Computing, E-Commerce, and E-Services, 2007, CEC/EEE
2007. pp. 551–558. IEEE (2007)

https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12


180 E. T. Nordli et al.

3. Kabbedijk, J., Bezemer, C.P., Jansen, S., Zaidman, A.: Defining multi-tenancy: a
systematic mapping study on the academic and the industrial perspective. J. Syst.
Softw. 100, 139–148 (2015)

4. Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A., Larsen, S.T., Dustdar, S.:
Microservices: migration of a mission critical system. IEEE Trans. Serv. Comput.
1 (2018). https://doi.org/10.1109/TSC.2018.2889087

5. Mietzner, R., Leymann, F.: Generation of BPEL customization processes for SaaS
applications from variability descriptors. In: IEEE International Conference on
Services Computing, 2008, SCC 2008, vol. 2, pp. 359–366. IEEE (2008)

6. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media Inc., Sebastopol (2015)

7. Nguyen, P.H., Song, H., Chauvel, F., Levin, E.: Towards customizing multi-tenant
cloud applications using non-intrusive microservices. In: The 2nd International
Conference on Microservices, Dortmund (2019)

8. Nguyen, P.H., Song, H., Chauvel, F., Muller, R., Boyar, S., Levin, E.: Using
microservices for non-intrusive customization of multi-tenant SaaS. In: Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2019, pp.
905–915. Association for Computing Machinery, New York (2019). https://doi.org/
10.1145/3338906.3340452

9. Song, H., Chauvel, F., Nguyen, P.H.: Using microservices to customize multi-tenant
software-as-a-service. Microservices, pp. 299–331. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-31646-4 12

10. Song, H., Chauvel, F., Solberg, A.: Deep customization of multi-tenant SaaS using
intrusive microservices. In: Proceedings of the 40th International Conference on
Software Engineering: New Ideas and Emerging Results, ICSE-NIER 2018, pp.
97–100. ACM, New York (2018). https://doi.org/10.1145/3183399.3183407

11. Song, H., Nguyen, P.H., Chauvel, F.: Using microservices to customize multi-
tenant SaaS: from intrusive to non-intrusive. In: Cruz-Filipe, L., Giallorenzo,
S., Montesi, F., Peressotti, M., Rademacher, F., Sachweh, S. (eds.) Joint Post-
proceedings of the First and Second International Conference on Microservices
(Microservices 2017/2019). OpenAccess Series in Informatics (OASIcs), vol. 78, pp.
1:1–1:18. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2020). https://doi.org/10.4230/OASIcs.Microservices.2017-2019.1, https://drops.
dagstuhl.de/opus/volltexte/2020/11823

12. Song, H., Nguyen, P.H., Chauvel, F., Glattetre, J., Schjerpen, T.: Customizing
multi-tenant SaaS by microservices: a reference architecture. In: 2019 IEEE 26th
International Conference on Web Services (2019)

13. Taibi, D., Auer, F., Lenarduzzi, V., Felderer, M.: From monolithic systems to
microservices: an assessment framework. arXiv preprint arXiv:1909.08933 (2019)

14. Thönes, J.: Microservices. IEEE Softw. 32(1), 116–116 (2015). https://doi.org/10.
1109/MS.2015.11

15. Tsai, W., Sun, X.: SaaS multi-tenant application customization. In: 2013 IEEE
Seventh International Symposium on Service-Oriented System Engineering, pp.
1–12, March 2013. https://doi.org/10.1109/SOSE.2013.44

16. Walraven, S., Truyen, E., Joosen, W.: A middleware layer for flexible and cost-
efficient multi-tenant applications. In: Kon, F., Kermarrec, A.-M. (eds.) Middle-
ware 2011. LNCS, vol. 7049, pp. 370–389. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25821-3 19

https://doi.org/10.1109/TSC.2018.2889087
https://doi.org/10.1145/3338906.3340452
https://doi.org/10.1145/3338906.3340452
https://doi.org/10.1007/978-3-030-31646-4_12
https://doi.org/10.1007/978-3-030-31646-4_12
https://doi.org/10.1145/3183399.3183407
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.1
https://drops.dagstuhl.de/opus/volltexte/2020/11823
https://drops.dagstuhl.de/opus/volltexte/2020/11823
http://arxiv.org/abs/1909.08933
https://doi.org/10.1109/MS.2015.11
https://doi.org/10.1109/MS.2015.11
https://doi.org/10.1109/SOSE.2013.44
https://doi.org/10.1007/978-3-642-25821-3_19
https://doi.org/10.1007/978-3-642-25821-3_19

	Event-Based Customization of Multi-tenant SaaS Using Microservices
	1 Introduction
	2 Deep Customization
	3 Event-Based Customization Approach
	3.1 Main Components for Enabling Event-Based Customization
	3.2 Event-Based Customization Flow
	3.3 Tenant-Isolation and Tenant-Specific Event-Handlers

	4 Proof-of-Concept and Evaluation
	4.1 Tenant A's Customization of the Ordering Process
	4.2 Tenant B's Customization of the Ordering Process

	5 Related Work
	6 Conclusions
	References




