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Foreword

Power cables, flexible pipes and umbilicals (but also climbing ropes, sewing threads, gardening
hoses etc.) may display torsion-related motion under handling. As an example, while a cable
is routed from an onshore turntable to an installation vessel, longitudinal markings can be
observed to roll, and torsion starts building up. This progresses until either the cable is
damaged (with the tensile armor showing a 'bird cage’ related behavior), or takes the shape of
a helix which is difficult to route and store.

Since 2009, SINTEF has been invited to investigate torsion-related failures that have occurred
during production, load-out (to installation vessels), installation, and even during operation.
Some of these failures where extremely costly events. SINTEF's role in such investigations is
to gather all relevant data from all parties involved in the failure, review and analyze the data
and conclude on the mechanism (or the possible mechanisms) of the failure, and, where relevant,
to propose solutions to avoid future problems. SINTEF has also provided less comprehensive
services for other torsion related events and has studied information from dozens of incidents.
Several lessons can be drawn from this experience:

The costs of some of these failures are considerable. Expensive products are damaged, de-
liveries significantly delayed, installation of vessels remain on stand-by for months, in-
stalled flexible products experience downtime and need repairs, and so forth. SINTEF is
aware of several events that have each cost of the order of 1700 million NOK (10 million
Euros).

Failures are unacknowledged. Luckily, the failures we know about have not caused death,
injury or pollution. Therefore, they do not have to be reported to the authorities, and the
problem remains unmapped and largely unacknowledged. Yet, SINTEF has seen docu-
mentation of dozens of events. Further, our understanding of the underlying mechanisms
suggests that these incidents can easily happen, so there are probably many incidents
we have not yet heard about.

It's complicated. A glossary of all the terms needed to describe torsion-related concepts, just
to make it possible to discuss a mishap, a failure or an improved design, takes several
pages. The mathematics applied to model the relevant processes includes advanced
concepts (rotations in 3D, material vs. spatial derivatives etc). A variety of torsion-
generating mechanisms, including several instability phenomena, have been identified.

In September 2019, SINTEF initiated a 3-year Joint Industry Project (JIP), sponsored by @rsted,
Equinor, Hellenic Cables, NKT HV Cables, Aker Solutions, and Petrobras. The JIP's objective
is to provide the industry with the insights and tools to prevent torsion-related failures. The
present “Torsion handbook” is one of the main deliverables of this project.

The document consists of two parts. Part | aims at providing insight into the mechanisms that
lead to the appearance of torsion during handling operations, and in the mechanisms of failure
of cross sections subjected to torsion. Part Il provides a guideline on how to evaluate the levels
of internal torque that may develop in various types of handling operations, on how to evaluate
the various torsion-related failure modes of flexible product.
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Nomenclature

g—E Spatial roll rate

% Material roll rate

K Curvature vector

w Rotation rate vector

Q Rotation rate matrix

e Family of orthonormal reference systems
& Longitudinal marking family of reference systems
e’ Torsion-free family of reference systems
g’ Frenet-Serret family of reference systems
f Distributed external forces

M Internal moments (torque, bending moments)
m Distributed external moments

R Internal forces (axial force, shear forces)
T Torsion

Tt Frenet-Serret "torsion” of a curve

€ Elongation

k Payout of flexible product

L Link

M¢ Friction moment

R Roll angle

R* Twist-induced roll

S Route coordinate

T Twist

1% Writhe

N

Line coordinate

NOMENCLATURE

rad

deg
deg
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14 17 INTRODUCTION

1 Introduction

Part | studies the various mechanisms by which torsion can appear in flexible products while
they are being handled, and how this torsion can lead to various forms of failures. Some of the
mechanisms are easy to grasp intuitively: if a flexible product is curved, and a transverse load
is applied in the correct direction, the flexible product is acting like a crank and will experience
an internal torque. Other mechanisms are maybe not immediately intuitive, as for example “flip
torques” or geometric instabilities.

Part | aims at providing engineers and operators with an intuitive understanding of these mech-
anisms. Many concepts are involved, there is no single insight that will unlock comprehension.
Hence, understanding the mechanisms of torsion generation does require time and effort. Still,
gaining this understanding will make it easier to

diagnose torsion-related problems,

— describe them with a precise vocabulary,

— make better operational decisions to prevent and mitigate torsion,

— chose modes of operation and route layouts that are less likely to induce torsion,

— apply guidelines for the quantitative assessment of internal torque (Part Il) with insight
and discernment.

A first step toward understanding torsion is to acquire a good vocabulary: Just like the notion
of strain is necessary to study stresses, stiffness and thus equilibrium, the geometrical tools
provided in this chapter are necessary to create models of how real-world flexible products
behave and thus evaluate the level of internal torque developed under handling. In addition,
these geometrical concepts are important in order to be able to report observations on the
behavior of a flexible product. Experience has shown that the confusion of various concepts
into “there is torsion” in incident reports makes it difficult to diagnose the source of any problem
experienced.

Some mathematics are provided in Part |, and for some readers, will provide a deeper un-
derstanding. These mathematics are descriptive (just as Isaac Newton's F = ma describes
‘how the world goes round”) . However in Part |, no methods are provided for engineering
assessment of torsion levels: this is the object of Part Il.

Section 2 reviews what is available in the scientific literature about the mechanisms of torsion
generation.

Section 3 explores the geometry of torsion in flexible products: How to describe (not predict)
the shape of a flexible product, and how this shape changes over time. The equivalent in
continuum mechanics would be the study of displacements, velocities, and strain - things
that can be defined independently of the material. For flexible products, the mathematical
vocabulary of 3D curves provides notions like curvature and deflections. But we need to go
beyond that to consider “curves with a longitudinal marking” in order to be able to talk of
torsion, and how flexible products roll around themselves.
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Section 4 looks into cross-section behavior: how curvature (and its change over time) affects
bending moments, because of internal friction between components, or how “flexible” products
turn out to be extremely stiff against some particular patterns of deformations. It also addresses
torsionally unbalanced cross-sections.

Section 5 uses the insight from the two previous sections to study how friction between the
components of the flexible product can cause large torques to appear.

Section 6 looks into the various forms of storage of flexible product and how they relate to
torsion: friction holds the flexible product in place so that it will not roll. Basket continu-
ously introduce writhe, causing the product to be stored with torsion (which does not need to
be a problem). The section then discusses friction between the flexible product and rollers,
tensioners and chutes, and shows that these often oppose surprisingly little resistance to roll.

Section 7 remarks that many operations tend to stabilize into a state in which the torsion at
any given point along the route does not vary much over time. In such operations, the torsion
at steady state is the highest that will be induced by internal and external friction.

Section 8 however points out that there is no general guarantee that a steady state will always
be achieved. Indeed, there are several forms of instabilities that can cause a rapid build-up of
torsion - the equivalent in the realm of torsion and friction, is buckling in columns. The section
then comes with a warning: there is no “rewind” or “undo” button in the handling of flexible
products. Reverting the actuators of the operation (tensioners, turntables) does not allow to
turn back the clock.

Section 9 brings together the insights presented earlier in Part | to discuss several operational
cases, in which the overall behavior of the flexible product, affected by several factors, can be
quite complex.

Section 10 describes the various types of local failure that may occur under torsion, depending
on how the flexible product is made.
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2 State of the art

‘Curves” in 3 dimensions have have “writhe" [7, 8, 13, 5], a property of high importance when
measuring roll angles. This property has been extensively studied in biochemistry, because of
its relevance for the behavior of DNA and RNA molecules. It is also of relevance in the study
of magnetic fields, and in particular, solar flares.

The resistance to roll in a bent flexible line, due to internal friction is identified as a source of
torque in [19]. The study was concerned with an installed riser system (no transport along a
route was involved). The relevance of this effect to the appearance of torque in transport was
then studied in [31].

Beam theory shows that introducing torque in in a curved beam will introduce bending moments
leading to deflections. This, and the unstable response this can induce, have been studied for
elastic beams in [27, 4]. A numerical beam model, that accounts for the combination of transport
and internal friction described in [31] was presented in [29, 30, 28]

Coilable designs are made a single tensile armor layer, or multiple layers laid in the same
direction. Such flexibles are by design strongly torsionally unbalanced. Other designs include
two or more tensile armors laid in opposing directions. They are typically designed to be
torsionally balanced. Both tests and numerical models [9] have been used to evaluate this
coupling.

Flexible products under high torque loads can fail in a variety of ways. Hockling at the touch
down point [32, 21, 35] and the related helical buckling

Some failure mechanisms have been studied in contexts unrelated to torsion, but are still
relevant: in-layer lateral buckling of armor wires [36, 37|.

There is an obvious need to monitor torsion during operations. The use of radio-frequency
identification tags embedded in flexible products is patented as a method for measuring roll,
and from there assess torsion [56] The use of optical fibers to measure strain in the tensile
armor s patented as a method for assessing torsion [57]
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3 Geometry

3.1 Route

During handling (including, production, load-out and installation) the flexible product is often
made to follow a given path. The path remains (more or less) unchanged while the flexible
product “flows” along the path, much like water following the course of a river. The flexible
product is said to be transported along a route.

Even tough circumstances may require a reversal, every operation has an intended direction
of transport (e.g. from onshore storage to vessel). Downstream refers to the intended direction
of transport, and upstream is the opposite direction.

In practice, the route is not completely fixed during an operation: free spans go from slack
to tight, the touch down point in a turntable moves from the nave to the wall, and so forth.
Still, many explanations in the following will be assuming a fixed route for simplicity. Other
reasoning will need to explicitly take into account variations of the route over time.

3.2 Coordinates

Coordinates are needed to define points along the flexible product and along the route, using
so-called arc-length coordinates. These coordinates describe distances “along a path” as
opposed to “as the crow flies”. By convention in this document, these coordinates increase
in the downstream direction. Since flexible products are typically spooled back and forth, this
implies that the direction of the line coordinate is changed with the phase of the operation.

Line coordinates z [m]. A line coordinate uniquely defines a material point (“there is a mark-
ing on the outer sheath at line coordinate z = 337m"). Typically, the tail end is chosen
to have line coordinate 0 (the origin of the line coordinate system). Line coordinates
increase along the line, and the line coordinate of the head end is the length of the line.
In this document, the mathematical symbol for a line coordinate is z with unit [m]. It will
be convenient to write z4, zp, and so forth, to refer to the line coordinates of cross-section
a and b along the line.

Route coordinates s [m]. A route coordinate uniquely defines a point along the route ("the
tensioner at route coordinate s = 540m”). Typically, the place where the flexible product
leaves the upstream winding machine/turntable/spool, will be chosen to have route coor-
dinate 0. In this document, the mathematical symbol for a route coordinate is s with unit
[m]. It will be convenient to write s4, sp and so forth, to refer to the route coordinate of
points a and b along the route.

Payout k [m]. The payout measures progress of the operation: the length of flexible product
that has been transported (“‘we aim for 200m more payout by the end of the shift"). In
this document, the mathematical symbol for payout k with unit [m].
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If line and route coordinates are oriented in the same direction, then the route coordinate of a
material point (defined by its line coordinate) at a given payout can be calculated (Figure 1)

s=z+k+sg (1)

where sq is a constant depending on the choice of origins of the line and coordinate system. If
for example, at the start of the operation (k = 0), the head of the flexible product (z =L, where
A is the length of the flexible product) is at the point of route coordinate s = 0, then the above
equation can be written 0 = A+ 0+ sq, implying that s = —A. The above equation is, for that
case, s=z+ k—A.

If line and route coordinates are oriented in opposite directions, with the line coordinates
increasing in the upstream direction, then

s=—z+Kk+sg (2)

In the rest of this document only the case where the line and route coordinates are in the same
direction is considered. The other case is handled by switching the sign of z.

Figure 1: Line coordinates (z, black) and route coordinates (s, red). The top pipe shows the
flexible product at k = 0, the bottom pipe at k = 1.8.

3.3 Curvature

Simply put, the curvature of a route at a given point along the route is the inverse of the
bending radius. However, it is useful to describe curvature as a vector K. The length of the
vector is the inverse of the bending radius [m~!], and the vector is orthogonal to the route and
points inside the curve (Figure 2).

At a given point along the route, the curvature plane (known in mathematics as the osculating

plane) is the plane that contains the vector tangent to the route and the curvature vector (Figure
3).
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In places where the route is straight, since the curvature vector has length zero, any plane
containing the tangent vector would do, so the curvature plane is undefined. In a segment of
the route that is plane (for example, if the segment of the route was all in a given horizontal
plane, never changing height), then the curvature plane at any point in this segment, is the
plane containing the route.

Figure 2: Curvature vectors along a route curved: in a single plane (left), in 3 dimensions
(right).

X

Figure 3: Osculating plane, tangent and curvature vectors.

3.4 Longitudinal marking

Some flexible products carry longitudinal markings along all or part of their lengths (Figure
4). These can be extruded together with the outer sheath, or applied with a marker pen that
is fixed on a point along the route while the flexible product runs past it. In the following,
longitudinal markings will be discussed as if they were present in all flexible products, although
this is not the case. Longitudinal markings are typically not applied to flexible products whose
outer layer is made of polypropylene yarn spun around the flexible product. Even when no
such marking is present, it is useful to imagine there was one, in order to introduce a variety
of important concepts.
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Figure 4: Longitudinal marking.

Ideally, if the flexible product was straight and not under tension or internal torque, then the
longitudinal marking would be a straight line running along the cylinder. Such a marking is
referred to as an ideal longitudinal marking. The marking applied to a flexible product may
not be ideal, for several possible reasons:

— The flexible product can have been rolling (turning around its own axis) while being
transported past the marking system.

— The flexible product can have been loaded in torsion when marked. When relaxed this
would transform the marking into a helix.

— Plastic deformations of components of the flexible product, or relative slip between the
components change the torsion and elongation at which the flexible product has zero
internal torque and axial force.

3.5 Roll angle

At points along a route where the route is horizontal, one can define the roll angle as the angle
between the longitudinal marking and the vertical. It can be measured as in Figure 7, except
that as the ruler is held, it should be marked with “0" where it reads “90".

Even if one defines roll as being positive when being clockwise, the sign of roll depends on
the direction along which one is looking (Figure 5). This makes it important to agree on which
direction along the route is “downstream’, because swapping the direction of the arc-length
coordinate system swaps the sign of roll angles. The sign of roll is defined as being positive
if it is clockwise when looking downstream (Figure 6). A mnemonic is to use the right hand
with the thumb pointing downstream and the curved index finger pointing in the direction of
positive roll.

In this document, the mathematical symbol for a roll angle is R with unit [deg]. To be more
specific, the roll at a point a can be written R(sy) “the roll at the arc-length coordinate of
point a along the route”).

3.6 Torsion

Consider a straight piece of flexible product, on which we draw ideal longitudinal marks, and
circumferential marks (Figure 8, top). The longitudinal and circumferential marks are originally
at right angles to each other. Torsion is the part of the deformation of a flexible product
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Figure 5: Observing the same roll from two different directions

Figure 6: Sign convention for roll. The straight arrow points downstream (increasing route
and line coordinates). The curved arrow points in the direction of positive roll.

that changes the angle between longitudinal and circumferential marks (Figure 8, bottom, and
Figure 9).

One could hence measure torsion by the change of angle between longitudinal and circumfer-
ential marking. However, it turns out to be more convenient to measure it as a change of roll
angle AR per unit length As. In this document, the mathematical symbol for torsion is T (tau)
with unit [deg - m™!]. For a straight segment

AR

T As

(3)

Figure 10 shows the same torsional deformation from two different perspective. In contrast to
roll, torsion appears the same whether looking downstream or upstream: the sign of torsion is
defined independently of the choice of a positive direction along the flexible product. Figure 8
(bottom) shows an example of positive torsion, the mirror image of which would be a negative
torsion. In positive (respectively, negative) torsion, the roll angle increases (decreases) as one
travels along the flexible product in the positive direction (the direction of increasing arc-
length coordinate). DNA's double helix, and screws mostly are positive helices. There are
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Figure 7: Roll angle measurement.

various nomenclatures for describing the direction of torsion, or the direction in which helical
components are laid. Synonyms are shown in Table 1. In the present document, “positive” and
‘negative” are used, because this facilitates calculations.

| | This document | Standards | Rope making | Helix |

i Positive /-lay Right lay Right handed

Negative S-lay Left lay Left handed

Table 1: Torsion and helix sign nomenclature.

Torsion is also sometimes referred to as a twist angle in the literature. This expression will
not be used here, to prevent confusion with twist (Section 3.7).

3.7 Twist

The twist between two points a and b along a route or flexible product is the part of the
difference between the roll angles at these points that is due to torsion. In this document, the
mathematical symbol for twist is T with unit [deg]. The twist is the downstream roll minus the
upstream roll. So if b is downstream of a this can be written, for a straight flexible product,

T(Sa,Sb) = R(sy) —R(sq) with sy > sq (4)
Still for a straight flexible product, and if the torsion T is uniform between both points, then

o— T(sa;s0) _ Rfsv) —R(sa) 5)
Sp — Sa Sp — Sa

If T is not uniform the relation becomes

Sv

T(sq,8p) = J T(s)ds (6)

Sa
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Figure 8: A mesh of longitudinal and circumferential markings. The bottom product has positive
torsion.

Figure 9: Torsion in a bend.

Swapping the direction of positive arc-length coordinate changes the signs of R (so) and R (sy,),
but it also swaps which point is upstream and which is downstream, so neither twist nor torsion
are affected: while a positive roll is only positive for a given direction of arc-length coordinates,
the sign of twist is independent of the direction of the coordinates.

Because the line coordinates and route coordinates are arc-length coordinates along the same
curve, but with difference in origin (the point of coordinate zero), one can also, if practical use
the line coordinates z, and zy,.

3.8 Writhe

In the above, the relation between torsion, twist and roll angles were given under the important
limitation of dealing with a straight segment of a flexible product. Ignoring this limitation can
lead to wrong estimations of the torsion, because of an interesting effect of 3-dimensional
geometry: the writhe.

Figure 11 provides an example of writhe: it shows a segment of flexible product in which each
of its 3 thirds are bent. If circumferential markings were shown, as was done in Figure 8,
they would everywhere be at a right angle to the longitudinal markings: there is no torsion
anywhere along the segment. Still the sequence of bends is such that the black longitudinal
marking, which is at 3 o'clock at the lower end of the pipe, is at 6 o'clock at the upper end.

In this document, the mathematical symbol for writhe is W with unit [deg]. By convention, one
will compute the writhe as the roll at a downstream point minus the roll at an upstream point,
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Figure 10: Torsion seen from different viewpoints

in the absence of torsion:
W (Sq,8p) = R(sp) — R(sq) with sp > sq (7)

In this example, the writhe between both ends of the segment is 490 [deg].

Figure 11: The roll angles at both ends of this flexible product are different because of writhe.
The flexible product shown here has no torsion, but is bent successively in three different and
orthogonal planes.

Figure 12 shows a more complicated example of a helix. Again it has zero torsion (the longi-
tudinal marking is at a right angle to the (absent) circumferential marking), and yet as can be
seen, the roll angle changes from pitch to pitch.

In the helix, the plane of curvature varies continuously while it varies in steps in Figure 11. In
both examples above, dividing the difference in roll angle by the length of the pipe segment
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Figure 12: A helix (positive sign) is a more complicated example of writhe (negative sign). The
flexible product shown here has no torsion. Three longitudinal markings, 120 [deg] apart.

could lead to the wrong conclusion that the pipe is undergoing twist, while it is only bent.
Writhe never occurs in flexible products that deform within a single plane. This is related to
the fact rotations around the same axis commute: changing the sequence does not change the
final angles. By contrast, general rotations in 3D do not commute, and flexible products that
deform in 3D exhibit writhe.

Sections 3.7 and 3.6 discuss twist and torsion, which is twist by unit length. Can one similarly
speak of a “writhe per unit length”? The answer is no: the writhe of a segment is a function of
the geometry of the whole segment. For example, writhe for a curve in a single plane is zero.
The flexible product in Figure 11 is composed of 3 plane segments, yet the writhe is not zero.

In the two examples given above, one can evaluate the writhe analytically (for helices: Section
3.11.9). In more general cases, for example to compute the writhe of a geometry obtained using
beam elements, this is not possible. In that case, the writhe must be evaluated numerically
(Section 3.11.5).

As an exercise, one might want to consider the effect of coiling a short length of flexible product,
starting from a straight line, ending with a single coil. This is relevant when coiling a rope per
hand, or feeding a flexible product into a (non-rotating) basket. As Figure 13 suggests, and
as experiments with a short length of tape will confirm, creating a coil introduces a 360 [deg]
writhe in a flexible product.

3.9 Link

The link is simply the difference between the roll at two points along a route. In this document,
the mathematical symbol for link is L with unit [deg]. By convention, one will compute the link
as the roll at a downstream point minus the roll at an upstream point:

L(sa,sp) =R(sv) —R(sq) (8)
where sy, > sq.

In the above, it was discussed that both twist and writhe can contribute to a change of roll
angle between two points. Hence the link is the sum of the twist and the writhe:

L=T+W (9)
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Figure 13: Creating a coil. Several snapshots superimposed. The flexible product is always
torsion-free.

This statement is known as Calugareanu’s theorem [7, 8].

One way to illustrate Eq. 9 is to consider a ribbon that has been coiled, and to pull one end
without allowing either end to rotate (as would be the case to a garden hose which coils are
born on a hook by the side of the house, or a coilable flexible product in a basket) (Figure14).

Figure 14: Pulling out a coiled ribbon (writhe) without allowing the ends to rotate results in
twist: Link is conserved.

3.10 Spatial and material roll rates

There are two ways to measure the roll rate, that is, the rate of change of the roll angle with
time. The first one is to put a bit of sticky tape on a flexible product that is being transported.
One then measures the roll angle at the sticky tape, following it as it is transported along the
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route. The sticky tape marks a material point on the flexible product, and the roll rate thus
measured is called the material roll rate.

The second way to measure the roll rate is for the observer to stand still at a given point along
the route and measure the roll angle. One could be standing at the touch-down point in a
turntable, by a tensioner or a given roller.

If the flexible product has torsion, both methods will yield different results. Consider for example
a straight segment of flexible product that has a positive twist. If the segment moves from left
to right, without rotating around its axis (zero material roll rate), then

1. A "material” observer (Figure 15, left) following the flexible product will observe no roll:
the material roll rate is zero.

2. A "spatial” observer (Figure 15, right) remaining immobile will observe a roll: the spatial
roll rate is negative. More specifically, the spatial observer will observe a roll rate equal
to minus the torsion, times the speed of the segment towards the right.

Figure 15: Material (left) and spatial (right) roll rates.

If we repeat the experiment, this time with the segment progressively rolling at the same time
as it is translating, then

1. A "material” observer following the flexible product will find a material roll rate identical
to the rate at which the segment rolls.

2. A "spatial” observer remaining immobile will find a spatial roll equal to the material roll,
minus the torsion times the speed of translation of the segment.

For a straight segment of route, this can be written % = %—f—l—”t v where DR/Dt is the material
roll rate, with unit [deg - s '], 0R/0t is the spatial roll rate (same unit), T is the torsion and
v is the transport velocity. However, this definition will not be used in the following: one can
simplify the above expression by using, as unit for time, “the time it takes to pay out 1[m] of

the flexible product”. This unit of time is in effect the payout k (t) (Section 3.2). We then have

DR 0R

Dk — 3k +7T (10)
where the material roll rate is defined as DR/Dk, and the spatial roll rate as 0R/dk (Figure
16). The notations D and 0 have special meanings in mathematics, but this is not important:
here DR/Dk and 0R/0dk are just notations for material and spatial roll rates. Both have the
unit [deg-m~!]. Equation 10 can be read “the change of roll angle of a material point when the
flexible product is transported 1[m] is equal to the change of roll angle seen by an observer
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before

Figure 16: Relation between material roll rate, spatial roll rate and torsion. The longitudinal
marking (and a material point, in red) are shown before and after the flexible product is
transported by an amount Ak = 1. Downstream is to the right, so a positive roll is downward,
and both roll rates are positive in this example.

standing on the ground, plus the change of roll angle seen by an observer walking 1 [m] along
the immobile flexible”.

The sign of material and spatial roll rate is independent of the choice of a positive direction
along the flexible product. This is due to the choice of deriving with respect to the payout k -
which sign depends on the choice of positive direction.

3.11 Mathematical formulation
3.11.1 Necessity

The present handbook aims at providing a practical and intuitive approach to torsion related
problems. This has its limitations, and for some advanced questions, will not be sufficient. The
present Section provides a slightly more rigorous mathematical base to the understanding of
torsion. It is however fully possible to skip Section 3.11.

The definitions of torsion, twist and writhe provided in Sections 3.6, 3.7 and 3.8 are designed
to develop intuition, but lack of rigor, with “twist” being defined as a difference of roll angles
in the absence of writhe and “writhe” as a difference of roll angles in the absence of torsion.
Further, the definition of roll angle in Section 3.5 breaks down for vertical segments of flexible
products.

As a consequence, the above definitions would cause problem when dealing with advanced
problem, or when writing software that must handle a range of cases. In the present Section,
the above concepts are revisited. Alternative definitions which are rigorous and more widely
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appliflexible product are presented. On the other side, these definition require a stronger grasp
of the underlying mathematics.

3.11.2 Relation to knot theory

The definition of writhe presented in this section differs from that used in knot theory in several
respect. A trivial difference is that here the writhe is measured in degrees, while turns (360
degrees) are used in knot theoruy.

A deeper difference is that in knot theory, the writhe is defined only for closed curves (loops).
This is impractical for engineering purposes, but allows to distinguish “positive” and “negative
crossing” in a way the definition below does not. The definition presented below provides
values of the writhe “modulo 360 deg”. For example, for a coil added to a straight line, the
definition below will lead to a writhe equal (or close) to zero, while the mathematical definition
will provide a distinction with a value of 4360 deg (or +1 turn) for a negative crossing (coiling
one way) and —360 deg (or —1 turn) for a positive crossing (coiling the other way) (cf. Eq. 16

in [671]).

In knot theory, to allow to distinguish the effect of crossings, the writhe is defined as a double
integral (the average over all directions in 3D space of the number of crossings in an oriented
link diagram). This integral is difficult to assess numerically. In contrast, computations of
writhe as defined in this section are fast and stable.

The present definition can be made to provide absolute (as opposed to modulo one turn) values
of writhe for open segment, by applying it to a continuous “movie” of curves, starting from a
straight segment (defined to have zero writhe) to the actual configuration. The series of values
of writhes obtained for each frame of the movie is “unwrapped” (made continuous), providing
an absolute value. Computation times are slower of course, and there is the need to define the
above-mentioned “movie”.

3.11.3 Rotation rate

The rotation rate of a family of reference systems is not to be confused with the roll rate -
although a relation exists.

In the above, the various definitions rely on the existence of a “roll angle”. This concept is
problematic, because it makes it difficult to describe cases with vertical or near vertical flexible
products. Hence, for the purpose of more general analyses, and in particular for software
development, one must define the necessary concepts in another way.

Consider a route X, where s is a arc-length coordinate and X (s) is a point in a 3-dimensional
Euclidean space. To each coordinate s we associate the orthonormal triplet €(s) of vectors
€ (s) where i € {1,2,3}, such that &; (s) is tangent to X at X(s). This leaves many options
open on how to orient €, and e;. Some of these options are of particular interest and are
discussed in Sections 3.11.4, 3.11.5 and 3.11.6.
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We define the rotation rate matrix

e(s+ds)-e(s)!

Q2 lim 11
ds—0 ds ( )
where the symbol £ represents a definition. We also define the rotation rate vector as
Qa3
@ = | Qy (12)
Qi
with coordinates in €(s)
(6057 S w - Ei (’I 3)
and finally the torsion of the set of reference systems
2w (14)

in [rad - m—1].

Since € (s) is tangent to X, the relation between the curvature vector K and the rotation rate
vector W can be written as

Ko = W3 (15)
K3 = —Wy (16)
W = wie; + woey + wseg (17)
= T5€; — K3€3 + Ko€3 (18)
K = €3Kg + €3K3 (19)
= €Wz — €3W3 (20)

3.11.4  Frenet-Serret families of reference systems

In Frenet-Serret reference systems [59, 18], noted e’ e5° (s) point towards the inside (the
concave side) of the curvature for all s: €® is within the osculating plane (Figure 17). @' is
the corresponding rotation rate vector. We then write the Frenet-Serret “torsion” T, = @' -l
It describes the rate of change of the curvature plane in a route, independently of the state of
any flexible product that may follow that route. The Frenet-Serret “torsion” is a property of a
route, and it is important not to confuse it with the torsion T of a flexible product, as defined

in Section 3.6.

One issue with Frenet-Serret coordinates is that for straight segments of route, the plane of
curvature, and hence the Frenet-Serret coordinate system and the Frenet-Serret torsion is
undefined.
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Figure 17: Frenet-Serret reference systems. T, N and B respectively stand for tangential,
normal and binormal. N is always aligned with the curvature vector K.

3.11.5 Torsion-free families of reference systems

We introduce a new family e" or reference systems, with corresponding rotation rate vector
w"™. We set the requirement t,, = @w" -€]" = 0 everywhere along the route. This defines a
torsion-free family of reference systems (Figure 18). The function which to s associates e}’ (s)
(one could have chosen re} (s)) where 1 is the outer radius of the flexible product, is the
trajectory of a material point on a flexible product being transported along the route with zero
material roll rate, in other words, an ideal longitudinal marking.

If in a torsion-free marking, €}" (sq) and €}" (sy) are both orthogonal to a given normal vector
v (for engineering purposes, the vertical. If non zero, one can take v =&}" (sq) x €;" (b)) then
the writhe can be defined as

ey (sp)

m — arctan

W (sq, sp) = arctan (21)

<l| <l
<l| <l

3.11.6 Longitudinal marking families of reference system

We can require €5(s) to be oriented everywhere so that the points T€5(s) are the longitudinal
marking of a given flexible product of radius r. The “longitudinal marking” family of reference

. =1 : .
systems is noted €. By extension, one can refer to the set of coordinate systems as as a
‘marking” (Figure 19).
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Figure 18: Torsion-free reference systems. Vectors €y cross a longitudinal marking that is
always at right angle to the circumference.

Figure 19: Longitudinal marking reference systems. Vectors €5 cross a longitudinal marking
that is not at right angle to the circumference.

The torsion in [rad - m™!] of the flexible product is defined as

A
T =

— 5l

w - e (22)
Where the definition of T provided in Section 3.6 does not breakdown, it is equivalent to the
more general definition provided here.

3.11.7 Flowline families of reference system

If the material roll rate is known, we can introduce a “flowline” family of reference systems.
Vectors €5 are oriented in such a way that if a material point is aligned with €} (s4) at point
a along the route, then it will be aligned with €5 (s,) when it reaches point b. In other words,
the intersection of the vectors € with the surface of the flexible product define flowlines.
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When expressing the roll angle in flowline reference systems, by definition

DR
- 2
Dk 0 (23)
so that
oR

In transient situations, where roll rates at a given position along the route vary over time, the
flowlines and hence the family of reference systems change over time.

3.11.8 Twist-induced roll

Introducing a torsion-free set of reference systems, and a longitudinal marking, one can in-
troduce the twist-induced roll angle R*. It is defined as the angle of rotation around e}" that
aligns €3 (from the torsion free set of reference system) with the longitudinal marking.

This differs from the definition of roll angles relative to the vertical, but has the advantage of
not relying on the route being locally in a horizontal plane. The twist-induced roll angle is
distinct from the roll angle defined in Section 3.5. Consider a flexible product shaped into a
helix, and without torsion. As was discussed in Section 3.5, writhe causes the roll angle to vary
along the helix. On the other hand, €}’ (from the torsion free set of reference system) aligns
with (or has the same angle to) the longitudinal marking everywhere, so the twist-induced roll
is zero everywhere (or at least uniform).

We define
*
s
where s is the arc-length coordinate along the flexible product. Where the definition provided

in Section 3.6 holds, it is equivalent to the one provided here. The twist is the integral of
torsion, so that

T (25)

T(sa,80) =Ry — R (26)
Eq. 10 is replaced by
DR*  OR*
_or 27
Dk ok " 27)

which is valid for arbitrary route geometries, including route geometries that change over time.

The advantage of the twist-induced roll rate is that it is well defined for points where the
route is not in a horizontal plane. This makes twist-induced roll the definition of choice in the
development of computational methods. In fact, it appears naturally when using beam elements.
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3.11.9 Writhe in a helix

As discussed in Section 3.8, the writhe is defined between two points along a flexible products.
The same applies to twist, but with a significant difference: one can define torsion as the twist
per unit length, but as mentioned in Section 3.8, it is not possible to define a “writhe per unit
length” which would be a local property of the geometry of a flexible product,and which would
also be the derivative along the flexible, of the writhe.

In a helix, one can consider a writhe per pitch (since the helix has the same tangent at both
ends of a pitch). We consider a helix of pitch p and helix radius a. For a positive helix, p > 0,
and for a negative one p < 0. We introduce

b= (28)
27

c =sgn (b) Va? + b? (29)

Figure 20: Two tensile armor tendons wound around a flexible product. The left one has zero
torsion (and is hence not laid flat), the right one is laid flat (the normal to the wide surface
remains parallel with the normal to the cylinder, cf €, in Eq. 32).

The helix has equation

acos &
X(x)=| asinx (30)
ba
the velocity is
ox —asin
V=—_—=| acosx (31)
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To help compute teh write, we define a family of orthonormal reference systems:

5 —asin o
e =—-=- acos o (32)

c c b

— oS o
ey = | —sinx (33)
0
bsin
€3 =€ X €y = E —b cos & (34)
—a

Picturing the helix as wound around a cylinder, € is normal to the cylinder, pointing inwards.
This is the direction of the curvature, so that this is a Frenet-Serret family of reference systems.

The torsion of the family of reference systems (the Frenet-Serret torsion) is

ey _
T= a—; .85 (35)

1 sin o b sin &

=— | —cose | - | —bcosa (36)
c

0 —a

b

-3 (37)

Over a pitch, the length of the helix is 27tc, and we note the writhe as W. Calugareanu’s
equation (Eq. 9) can be written

27t sgn (b) = 27t [¢]| % +W (38)
so that
b
W = 27 sgn (b) (1 — E) (39)

The above is valid for any helix, whether this be a flexible product that takes a helical shape,
or for components (armor wire, conductor) wound in a helix within the flexible.

In other sciences, the expression would have been W = —27tb/c. The difference stems from
considering here a straight line to have zero writhe, while in other settings, a circle is considered
to have zero writhe.

3.12 Engineering implications
3.12.1 Relativity to longitudinal marking

It is often not practically feasible to have the flexible product free of tension and internal
torque when applying a longitudinal marking, so that longitudinal markings may not be ideal
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as defined in Section 3.4. As a consequence, we cannot reliably measure absolute values of
twist, writhe and link, but only their change for a given segment, from one time to another.

In contrast, the material roll rate at a given cross-section, does not depend on the position of
a dot drawn at that cross-section - it is not affected by the choice of longitudinal marking.

Like twist, writhe and link, the spatial roll rate depends on the longitudinal marking: translating
a straight pipe with a wavy longitudinal marking will cause fluctuations of the spatial roll rate.

3.12.2 Measuring roll rates in the absence of longitudinal marking

In the absence of longitudinal marking, it is still possible to mark the flexible product with a
dot (an ink mark or a piece of adhesive tape), and to measure the material roll of the mark as
the section is transported along a straight segment of the route. Without longitudinal marking,
there is no obvious way to measure torsion, and without torsion, it is not possible to use
Equation 10 to obtain the spatial roll rate.

Measuring zero material roll (the mark stays on top of the flexible product, for example) does
not imply that there is no torsion in the flexible product (see also Section 9.2.1)

3.12.3 Measuring torsion

The Calugareanu theorem (Section 3.9) implies that link (that is, the difference in roll angle
between two points along a route) is not the same as twist (which is the accumulated effect
(integral) of torsion over the same length. Hence one must be careful when measuring link not
to confuse it with twist. Conversely, attempts to force the roll angle to be the same at the top
and bottom of a free span in a turntable (or similar) - with the purpose of avoiding torsion -
will typically be counterproductive.

A operational case was with the head of a flexible product being latched to the nave of a ship’s
turntable. Before latching, the head was rotated to zero the link. Because such a span has
a writhe that can be significant (90 [deg] is quite common). Forcing the link to be zero will
introduce a twist of 90 [deg] (for example, and in absolute value), which over the relative short
length of the span, can lead to damaging levels of torsion.

To measure torsion along a general geometry, one needs to know the writhe between the two
points. If the flexible follows a “roller highway" that fixes its geometry, one can in principle
use a numerically solution (Section 3.11.5) to evaluate the writhe. However, either the roller
highway is so tight that one risks to over-stress the flexible (Section 4.7), or the geometry and
hence the writhe will vary during the operation. In particular, changes in torque will affect the
geometry.

In practice, measuring torsion is done by choosing a segment where the writhe and the flip
torque (to be discussed in Section 3.11.5) are both zero. The first choice is a segment which
is straight. If this is not practical, then a segment that is within a single plane should be used
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Figure 21: No writhe in segments that are in a single plane.

(Figure 21). Care must be taken that in a route that is nominaly in a single plane, torque can
cause the flexible product to get out of plane and hence have writhe (cf. Figure 54).

The flexible product must have a longitudinal marking, and the roll angle of the longitudinal
marking is measured at both ends of the segments. To evaluate the length L of segment needed
to evaluate torsion, one needs to have some idea of the maximum torsion T that the flexible
product can tolerate without failure or without disrupting operations. One must also have
some idea of the uncertainty dR with which roll angles are measured. Then the quality q of

the torsion measurement is SR

97
If for example q = 0.05, (and in the absence of writhe, with an ideal longitudinal marking
and assuming uniform torsion) then torsion is evaluated with an uncertainty of 0.05 times the
maximum torsion the flexible product can tolerate.

(40)
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4  Cross-section behavior

4.1 Internal and external torques and moments

The vocabulary of forces in beam theory (which applies to flexible products) is well established
and will not be revisited here, except for one point which requires precision: the distinction
between internal and external torques and bending moments.

Considering forces that act in the direction of a beam as an example, it is customary to distin-
guish between an axial force, and tension (or compression, or as mathematicians would say, a
negative tension). The axial force is applied by an external agent (the pull of a winch - a point
force, gravity on a vertical flexible product - a distributed force). If there is a displacement
of the point of application of the force, the force produces work, equal to the intensity of the
force times the displacement. Scientists would express that by saying that the axial force is
the energy conjugate of axial displacement. Tension is an axial force applied by one segment
of the beam on the other, it is the axial force acting through the cross-section separating the
segments. Tension is the energy conjugate of elongation (axial strain of the flexible product
as a whole): think of the energy that would be released if a taut flexible product snapped.
Tension is a stress resultant: it can be found by integration of stresses over a cross-section.

Conventional vocabulary is not as precise when it comes to torques: “friction of a flexible
product against chutes and rollers applies a torque on a flexible product, and the beam carries
a torque” In the following, this ambiguity would become problematic, and it is hence necessary
to introduce the following definitions:

External torque: The result of one or several external forces acting on the beam. An example
is the action of a screwdriver on a screw: there are contact points on the screw head
which are off the axis of the screw, and combined, the forces at these contact points exert
an external torque on the screw. An example for flexible products is the external torque
induced by friction of the surface of a flexible product against chutes, rollers or other
coils, thus resisting roll. The energy conjugate of an external torque is roll: think of the
effort needed to drive a screw.

Internal torque: The torque induced by one segment of the beam on the next. The energy
conjugate of internal torque is torsion: think of the energy stored in a torque bar.

In a bar (or a segment of flexible product), the combination of a positive external torque at the
positive end and a negative external torque at the negative end induce a positive internal torque
(and a negative internal torque is obtained by swapping the signs of the external torques).

Consider a straight beam, clamped at the left end and free to rotate at the right. Let us say that
no external torque is applied at the right end, but external torques are applied at points along
the beam (Figure 23, top). In that case, the external torque per unit length is the derivative

along the beam of the internal torque, and the internal torque at the right end is zero (Figure
23 a) and b) ).

An external torque is positive if it tends to cause a positive roll. Since the sign of roll depends
on the choice of a positive direction along the flexible product (Section 3.5), so does the sign of



4.2  Curvature diagrams 39

1

Figure 22: External (left) and internal (right) torque.

external torque. An internal torque is positive if it tends to create a positive torsion. Since the
sign of torsion does not depend on the choice of a positive direction (Section 3.0), neither does
the sign of internal torque. In Figure 23 a) and b), the positive direction was chosen from left to
right. Figure 23 c) and d) shows the same physical situation, with the positive direction chosen
from right to left. Note that the external torque is still the derivative of the internal torque. For
curved beams, the external torque is not the derivative of the internal torque (Sections 5 and
5.5).

For curved beam, the relation between internal and external torque becomes more complicated
(cf. the mathematical description in Section 5.5), and indeed, there are several ways to introduce
internal torque in a flexible product without applying an external torque (Sections 5 and 6.0).

All the above applies - with the necessary changes, to bending moments as well.

4.2 Curvature diagrams

At a given cross-section, one can introduce two vectors of unit length e5 and e5. They are both
in the plane of the cross section, and they are orthogonal to each other. €, is chosen to be
pointing from the axis of the product towards the longitudinal marking.

The curvature vector K has a length equal to the curvature, is in the plane of the cross-section
and in the plane of curvature. K points inside the curvature (on the concave side of the product).

One can represent the curvature at that cross-section as a point on a graph (Figure 24). ks is
the curvature in direction €5, while k3 is the curvature in direction €. One can write

K = €5Kg + €3K3 (41)

Figure 25 shows the curvature diagram of a cross-section that is originally straight, then curved
so that the longitudinal marking is inside the curvature, straightened, and then bent so that
the longitudinal marking is outside the curvature. Figure 20 provides another example, with a
cross-section that is original curved, and which curvature is then changed in direction (relative
to the longitudinal marking) but uniform in intensity.
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Figure 23: Diagrams of external and internal torque along a cantilever beam, for the two
possible choices of positive direction along the beam.

4.3 Moment-curvature diagram

A bending moment is required to change the curvature of a cross-section. Figure 27 shows the
relation between curvature and bending moment during loading (increasing curvature starting
from a straight configuration) for a typical flexible product. The black curve is typical of what
would be measured in a test rig. For low curvature, all components are sticking to each other,
and the whole cross-section nearly behaves like a solid, with a high bending stiffness. As
components start to slip with respect to each other, the stiffness progressively decreases until
most of the length of each components slipping, and the stiffness is the sum of the bending
stiffnesses of the components. This is the near-horizontal part of the black curve. As curvature
further increases, the stiffness builds up again because of the “curvature-pressure instability”
(Section 8.3).
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Figure 24: Curved flexible products placed on the corresponding point on a curvature diagram.

In the following, it will be convenient to work with a simplified form of the moment-curvature
curve (in red in Figure 27). Two simplifications are introduced. First, there is an abrupt
transition between the steep “stick” part of the curve and the slack “slip” part at the slip
curvature Kgiip. This is because kg, is typically much smaller than the curvatures applied
during operation. For large cross-sections, Kgi, is much smaller, compared to the maximum
allowed curvature 1/MBR than suggested by Figure 27. Hence, details of this transition are
not important. The second simplification is not as innocent however: The secondary increase
in stiffness because of bending-pressure instability is ignored.

The bending moment in the slip part of the idealized (red) curve is the sum of two contributions:

Elastic moment: The sum of the bending moments of the individual components making up
the cross-section. Assuming that there is no plastic deformation of the components, this
moment is zero at zero curvature, and increases linearly with curvature.

Friction bending moment: The moment generated by friction between the components. If
the simplification presented in the red curve applies, this moment is independant of the
intensity of the curvature. This moment is noted My for “friction bending moment”. Figure
27 shows how My can be evaluated from test data, by finding the tangent to the slackest
point of the moment curvature curve, and finding the point where it cuts the y-axis of the
diagram. The friction bending moment plays a key role in some torsion-related problems
(Section b).

The friction bending moment strongly depends on the contact pressure between the components.
This contact pressure depends on the production process (for example, shrinkage of extruded
sheaths, tension of plies, pre-bending of tensile armor), on the temperature, and the temperature
history (because of creep in materials). It also depends on the tension, and torsion (which both
change the tension in helical components, and the contact pressure with layers inside and
outside of these components). Further, it depends on the curvature, which generates friction,
thus tension in the component, affecting contact pressures. As a consequence the friction
bending moment is variable during an operation, and hard to calculate.
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Figure 25: Curvature diagram of a cross-section, that is first straight, then bent with the
marking inside the curvature, then bent back in the opposite direction.

Figure 26: Curvature diagram of a bent cross-section rolling around itself.

Another effect is that some flexible products are built using viscous fluids. These can be used
as a form of corrosion protection, or as an electrical insulator in mass-impregnated flexible
products. Viscosity implies that friction forces also depend on rates of sliding. This effect will
not be accounted for in the following, unless explicitly mentioned. This amounts to assuming
that the friction bending moment does not depend on how fast a given change of curvature
occurs.

Some of the components of the flexible product may undergo plastic deformation under bending.
This would be the case for example for polymer or lead sheaths, which have large diameters,
and are thus subjected to high strains. The above reasoning still holds, but the expression
“friction bending moment” must then be understood to stand for a more general “dissipative
moment” which is the sum of the moment needed to overcome friction, and the moment needed
to drive additional plastic deformation.
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Figure 27: Typical moment curvature diagram of a flexible product. Realistic curve (black) and
idealized (red). ‘MBR" is the minimum bending radius of the flexible product.

4.4 Drawing a moment in a curvature diagram

The arguments in the remainder of Section 4 consider reference systems, but it is not relevant
whether this reference system is part of a Frenet-Serret, torsion-free, or longitudinal marking
type of family of reference systems. A positive internal bending moment around the €, axis
causes a negative curvature k3 < 0. A positive bending moment around the €3 axis causes a

positive curvature ko > 0 (Figure 28).

Figure 28: Left: Bending moment M = Maes in positive ey direction causes curvature K = —Kes.
Right: Bending moment M = Mges in positive €3 direction causes curvature K = Kea.

A point in the curvature diagram, and the associated elastic curvature would look like Figure

29.

In Figure 30, the axes for the curvatures (but not the moments) have been changed, so that
the elastic bending moment is shown as an arrow that points in the same direction as the
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Figure 29: A curvature diagram with the curvature (red circle) and the corresponding moment
(arrow).

corresponding curvature. The reader that has studied Section 5.5 will note that ky = w3 and
—K3 = Wa.

4.5 Complex curvature histories

As mentioned, the curvatures forced on flexible products during handling are usually con-
siderably higher than the slip curvature kgi,. Hence in practice, it is sufficient to study what
happens in the slip domain. Let us consider the two contributions to bending moment described
in Section 4.3.

The elastic moment is shown in Figure 31 as red-colored arrows. Several comments are
needed. The axes follow the system presented in Figure 30. While this is a curvature diagram,
the arrows represent bending moments, so there is a discrepancy in units. The moment arrows
are shown with origins at the relevant point along the curvature curve, for readability’. The red
arrows are all on a line going through the origin, and the length of the arrow is proportional to
the distance to the zero-curvature origin: the elastic moment is proportional to the curvature.

The friction bending moment is shown in Figure 31 as black-colored arrows. The arrows are
tangent to to the curvature diagram, and are all of the same length: the moment that needs to
be applied to overwin friction in order to change the curvature is always in the direction of the
change of curvature, and has intensity equal to My, (see Figure 27).

This form of diagram will be exploited in Section 5.

"The drawback is that this may be misleading: the arrows do not represent forces, their origin do not represent
a point in space, and hence there is no question of finding the arm of a force to compute a moment.



46 Residual curvatures 45
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Figure 30: A curvature diagram with the curvature (red circle) and the corresponding moment
(arrow). Note the swapping of the moment components on the axes, and the change in sign,
compared to Figure 29.

4.6 Residual curvatures

Flexible products can have residual curvature: they can have a curvature in the absence of
bending moment. This can come about in several ways. First, as discussed in Section 4.5,
internal friction implies that when bent and then released, a flexible product will often almost
not spring back. Second, polymer sheaths, lead sheaths, low-alloyed copper or aluminium
conductors and so forth can undergo (instantaneous) plastic deformation, or they can creep
while coiled in storage. In the context of Section 45, a residual curvature means that the
curvature history does not start at the origin in a curvature diagram (Figure 31).

Residual curvatures due to creep have a particular effect if for example a polymer sheath, that
has crept while coiled, retains its residual curvature during an operation: superimposed to the
forces depicted in Figure 31, the polymer sheath will tend to bring back the flexible product to
the coiled curvature. This can lead to an instability described in Section 8.5, which has been
documented at least for steel pipelines under S-lay or reeling.

4.7 Non-uniform curvature

In Sections 4.2, 4.3, 4.4 and 4.5, it is assumed that the moment at a given cross-section is related
to the curvature at that cross-section. This is a reasonable approximation when the curvature is
uniform (in intensity and orientation) over lengths “significantly” larger than the pitch length of
components. What is “significant” will depend on the level of friction (the lower it is, the further
slip propagates, the worst the approximation). The effect might be most noticeable in flexible
products that are designed with low friction between components and low laying angles.
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Figure 31: Bending moment in the slip domain.

Consider a flexible product which has an outer and inner tensile armor, wound over each other
in opposite directions (a design typical of “dynamic” applications). We assume the flexible
product has taken a helical shape (of small amplitude) with the same sign and pitch length as
its inner tensile armor (Figure 32). One of the threads (marked in red) of the armor is hence on
the outside of the helix over the whole length of the flexible product: the thread is elongated,
can not relieve its stress by slipping, and carries large tensile forces. Correspondingly the
green thread is heavily compressed: The bending moment in the cross-section is much higher
than if the flexible product had been subject to the same curvature within a given plane.

Figure 32: A flexible product following a helix of same pitch length as its tensile armor.

Another example can be borrowed from beam theory: consider a solid beam on which two
opposing bending couples are applied: between the couples, the beam has uniform curvature.
Outside of the couples the beam is straight. If we replace the beam with a flexible product
containing helical components (Figure 33), so that the couples are half a pitch length apart,
then the curvature will not be uniform between the couples and will be non-zero close to the
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couples and outside of them. The difference between beam and flexible product lies in the
helical components: the tensile wire or component that is at the top of the product, halfway
between the couples would elongate, but avoids that by pulling in length from beyond the
couples, leading to some curvature there too.

——

=
Za
—

Figure 33: A flexible product subjected to two opposite bending couples (marked), half a pitch
length apart.

Non-uniform curvature can be an important effect to consider in several settings:

1. It might affect the internal torque at which helical buckling occurs (See Section 8.6).

2. It must be considered when creating routes: while slow change of curvature plane cause
high flip torques, rapid changes of curvature plane can cause high stresses and make the
procedure outlined in Section 16 questionable.

Creating software to compute these effects accurately and fast is expected to be a significant
challenge, for at least two reasons. First, this requires a good mathematical model of friction at
low levels of tension in the components. Second, numerically solving the sliding of components
at this level of detail requires high computing power, and will require to deal with convergence
problems.

4.8 Torsionally unbalanced cross-sections

A flexible product is torsionally unbalanced if putting it under tension tends to unwind it.
A left-laid rope (components are wound as negative helices, Figure 34, top), when forced to
elongate, tends to unwind (Figure 34, bottom). A longitudinal marking on the rope becomes a
positive helix: the rope has positive torsion.

Flexible products can be designed to be torsionally unbalanced for several reasons, including
cheaper production (using only one tensile armor, or even none), and low torsional stiffness
in the unwinding direction, which is beneficial for storage in baskets (Section 9.4). On the
other hand, torsional unbalance can lead to challenges under pull-in operations (Section 9.6).
Torstonal balanced products are more suitable when they will carry their own weight under
operation - for example for power flexible products between a floating wind turbine and the
seafloor, or an umbilical connecting an offshore oil platform to a subsea template.

Torsional unbalance creates an interesting interplay between elongation and torsion on the
one hand, and tension and internal torque on the other hand. If the rope is set under a given
tension, it will elongate more if allowed to unwind than if the ends are restrained from rolling.
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Figure 34: A torsionally unbalanced ‘“rope” (top) unwinding under tension (bottom).

Similarly, if the rope shown in Figure 34 is subjected to a negative (respectively, positive)
internal torque, it will have a higher torsion if it is allowed to shorten (respectively, elongate).
The torsion in the absence of internal torque depends on the elongation (the higher the tension,
the more unwinding occurs). This is why in Section 3.4, ideal longitudinal marking is defined
as being straight when the flexible product is “not subjected to any external forces, including
in particular tension or internal torques”. Similarly, the elongation in the absence of tension
depends on the torsion (an unwound rope is longer than a tightly wound one).

The relation between elongation, torsion, tension and internal torque is generally non-linear
in several ways. It takes less internal torque to unwind a flexible product to a given level of the
torsion, than it takes to wind the same product the other way (tight direction). Also, internal
friction plays a role: one can pre-stretch and pre-twist a flexible product.

Still, it can be useful to work with a linearized form of the relation between elongation e,
torsion T, wall tension R; (see Section 4.9) and internal torque My. This can be written

Ri =Kee+ KT (42)
M;=K.ret+K;T (43)

It is sometimes convenient to use these equations in matrix form:
R Ke K €
1 — € ET . (44)
Ml KE’C KT T

The coefficient K, is the axial stiffness at restrained rotation. K. is the torsional stiffness at
restrained elongation. K¢ appears twice: it is the internal torque that must be applied to keep
torsion to zero, for a unit elongation. It is also the axial force that must be applied to resist
elongation, for a unit torsion.

4.9 End-cap effects

Consider a segment of steel pipe, with bore cross section A; and outer cross section A.. The
pipe has end caps, and each end cap is connected to a wire. The tension in the wires is RY (let
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us assume the segment is so short that its weight is negligible). If the internal pressure in the
pipe is P; and the external pressure is Pe, then the tension carried by the wall of the pipe is

R‘l/v = Rf + AiPi - AePe (45)

In other words, internal pressure forces the end caps apart, and the resulting force is taken up
as additional tension in the wall. External pressure forces the end caps together, decreasing
the tension in the wall. R} and R§ stand respectively for wall and effective tension [60]

Equation 45 is also valid for flexibles, and (with the exception of flexibles that are constrained
and held from deforming) in the absence of end caps. For example, we consider the offshore
installing of a cable. In this case, A; = 0. At any point p along the free span, P. is the
hydrostatic pressure, and (neglecting shear force at touch down point) Rf is calculated by

integrating the submerged weight of the cable from the touch-down point to p.

¢ is used in “global” analyses of the laying configuration, including the effect of currents and

dynamic response (to waves and vortex-induced vibrations). The effective tension is to be used
when assessing the risk for helical buckling, and other “global” buckling (where the flexible as
a whole.

R} is the force experienced by the cable. It is to be used when assessing all forms of “local
buckling” (with deformations of the cross section and individual components of the flexible). It
is also to be used when evaluating torsion due to torsional imbalance (Equation 44).

In principle a similar distinction should be introduced between effective and wall torque. How-
ever this would only be relevant when handling an umbilical with tubes under high pressure,
arguably not a relevant scenario. In practice effective and wall torque are thus the same.

In the absence of internal pressure, and in shallow water, the distinction between R}” and Rf
ts trrelevant. This can be established by comparing AP, at the depth of the sea floor, with
the tension R} expected at the touch-down point.
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5 Flip torques

5.1 Preliminaries

Consider a straight flexible rod of rectangular cross-section: the rod is stiffer against bending
in the plane containing its long faces (the strong axis) than in the plane containing its short
faces (the weak axis). If one tries to bend the rod along its strong axis, it will tend to flop
(lateral torstonal buckling), that is, to roll to present its weak axis to the curvature.

Consider a bent segment of flexible product. We wish to cause it to roll without changing
the (vertical) plane within which it is bent (Figure 35). This deformation will cause plastic
deformations, and/or slip of helical components, and hence dissipated energy in the form of
heat. hence to achieve this deformation, an external torque (or one external torque at each
end, with both torques not necessarily equals) must be applied. Most electrical power cords
(with a few exceptions that are almost perfectly elastic) will be convenient to make a small
experitment.

Figure 35: Inducing a curved flexible product to roll requires external torque.

Figure 36 shows another deformation in which the plane of curvature is changed, but the the
roll angle is kept constant. A cross-section that is transported along a route with curvature
in different planes will experience this kind of deformation. It can be seen that the segments
in the lower halves of Figures 35 and 36 are identical, except for a stiff body rotation. hence
getting to the lower half of both figures caused exactly the same plastic deformation and slip,
and thus required the same external torque.

The torque that one needs to apply to the segment to thus reshape the flexible product (Figure
36) can be considerable. Consider a segment of flexible of length A, that has a uniform curvature
k, and friction bending moment My (Section 4.3). The required torque, if we disregard the sign,
has absolute value (Section 4.5)

AM; = AkM; (46)

The length times the curvature is the angle « (in radians) of the bend, so that [19]

AM, = aM; (47)
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Figure 36: Deformation with zero roll but change of curvature plane.

This is an important result: the torque that must be applied to overcome friction and roll the
flexible is independent of whether the curve is short and sharp or long and progressive, it
depends only on the angle of the turn (half turn, quarter turn and so forth).

The torque that needs to be applied switches sign as the roll rate switches sign (Figure 37). If
the roll rate is zero, no deformation occurs, all components stick (do not slip), and the flexible
line behaves as if it was an elastic solid. So with a roll rate of zero, the torque can be
anything between —aM¢ and aM; (just like in a contact without slip, the shear contact force
can be within a range of values). But, other than that, the torque that needs to be applied is
independent of the roll rate: rolling fast and rolling slow in the same direction requires the
same torque to be applied.

Figure 37: Effect of the spatial roll rate per unit length on the flip torque for a bend.
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5.2 Transport along a route with change of curvature

Assuming My to be independant of curvature and torsion, let us consider a segment of route
with uniform curvature k. Along the segment, the curvature changes plane, and this change
occurs progressively over a length A. One example would be a segment of positive helix (Figure
38), in which the rate of change of the curvature plane is uniform.

Figure 38: As a cross-section is transported along the route, it experiences curvatures in
changing directions (relative to the longitudinal marking) - it needs to be re-bent, and tends
to flop.

We now further assume that the flexible product is transported along the route, and that the
material roll rate at any point is equal to zero. As a consequence, at any time, all the cross-
sections transported over the length A will experience a change of curvature plane: the rate
may differ, but the change of curvature plane is assumed to occur in the same (in Figure 38:
positive) direction. The torque that needs to be applied, per meter of length, to overcome this is
kM, independently of whether the plane of curvature changes fast or slowly along the route.
The total torque that must be applied to the segment to overcome friction over the length A is

hence
|AM1| = AKMf (48)

The torque that must be applied to the segment to overcome the friction is equal to the product
of the length over which the change of curvature plane occurs, the curvature, and the friction
bending moment. The amount of change of curvature plane does not play a role, only the
length over which the change occurs. This result is important, and is quite counter intuitive.

In practice “the torque that must be applied to the segment” is applied by the neighboring
lengths of flexible product: the sum of the torque exerted on the segment by the upstream
and downstream lengths must have absolute value AkM¢. How much torque is exerted by the
upstream and downstream segment depends on many factors, it's a special case of a hyperstatic
structure. By the law of action and reaction, the segment applies to its neighbors the opposite
torques that the neighbors apply to it. Hence the segment applies to the line as a whole a
torque with absolute value AkMy. In many respects (but not all, for mathematical details, see
Section 5.5) this is as if “a troll with a pipe wrench” was gripping the segment and applying a
torque to it: the “flip torque”.

The sign of the torque can be found intuitively by looking at the direction in which the segment
would roll in order to keep the same material point on the inside of the curvature, as transport
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progresses. For a positive “helix” (more precisely, for a positive Frenet-Serret torsion, as the
rate of change of curvature does not need to be uniform) as shown in Figure 38, the torque is
in the positive direction.

The flip torque can be seen as the product of My and Ak . The second term is a characteristic
of the geometry of the route: if a route is exactly known (because a flexible is boxed in by
rollers), then one can compute the “quality of the route” and compare route designs against
each other, independently of the flexible. In practice however, different flexible products will
follows slightly different routes, and these differences can impact the “quality” significantly.

Typical routes do not have uniform curvature, or uniform rate of change of the curvature plane.
For these cases, Equation 48 must be replaced by a complex expression (Section 5.5).

5.3 Effect of roll rates

Let us consider the above example, but with a modification: while the flexible product is
transported (towards the left, defined as the positive direction), the flexible product has a non-
zero positive spatial roll rate. We assume torsion to be zero, so that spatial and material roll
rates are identical. This is a reasonable approximation, as long as the torsion in the flexible
product is small compared to the Frenet-Serret torsion of the segment of route.

For small roll rates, the situation is identical to the one described in Section 5.2: the segment
applies a positive flip torque to the rest of the flexible product.

As the spatial roll rate increases (Figure 39), the point eventually arrives where a material
point rolls (material roll rate) so as to exactly follow the change of curvature plane of the
route. The material roll rate is equal to the Frenet-Serret torsion: the cross-section does not
experience relative changes of the direction of the curvature plane, so no moment is generated.

Figure 39: Effect of roll rate. Red: a material point transported with zero material roll rate
experiences a change in the direction of curvature. Green: with a non-zero material roll rate,
the material point can be made to follow the change in the direction of curvature.

Beyond that point, the flexible is rolling “too much’, and a material point sees the plane of
curvature changing orientation in the negative direction, and the flip torque becomes negative.
One can make a graph of the flip torque as a function of the spatial roll rate (Figure 40).
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Figure 40: Effect of the spatial roll rate on the flip torque for a helical route (black) and an
example of general route (red).

For a negative helix, Figure 40, balck curve, remains the same, but the spatial roll rate at which
the torque changes sign is negative.

In @ more realistic free span, curvature and rate of change of the curvature plane are not
uniform, and this results on a more progressive effect of the spatial roll rate on the internal
torque. Figure 40, right provides an illustration of how such a relation might look like.If the
geometry of the route is more like a positive helix, then the torque at zero spatial roll rate will
be positive (as in Figure 40, red curve), otherwise negative.

5.4 Pseudo-external flip torque

The flip torque induced by transport over a segment introduces a difference between the
upstream (a) and downstream (b) internal torque:

AM; = My — My (49)

A positive flip torque cause the torque to decrease as one follows the route from a to b. Curves
with positive Frenet-Serret torsion, including positive helices, and the touch down point area
in a basket or turntable where the product is coiled clockwise.

The flip torque is not an external torque: curved beam theory (Section 55.1, Eq. 51) shows
that a torsional moment can appear in a curved beam in the absence of external torque. One
example of this is a wrench: a tool for applying torques on nuts and bolts, which is used by
applying a force to the handle to the wrench. Indeed, flip torque are often encountered in free
spans where nothing comes into contact with the flexible product.
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However, deliberately misrepresenting the flip torque as if it was an external torque can be
useful to develop an intuition for which way things go. Equation 63 shows that the change in
internal torque along the route is caused by the sum of external torques and flip torque, so a
flip torque can be imagined to be an external torque of the same sign (Figure 41). In the figure,
the internal torque decreases as one moves into the figure.

Figure 41: Positive pseudo-external flip torque (red arrow) in a positive helix, with transport
(black arrow).

Swapping the direction of transport swaps the direction of the pseudo-external flip torque. If
one swaps the coordinate system together with the direction of transport, the pseudo-external

torque remains positive. Hence the rule of thumb ‘[pseudo-| external flip torque is positive in
positive helices” and curves with positive Frenet-Serret torsion.

5.5 Mathematical formulation
5.5.1 Equilibrium

Considering an infinitesimal beam segment of length dz and of tangent unit vector t, force
equilibrium can be written

oR -
a—_z——f (50)
%:—n—m—fxﬁ (51)

where R and M are the forces and moments resultant vectors, f and m are external distributed
forces and moments acting on the beam, and x is the cross product.



56 5 FLIP TORQUES

In the above, all the terms are vectors, in the sense of objects existing independently of the
choice of reference system. Consider a family of orthonormal reference systems e (z) such that
any point z, €, = t. The evolution of the components of the above vectors, in that family of
reference systems can be shown to be

oR
1 f1+ (UQRg — (UgRQ (52)

0z

oR
2 = fg + (1)3R1 — wle (53)

0z

OR
3 = fg + w1R2 — w2R1 (54)

0z

oM
— azl =m; + wyM; — wsM, (55)

oM
—~ a; =my + wsM; — w1 M3 — Rg (56)

oM
— azg :m3+w1M2—w2M1+R2 (57)

where wj; are the components of the rotation rate vector of the family of reference systems
(cf. Section 3.11). This way of rewriting the force equilibrium equations is convenient because,
thanks to the choice of reference system, R; is the axial force, Ry and R3 are shear forces, M,
is the internal torque, and My and M3 are internal bending moments.

In Equation 55, m; is an external distributed torque. Such an external torque can be caused
by friction against external surfaces when the beam rolls around itself.

If the bending moment components are proportional to the rotation rate components (My = xws,
and M3 = xws), then the term wyM3z — w3zM, vanishes. Further, in Equation 55, the term is
added to my: wyM3—w3Ms can be seen as an external torque (the flip torque) applied to the
beam, that arises when the curvature and the bending moment are misaligned.

This interpretation is imperfect: Substituting wsM3 — w3My with an external moment of the
same value works fine, but setting My and M3 to zeros in Equations 56 and 57 changes these
equations.

Because at any time 0z/0s = 1, all the above equations can also be written with derivatives
relative to the route coordinate s instead of the line coordinate s.

5.5.2 Integration along the route

We introduce a flowline family of reference systems e (Section 64). This is chosen because
the @ reference system follow material roll of the cross-section, making it convenient for the
expression of friction-induced moments. Curvatures and moments will now be expressed in this
family of reference systems.
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In Equation 55, the moments are each the sum of two terms: the elastic moment, and the
internal-friction moment.

Mi =M. + My (58)
Wi
V@35 + 3
The friction-related part has intensity M¢ and is in the direction of the change of curvature.

The notation

N ID(U;L
Dk

Wy (60)

is used for brevity. As in Section 3.10, D/Dk is a material derivative (the rate of change as
payout progresses, at a material point).

The term waM3 — w3sMs (from Equation 55) can be developed

_6M1
0z

:m1+w2M3—w3M2 (61)

0o .
= My + WoElwy—wsElw, + M, e 0 (62)
V W3y + Wsg

The expression woM3 — w3My can be recognized as a cross product and a determinant: it is
the signed area of a parallelogram which sides are the rotation rate vector [ws, ws] and the
friction bending moment vector [My, M3] (Figure 42).

Figure 42: Geometric interpretation of the cross product as the area of a parallelogram. Fric-
tion's contribution to moments (black) curvature (red).
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Equation 62 can be integrated along a segment of flexible, yielding

b b . .
myds — J M, 228 — DDz 4 (63)

a VW3 + w3

The term fz m;ds is the contribution from external torques, including these arising from friction
against rollers, chutes, tensioner, other coils, etc. The second term, the “flip torque” is the
contribution of internal friction. Figure 43 represents this integral graphicaly. Note that a
slow evolution of the direction of torsion results in many shadowed triangles contributing to
the integral.

M, (a) — M, (b) :J

a

Figure 43: Geometric interpretation of the flip-torque integral. Double shadows count double.

Assuming M to be uniform along the route, it can be taken out of the integral, so that the flip
torque can be written

b . .
MfJ a3 — Doh2 44 (64)

a Wi+ Wi
The flip torque is the product of M¢ (a property of the flexible product) and an integral which
only depends on the geometry of the route. The simplest way to keep this integral equal to
zero is to ensure that dsws—dows = 0 everywhere along the route. This implies that [Ws, s3]
and [wa, ws] are co-linear everywhere: change of curvature can only occur in the direction of

curvature, unless the curvature is zero (Section 5.6).

5.5.3 Interaction between pitch and change of curvature plane

Non-uniform curvature (Section 4.7) implies that the moment at a cross-section can not be
computed from the curvature (and its history) at that cross-section alone. This is studied int
he following.
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Let € (z) be a torsion-free set of reference systems. The coordinates c; of a helical compo-
nent (e.g. a tensile armor thread) in this reference system are (in the absence of transverse
displacement of the component).

Cy = TCOS X (65)
C3 = Tsin (66)
with 5
T
a(z) = ?Z + o (0) (67)

where z is the coordinate along the flexible product, p and r are the pitch length (positive for
positive helical components) and the distance between the component and the flexible product'’s
neutral axes, respectively.

Let us consider a helix-shaped route. It has a curvature of uniform intensity k and Frenet-Serret
torsion T¢ (Section 3.11.4), so that

Wy = cos B (68)
w3 = sin 3 (69)

with
B =izt p(0) 70)

where wj; are the coordinates of the rotation vector expressed in the torsion-free family of
reference systems.

The elongation of the trajectory of the component at a section z is

€ = K (wac3 — w3ca) (71)
= KT (cos 3 sin o« — sin 3 cos ) (72)
= krsin (o — f3) (73)
= Krsin ((2?71 — Tf) z+a(0)—p (O)) (74)
= krsin (az + ) (75)

with a £ 2% — 1 and y = « (0) — B (0). By a change of origin of the reference system, we can

set v = 0 without loss of generality
€ = KTsinaz (76)

5.6 Engineering implications
5.6.1 Route optimisation

The results in Section 552 point to a simple strategy to minimize flip torques: Keep each
curve in a single plane (Figure 44). This does not mean that the whole route has to be within a
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Figure 44: A good route has well-separated areas of curvature, each curve being in a single
plane.

single plane, but that when the flexible product comes out of a curve, it needs to be straightened
before it is bent in another plane.

The above is usually impractical in free spans of turntables or baskets: the flexible product
can not be straightened between the sag bend and the coil - essentially because of the way
the turntables tend to be designed. Still, with some skill one can manipulate the free span to
ensure a more abrupt change of plane of curvature.

5.6.2 Chutes

Chutes are surfaces positioned at a transition between a section of the route in which the
flexible product is well guided, and a free span, and serve to prevent excessive curvature at
that transition. The are typically positioned at the bulwark of a vessel or at a quay side.

Some chutes are constructed with hard chines, that is, by welding bent plates together. This
can create route geometries with abrupt changes of curvature plane. Figure 45 shows the same
geometry seen from three different angles. The crests (in blue, green and red, respectively show
the curvature in the free span, in the part of the flexible product in contact with one side panel,
and with a side panel and the bottom panel, respectively.

As can be seen, the plane of curvature changes along the route. In the case illustrated, this
results in a negative flip torque.
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5.7 Active geometry control in a turntable free span
5.7.1 Requirements

A common torsion problem occurs when flip torque is generated in the free span of a turntable,
during the loading out of a flexible product to an installation vessel, or similar operation. A
procedure for the mitigation of torsion during operation is proposed here. Importantly, at the
time of writing, this procedure has not been tested or studied. It is not known under what
circumstances the procedure will be able to prevent torsion problems, and it is not known
whether it might under some circumstances contribute to cause torsion problems.

The procedure requires that the following conditions are met:

1. The free span in the downstream turntable or basket is the dominating source of flip
torque along the route.

2. The flexible product has one (or several) longitudinal markings.

3. The variation over time of the writhe between the upstream end of the route (e.g. on
shore carousel) and the downstream end (on board carousel) is small.

4. The spatial roll rate of the flexible product leaving the upstream storage is small. If the
upstream storage is a turntable or a spool, this amounts to having only a small torsion
in the upstream storage.

The procedure is designed to prevent high torques at steady state, due to flip torque in the
downstream storage. To this effect, two measures are to be combined: monitoring of the spatial
roll at touch-down-point, and control of the geometry in the free span.

5.7.2 Monitoring of spatial roll

Given that conditions 3 and 4 in Section 5.7.1 are met, then the evolution over time of the
twist along the route is approximately equal to that of the spatial roll angle at the entry of
the downstream storage. The implication is that, if the spatial roll angle at the entry of the
downstream storage is kept nearly constant from the start of the operation, then the twist, and
hence torsion along the route will be small.

For turntables and spools “the entry of the downstream storage” refers to the touch-down point.
However for baskets, this refers to the top of the goose neck (the upper end of the free span
into the basket) or alternatively, the touch down point, but correcting the roll angle with one
turn per coil. For readability, further description is given assuming a downstream turntable.

The roll angle at the entry of the downstream storage must be measured as the head of the
flexible product reaches it, and then monitored regularly. “Regularly” means

— Often enough to avoid confusing one longitudinal marking with another if there are several
markings, or to avoid being unsure about whether a whole turn of roll may have taken
place since the last measurement.
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— Often enough compared to how fast the shape of the free span changes during operation.

The objective is to keep the total change of the roll angle at the entry of the downstream
storage to a small value, by reacting early with geometry control when this roll is observed to
change.

5.7.3 Geometry control

Flip torque is closely related to the geometry of the route, and in particular, of the free span.
In a downstream turntable rotating clockwise, the touch down point area will induce a positive
flip torque. With actuators, one can attempt two things to limit or counterbalance the flip
torque and hence control the roll angle:

1. Limit the flip torque in the touch down point area. This is achieved by avoiding a pro-

gressive change of the curvature plane, and promoting an abrupt one (Figure 46). There
is however a lack of knowledge on the consequences of doing this: helical components
may become overloaded at radii of curvature above the minimum bending radius (MBR),
because the components remain on the inside or the outside of the curvature for more
than half a pitch length.

Use actuators to give the upper free span a negative Frenet-Serret torsion (that is, a
shape like a negative helix), this induces a negative flip torque in the upper free span
(Figure 47). The flip torques in the lower and upper free span can compensate each
other and control the roll rate. Importantly, while this controls the twist upstream in the
route, this does not limit the torque between the upper and lower free span. In the above
example, a positive internal torque would be present in the free span.

A coilable product entering (for example) a positive downstream basket (Figure 49) would have
its tensile armor laid in the positive direction. The touch down point area will have a positive
Frenet-Serret torsion and a longer length of tensile armour (than would be the case without
change of curvature plane) can be outside of the curvature, leading to overloading of the armour.

When using actuators to manipulate the shape of the free span, it is essential to do so by
applying small forces continuously while transport is ongoing. High forces can induce cranking
torques and thus damage the flexible product (Section 17).
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Figure 45: Flexible product in a chute

03
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Figure 46: Abrupt and progressive change of curvature plan at touch-down point

Figure 47: Free span seen from the top deck. The upper part of the free span is manipulated
to ressemble a positive helix, while the bottom part resembles a negative helix.
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6 Storage and routing

6.1  Turntables

A turntable rotates around a vertical axis as the flexible product is fed in or out of it. In an ideal
‘steady state” (Section 7), in which a flexible is fed into a turntable without any changes to the
shape of the free span (which is not completely realistic as the flexible product is fed towards
the nave or away from it, and the basket is progressively filled), the writhe in the free span
is constant: zero spatial roll rate a the top of the free span entering the basket corresponds
to zero spatial roll rate at the touch down point (where the flexible product comes to rest on
the flexible product already coiled in the turntable). This is a useful approximation: in practice
variations of writhe in the free span of turntables impose limited changes in the roll at the
touch-down point. Combined with the changes in the writhe being slow, this does not result
in large torsion stored in the turntable. One important exception is discussed in Section 6.0.

We can assume that the flexible stored in the turntable has zero material roll. There are at
least two reasons for that. First, one coil of the flexible product is stacked against other coils
or the floor, nave of wall of the turntable, and the friction between the components prevents
roll. Second, as discussed in Section 5, internal friction prevents a curved flexible product
from rolling. More specifically, if the flexible product has an internal torque at the entry of
the storage device, the internal torque may win over friction over the first few meters. The
roll angle involved will generally be small, so in this section, the discussion will proceed as if
absolutely no material roll occurs.

So in the absence of material roll (DR/Dk = 0), Equation 10, which states that

DR_6R+T
Dk 0k

becomes
oR
— =—1 (77)
ok
This implies that when a flexible product is paid out of a turntable, the torsion in the stored
coils is unaffected by the downstream internal torque and torsion, hence the spatial roll rate
is the opposite of the stored torsion. When a flexible product is stored into the turntable, the
torsion in the upstream product is “frozen” in place by friction in the coils, so the torsion in the
coils is equal to the upstream torsion, and the roll rate is the opposite of the torsion.

As an example, a flexible product with an ideal marking is stored in a turntable. It is paid out,
but the winch pulling out the flexible product (somehow) also imposes an external torque T,
causing a torsion T in the part paid out (Figure 48). Then, the flexible product is taken back
into the turntable, with the winch still maintaining an external torque T. This results in the
flexible product being stored with torsion T. The difference between paying out and taking in
is a case of irreversibility in operations (Section 8.7).



06 6 STORAGE AND ROUTING

Figure 48: A flexible product is paid out (left) of a turntable while an external torque is applied
to its end. When the product is taken in in again (right), torsion is stored.

6.2 Spools

In a first approximation, storing a flexible product in a turntable and in a spool is exactly the
same, and all the results in Section 6.1. There is one substantial difference however, due to
the presence of writhe in the spool. Each layer in the spool has the shape of a helix with pitch
P = £2r where 1 is the external radius of the flexible product. The pitch is positive if the layer
is a positive helix. Considering a layer with radius R (the distance to the axis of the spool to
the axis of the flexible product), using Equation 39, the writhe per turn (pitch) is (assuming a
positive helix)

4—R (78)
b= (79)
Tt
c=Va2+1b2 (80)
W = 27 sgn (b) (1—%) (81)
=2msgn(b) | 1— o (82)
R+ (5)

Two extreme cases are worth considering. In the first, the flexible product is stored without
torsion on the spool. This is difficult to achieve in practice, but a slow underwater crane lift
where the load is allowed to rotated to keep the torque zero in the flexible product would be
the least unlikely realization. There is hence no twist in the spool, and the link is equal to
the writhe. For each turn in the spool, the link between the head of the flexible product on
the spool and the product entering the spool increases by W. Since the head is prevented
from rotating by external friction, internal friction, and hitching to the spool, the roll at the
touch down changes by —W. When spooling out again, the convention in this document is that
the direction of increasing coordinates s or z is swapped. So although the direction of roll is
swapped, it would still be described as —W for each turn paid out.

The other extreme case is in many case closer to reality: We assume that the spatial roll at the
entrance of the the spool is zero. This would occur at steady state (Section 7), assuming there
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is zero spatial roll at the point of origin of the flexible product (upstream storage or production
machine). In such a situation the link between the head of the flexible product on the spool and
the entry to the spool is constantly equal to zero. This implies that the twist is the opposite of
the writhe: at any point in the spool, the torsion is

T= W (83)
2nR
negative in layers that are positive helices. When the flexible product is paid out of the spool,
‘the film plays in reverse” and the spatial roll at the exit of the touch down point remains
zero: the flexible product, which had zero torsion before entering storage, has zero torsion
after leaving it. More generally, the product has the same torsion before entering and after
leaving storage.

Reality will generally be between the two above-mentioned extreme cases.

6.3 Baskets

Baskets can be distinguished according to the direction in which the touch down point turns as
flexible product is taken from the basket. Figure 49 shows a positive basket. The mirror image
of Figure 49 would present a negative basket. The choice of nhame is related to the geometry
being (an irreqular) positive helix.

Figure 49: A positive basket (the mirror image is then a negative basket).
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In order to understand baskets, let us start with a peculiar turntable in which the flexible
product is fed vertically (as it would in a basket, and as shown in Figure 49). Imagine that the
whole picture of the turntable rotates counterclockwise to compensate for the rotation given to
the turntable when feeding flexible product into it. Two things occur:

1. The turntable does not appear to rotate, the touch down point moves counterclockwise
when flexible product is fed in: this is now a basket.

2. The point in Figure 49 at which the flexible is vertical is now rotating counterclockwise (a
negative spatial roll rate): each time a new coil is laid in the basket, the flexible product
rotates in the same direction as the touch down point (This is the same as the 360 [deg]
roll that occurs when a new coil is created, as shown in Figure 13).

In order to discuss how storing a flexible product in a basket induces torsion, it is necessary to
introduce the roll Ryt of a cross-section where the flexible product is vertical as it enters the
basket (Figure 49. Since the usual definition of roll (relative to the vertical) would fail here, we
can define the roll at that point relative to the north. In a positive basket, if the cross-section
at the vertical point is not rotating relative to the touch-down point, it has a negative roll rate
relative to the north. For a positive basket, this can be written (for roll angles in degrees)

Ry  ORyer 360
_ 84
ok k A (84)

where A is the length of a coil.

If the flexible product does not rotate relative to the north, in the vertical part (as would be
the case in steady-state operation, Section 7), then for a positive basket (Figure 49, a negative
twist is stored into the basket. In the present case, Equation 77 is

athp
~tdp 85
3K T (85)
Then, using Equation 84, this leads to
ORyert 360
_ 86
ST e T 180)

For negative baskets, 360/A becomes —360/A. When the flexible product is paid out of the
basket, several things happen: The sign of the torsion stored in the basket is unchanged.
The movie plays backwards, so roll is physically reversed but the positive direction along the
product, and hence the convention for roll sign is flipped: the roll rate value is unchanged. The
same argumentation applies to the writhe term: 360/A remains unchanged. To summarize, the
equation

oR 360
O=T+ —+s— 87
* ok * A (67)
applies for paying in and out, and with s = 1 for positive baskets and s = —1 for negative

baskets.
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6.4 Chutes and other fixed surfaces

A simple but useful engineering model for dry friction is Coulomb’s friction model. In its simplest
form, consider a body A (flexible product) pressing against a body B (a chute) with a force
orthogonal to the contact surface (a “normal force”) F,,. Three source of normal forces are often
relevant: weight, tension in a curved product, and wedging and clamping. If the force F; exerted
by B on A in the direction tangential to the contact surface is small enough

Fe < pFn (88)

(where p is the friction coefficient), then no sliding occurs. On the other hand, if A does slip
relative to B, then the friction force has intensity

Fo = uF, (89)

and direction opposite to the motion of A relative to B. Friction coefficients vary between
0.02 (walking on wet ice) and 0.9 (rubber on dry rock). Polyethylene against polyethylene
or steel has friction coefficients around 0.2. One key feature of this simple model is that the
friction force does not depend on how the contact pressure is distributed: the total friction
force is related to the total contact force. According to the model, pulling a flexible product
over metallic chutes requires the same force: unevennesses of the chute have no effect.

If we look at the direction of the friction force “from above” (from a direction orthogonal to the
plane of contact), when slip occurs, the friction force vector has length uF, (Figure 50). The

equation of the “stick circle” is
Vi + Fie = 1 (90)

where Fy, and Fyy are respectively the components of the transverse force vector Fy in the roll
and transport directions.

Figure 50: The friction force has a length lower than (when sticking) or equal to (when slipping)
uF., and direction opposite to the motion.

Consider 1m of flexible product, with outer radius r. The contact force F, is now a force per
unit length. If the flexible product rolls in the positive direction (by sliding against the chute,
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not by rolling like a wheel), without any transport, Fy = 0, and the chute will exert on the
product a friction force

Fir = —pFy (91)

in the direction orthogonal to the direction of rotation. This amounts to an external moment
per unit length

my = TF¢r (92)
= —THF, (93)

on the product.

The situation changes significantly if the product is being transported: As the product is
transported, it has a material roll rate DR/Dk (positive, for example). For every meter the
flexible product is transported downstream, the surface of the product also slides in the direction
orthogonal to transport, by an amount rDR/Dk. The component of the friction force in the
direction orthogonal to the direction of transport has value (Figure 51)

T%
Fip = —Fp D (94
VG + (BY)
DR
— —pF,——Dk (95)
Vi+ (B

where 0k/0k is the rate of displacement in the transport direction. Since we use the convention
to measure ‘time” by the length k of product transported, this rate of transport is equal to 1.

Hence in the presence of transport, the moment (per unit length) applied by the chute on the
flexible product is

my, = TFr (96)
+DR
= —ruk, k (97)
12+ (rBR)°
DR
~ —ruf, er (98)

the last simplification being good for small roll rates.

The term DR/Dk in Equation 98 is important: the moment my is proportional to the roll rate. In
the absence of transport, even for a completely straight flexible product, friction against chutes
would be so high that the product, in practice, does not roll, no matter how large the internal
torques are in the product. Here, under transport, small roll rates result in small external
torques from friction: under transport, with slip occurring anyway in the axial direction, friction
does not prevent roll, it only limits the roll rate.
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Figure 51: A flexible product is transported downstream (to the right) and rolls in the positive
direction. The red arrow shows the force exerted by the chute on the flexible product. It is on
the “stick cone” (Equation 90): the component that resists roll is small, yet there is roll.

6.5 Tensioners and rollers

Usually, tensioners are operated with clamping forces (and hence contact pressures o) high
enough to prevent slip. In principle, this would imply that the material roll rate at a tensioner
is zero. If for example, the upstream torsion entering the tensioner is zero, this would imply
that the spatial roll rate upstream of the tensioner is zero. Experience, however, shows that
this is not the case: torsion downstream of a tensioner has been documented to propagate
upstream (against the direction of transport) during operation.

In tensioners, the mechanism is thought to be as follows (Figure 52): the track plates have some
slack, allowing them to move sideways, or the track plates carry pads with some compliance,
and the outer sheath (or ply of yarn) also deforms under load. This allows a material point of
the flexible product to roll as it passes through the tensioner. The material roll rate is directly

related to the tracking angle o:
DR  «
— = — (99)
Dk r
where 1 is the outer radius of the flexible product. For tires operating well within the stick
domain, the tracking angle is modeled as being proportional to the transverse force on the
wheel. In our context, the tracking angle is modeled as being proportional to the external

torque that the tensioner exerts on the flexible product. No experimental confirmation of this

’The term of “slip angle” common in tire engineering is avoided here, to avoid confusion with actual slipping
between surfaces.
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model is available. There is no known procedure available to compute the proportionality factor
between the above-mentioned external torque and the tracking angle.

Figure 52: Flexible product passing a tensioner towards the left in the picture, with positive
spatial roll. This causes the pads in contact with the product to shift: original center-line in
black, shifted center-line in red. The angle between the original and shifted centerlines is the
tracking angle «.

A similar thing happens in support rollers (and in automobile tires, where the phenomena is
well studied). Here the compliance does not come from pads shifting, but from tiny deformations
in the roller and the surface of the flexible product (and in the tire).

Another effect comes into play, that is present even if the tracking angle remains equal to zero,
so that the material roll is zero (Equation 99).

The tracking angle is related to the material roll. Material and spatial roll are related by
Equation 99 (cf. Section 3.10). The implication is that, if there is torsion, even for a zero roll
angle, the spatial roll rate will be non-zero. More specifically, it is the torsion entering the
tensioner that is relevant (Section 6.2).

To produce an equation that models tensioners and rollers in the absence of slip, we note
M7 and M the internal torque in the product respectively upstream and downstream of the
tensioner (or roller). The external torque applied by the tensioner on the product is

AM, = M; — Mf (100)

The resulting track angle is
oc:%(Mf—Mf) (101)

where ¢ measures the compliance of the tensioner and r is the outer radius of the product.
Replacing this in Equation 99gives

DR c _
S = = (M =My (102)
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The torsion of the product frozen in the tensioner is equal to the upstream torsion

_ My

T
Ko

(103)

where K, is the torsional stiffness. Replacing Equations 102 and 103 into the relation between
spatial and material roll (Equation 10) and rearranging leads to the “tensioner roll equation”

oR ¢ c 1
—=—-M - =+ — T 104
ok 2t (cr2 * KTT> ! (104
An ideal tensioner has no compliance (c = 0) in which case
oR 1
— =——M7 105
Ok Krr 1 ( )

downstream internal torque does not cause any roll. When compliance is considered, upstream
internal torque cause more roll than the same downstream internal torque, but importantly,
downstream internal torque does cause roll: tensioners (and rollers) do not prevent the prop-
agation of roll against the direction of transport.

6.6 Hydraulic actuators

A crank is a tool that transforms a force (applied by hand, or a piston) into an internal torque.
The internal torque is equal to the force (in [N]) times the arm (in [m]). Hydraulic tools used
to guide large-diameter flexible products during operations, in particular to stack them into
turntables can thus generate significant internal “cranking” torques. Even though these forces
may only be present for a short duration, they come in addition to flip torques induced by the
route geometry, and the combination of both can cause a failure. The mathematics of how a
force can induce a internal torque in a curved beam are discussed in Section 5.5, where the
actuator force appears as f in Equation 50.

The objective in using hydraulic tools is not actualy to apply forces to the flexible product, but
to control its position. There is a parallel with external friction resistance to roll (Section 6.4):
In the present case, internal friction between the components of the flexible product, makes
the product very stiff, opposing with large forces attempts to deform it. But if the deformation
is applied progressively while the flexible product is being transported, the product is more
compliant: Changes of curvature induced by routing already cause the components to slip
relative to each other. The hydraulic tool then only needs moderate forces to adjust the pattern
of slipping of the components. From a practical point of view, good use of hydraulic actuators
reminds of the way a potter “throws” (works) a ball of clay on a potter's wheel: the fingers
press gently and continuously on the material while the wheel spins.

When handling products with long component pitch lengths in small spaces (the free spans of
on-board turntables can be short), one must account for non-uniform curvature (Section 4.7).
The changes of curvature planes induced by the hydraulic actuator can occur over lengths
comparable to the pitch lengths of the components. This can make the flexible product much
stiffer, leading to large actuator forces and hence internal torques.
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Figure 53: An actuator (red ) exerts a sideways force which induces an internal torque at the
upper end of the flexible product.
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/ Steady state and transients

7.1 Definitions

A transport operation is said to be in a steady state if:

1. The geometry of the route does not change over time.

2. The tension and the internal torque at any given point along the route do not change
over time.

A transport operation is defined to be in a transient state if it is approaching a steady state
over time.

7.2 Occurrence

Even if the route and the tension are constant (they do not change over time), there is no
guarantee that a steady state for the internal torque will be reached. Sections 8.2, 8.6 and 8.4
discuss mechanisms that would prevent a smooth evolution towards a steady state.

A real transport operation will typical not have an exactly constant route. For example the route
has to change when feeding a flexible product into a turntable: from empty to full turntable,
from laying near the nave to near the wall. Variations in tension occur, due to the difficulty to
coordinate tensioners, spools and turntables.

While there is no general guarantee that a near constant route and tension will move towards
a near-steady state situation in which the internal torque changes little over time at any given
point along the route, successful operations do approach such a steady state.

The results from Section 7.3 imply that, under the restrictions stated there,

1. Operations with constant route geometry on flexible products with balanced cross-sections
will approach a steady state.

2. If starting from configuration with no internal torque, the steady state is the situation
with the highest internal torques.

7.3 Mathematical formulation

We lack general results on the existence of steady states, and the same goes for transients.
But with a set of assumptions, relevant results can be obtained. We assume

— a route of constant geometry,

— M unchanged over time at any point along the route,
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— the graph relating the flip torque to the spatial roll rate, at any point along the route,
(Figure 40) is linear,

— the cross-section is torsionally balanced,

— the torsional stiffness Kggr is a constant.

Under the above assumptions, using Equation 55, the differential equation defining the evolution
of roll at a flip location is of the form

0 OR (s, k OR (s, k
2 (K—éi )> —a(s) —b(s) R (106)

where a (s) is the flip torque at zero roll rate at point s along the route, and —b (s) the influence
of the spatial roll rate on the flip torque, and b (s) > 0 for any geometry. The above is a linear
differential equation, of the first order (with only first derivatives) with respect to the payout k.
This can be rewritten

02 0
_KRRa_SQR (S,k) +b (S) aR (S,k) = (1(5) (107)
KRR 02 0 Cl(S)
— —R (s, k) + —=—R(s, k) = 108
b (5] 352 (s, %) + 5 R(s,Kk) b (s) (108)
O Ris,K) = () v (5) LR (5K (109)
% s, k) =a(s)+vI(s 352 s,
The roll at tensioners follows Equation 104
0 c c 1
—R(s,k)=—-M| — | = M7
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0 c 0 c 1 0
—R (s, k) = =Kgr =—R(s,k)| — [ = Krr =—R (s, k 110
SR (59 = K R (50| = (54 ) K iR (500 (110)
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where vy (s) can be described using Dirac’s distribution.
The roll at chutes follows Equation 98
D
— —ruF, T—
My T erR(s,k)
—K a—zR(s k) = —ruF, 7 iR(s k) +K iR(s k) (112)
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Storage follows Equation 77
RR (s,k) = —T upstream storage (stored torsion) (114)
0 0
ﬁR (s, k) = —Kgr &R (s, k) ) downstream storage (115)
0 0
o R(s, k) =a(s)+ B (s) =R (s, k) (116)

ok 0s
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Combining these equations together to obtain a differential equation for the whole system
ylelds an equation of the form

0 0 02
a—kR(s,k) :oc(s)—i—B(s)aR(s,k)—i—y(s)wR(s,k) (117)

where 7y (s) > 0 everywhere.

Deliberately using notations from linear algebra, we note R (k) the function s — R (s, k), and

T. R (k) the transformation of that function by the differential operator appearing on the right
hand side of Equation 117. Equation 117 is of the form

d _ =
SR =v+T-R(K) (118)

which has has solutions of the form

R(k):ﬁoexpﬁk)—r v (119)
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8 Instabilities and irreversibility

8.1 Torsion-pressure instability

In the present document, and in particular in Section 5, it was a convenient simplification to
assume the friction bending moment M to be a constant for any given cross-section. However,
this is not always realistic. For example, a positive internal torque will press positive-helix
component inwards, negative-helix component outwards increasing the contact pressure be-
tween these layers and hence the friction forces.

The dependency of My on the internal torque makes the following feedback loop possible,
depending on circumstances:

. Increased internal torque,

. Increased contact pressure between some layer,

1
2
3. Increased friction bending moment,
4. Increased flip torque,

5

. and so on.

Typically, the flip torque is balanced by internal torsion upstream of the 3D curve in which the
flip torque is generated. However, because the flip torque is distributed along the span, part
of the span do experience internal torque, making the instability a possibility.

A simple mathematical model for torsion-pressure instability is shown

8.2 Mathematical formulation

Consider again Equation 63, but we now assume that My is a function of the internal torque
M;.

oM, wiw — diw}
— = M (M 120
aZ my + f( 1) \/m ( )

. . A
As a simple example, let us assume than m; = 0 (no applied external torque) and that y =
Ol —alal . . . A
% is uniform along the route (as would be the case in a helix). Further, we assume
W2+
that My = aM; + b, where a and b are constants. This is a reasonable approximation over a
limited range of values of My. In this range, My must remain positive.

Then Equation 120 can be written

_6M1
0z

= ayM, + by (121)
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This differential equation has solutions of the form
O b
M; (s) = Mj exp (—ays) — < (122)
from which we can compute the friction bending moment
M; (s) = aM? exp (—ays) (123)

In other words, if M¢ depends on M, then M;, instead of varying linearly along a helix,
can vary exponentially, leading to finite but very high internal torques, a situation dubbed
a “torsion-pressure instability”. Qualitatively, the same remains true for more complex route
geometries, including for routes with separate bends, as internal torque is transmitted between
bends.

8.3 Curvature-pressure instability

In fatigue analysis of marine risers that are bending dynamically under wave loads, it is often
convenient to assume the contact pressure between components to be almost constant as the
riser bends: the contact pressure is mostly dictated by the tension in the components (and
other components further out). The tension in the components is mostly related to the tension
in the flexible product, and the contribution from bending, while important for fatigue because it
varies over time, is moderate. In such a context, it makes sense to assume My to be a constant.

In handling operations, tension in the flexible product is often low, so that the friction associated
to bending can contribute significantly to the tension in the component and then again to the
contact pressure. The result is that as the curvature at a given point along the flexible product
is increased, the following feedback loop comes into effect:

1. Bending causes components to slip, inducing friction forces,
2. Friction forces increase tension in the components,

3. Increased tension leads to increased contact pressures,

4.

and so on, with increasing friction forces.

8.4 Flip torque-geometry instability

In the flip effect (Section 5) the geometry of a route has a major influence on the internal torques
that will develop. On the other hand, if one considers the force equilibrium in a free span, the
internal torque in the flexible product influences the geometry. In some cases, the influence
on the geometry is such that it will exacerbate the flip effect, typically with geometries of free
span that tend towards helices (Figure 54).

This effect is quite different from helical buckling (Section 8.6): helical buckling is not driven
by friction or other energy dissipation, and does not require transport. One can induce helical
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buckling in a thin rod by subjecting it to a internal torque and low tension. By contrast, flip
torque-geometry instability can start with an initial internal torque too low to cause helical
buckling internal torque, but it requires both transport and friction.

As an example, consider a sag-bend - a long portion of flexible product hanging free between
rollers or chutes. The sag-bend is originally within a vertical plane (Figure 54, left). Then,
for some unspecified reason, a positive internal torque appears in the sag bend. This can be
caused, by a geometry, somewhere downstream, inducing flip torque. This positive internal
torque alters the geometry of the free span (Figure 54, right). The new geometry has positive
Frenet-Serret torsion (it is like a positive helix). Transport of the flexible product along this
geometry generates a positive flip torque.

What happens next depends on how stiffly the downstream (respectively upstream) flexible
product will resist a roll at the downstream (upstream) end of the free span. Let us consider
two limit cases. In the following “increase” and “decrease” must be understood as “change to a
more positive value” (respectively: negative). For example, torque “increases” from —5 kN - m
to —2 kN - m.

1. The downstream end of the free span does not resist roll. In other word, the internal torque
downstream does not change as the flip torque in the span increases. The increase of
the flip torque thus causes a increase in the upstream internal torque.

2. The upstream end of the free span does not resist roll. In other word, the internal torque
upstream does not change as the flip torque increases. The increase of the flip torque
thus causes a decrease downstream internal torque.

The flip torque is actualy distributed, so in case 1. we get an increase of the internal torque
(mostly in the upstream half of the free span). This increases the internal torque that originally
made an out-of-plane geometry appear. While there are stabilising factors, in particular gravity,
these could be overwhelmed, causing an instability. In case 2., on the contrary, the internal
torque is decreased (mostly in the downstream half of the free span), stabilizing the situation.

Figure 54: A sag-bend, foreshortened by perspective, looking downstream. Left: in the absence
of internal torque, right: with positive internal torque.
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Figure 55: The positive flip torque in the free span is increased as the span deforms under a
positive internal torque (left). The situation can evolve into helical buckling (right) (anonymous
source, by permission).

To summarize, the feedback loop, supposing that there is a bent free span, and that there is
transport, is as follows:

1. Internal torque in the span causes the span to deform out of plane (Figure 54),
2. This results in a curvature that changes of curvature plane,

3. This produces a flip torque,
4

. If the downstream flexible product is compliant, the flip torque increases the internal
torque in the span,

5. and so on.

8.5 Residual curvature realignment

Section 4.6 mentions the special case of sheaths that have crept while the flexible product was
in storage, inducing a residual curvature. Simply put, if a flexible product with such a residual
curvature “to the right’, passes at a point along the route that takes a turn “too the left’, rolling
the product 180 [deg] (either in the positive or negative direction), will release stresses in
the sheath. This type of instability has been documented in the installation of steel pipelines
[14, 15, 55], but not, to the authors knowledge, in flexible products.

This effect is distinct from flip (Section 5). The roll in residual curvature is self limiting: for
a purely elastic product (no plasticity or friction), the roll to realign the curvature is at most
180 [deg]. In contrast, flip require friction (or plastic deformation), and roll is not limited by the
flip mechanism itself, only by (typically) the fact that spatial roll is zero (or related to stored
torsion) at the upstream turntable.

The idea of feedback loop is adequate for self-amplifying phenomena. If the curvature is already
at a 90 [deg] angle to the bending moment, this just generates a torque, that will decrease as
bending and moment align. But starting with curvature and moment in the same plane, yet
both in opposite directions, the feedback loop is:
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1. The curvature is slightly out of plane with the moment,
2. This produces a torque,
3. The torque drives the curvature further out of plane,

4. and so on.

8.6 Helical buckling

Helical buckling is not typically a mechanism of internal torque generation. This is however
treated in the present Section | for two reasons. First, this Section is close to Section 8.4, to
emphasize that helical buckling and flop-torque-geometry instability are two distinct mecha-
nisms, that occur under quite distinct circumstances. At the same time, helical buckling changes
the geometry of the flexible product, and so does indeed influence internal torque generation.

As discussed in Section 3, the link between two ends of a segment of flexible product is the
sum of the twist and the writhe. Consider a straight segment that has a link (Equation 56,top).
Since it is straight, there is no writhe, and the link is equal to the twist: the segment is under
torston.

A segment under torsion, like a loaded spring, stores elastic energy (“careful when releasing”).
If the link is completely transformed into writhe (if the straight flexible product takes the
shape of a helix), then the torsion in the segment is zero, and the torsional elastic energy
has been released (Equation 56,bottom). But whether this transformation happens depends on
how much energy is absorbed to create the new shape: the segment has now some bending
energy (some spring-back if the boundary condition are released). But mostly, the energy has
been dissipated as heat produced by sliding of components to accommodate the new geometry.
Another “energy cost” is that, since the straight line is the shortest path between two points,
the helix is not: to create the helix, it was necessary to pull in neighboring flexible product.

All in all, whether buckling occurs depends on whether the torsional energy that could be
released is larger that all the work that has to be spent (bending, friction, pulling in).

The feedback loop is:

1. A small curvature, combined with torque, gives rise to moments,
2. The moments drive the curvature,

3. and so on until the helix reaches a stable form.
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Figure 56: Flexible product under torsion (top), and after helical buckling (bottom).

Figure 57: Examples of helical buckling (left: courtesy of Tennel, right: anonymous source, by
permission)

In a typical scenario, the internal torque along a route increases over time (see Section 7), and
some slacker free span will suddenly take a helical shape. Alternatively, the internal torque
may be at a constant level, but the tension in a free span decreases, triggering helical buckling.
Buckling can also occur during a pause in transport if tension is released.

While the helical geometry may not necessarily cause damage to the flexible product, it is
awkward to handle and store. In general reverting the operation will not undo the buckling
(Section 8.7). In particular, pulling on a helix or a loop thus created is likely to create a hockle,
[62], in which the bending is concentrated very locally, causing potentially severe damage to
the cross-section.

The pitch length of the helix at the initiation of buckling is roughly

EI
P=2m/— 124
™%, (124)
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where EI is the bending stiffness and R; the tension (Figure 58).

Figure 58: Buckling shapes: increasing tension (from left to right) result in lower pitch length
P

8.7 Irreversibility

When a transport operation leads to an unwanted state with for example a build up of internal
torque, one option that comes under consideration is to backtrack to a safe situation, and from
there, to make a second attempt.

In practice, this may or may not work. As an example, consider a heavy cube on a smooth slope.
As the cube is left undisturbed, friction is sufficient to prevent the cube from sliding down the
slope. Let us assume that we can only apply forces towards the left or the right (following
altitude contours), but not up or down (Figure 59. We apply a force to move the cube 1m to the
right, then another force to move 1m to the left. However, as the the cube slips right and left, it
will also slip downwards (Section 6.4). As a consequence, without applying vertical forces, we
can never bring the cube back to its original height. The 2nd law of thermodynamics (“entropy
can not decrease”) translates in practical mechanical engineering as follows: in the presence
of friction, viscosity flow or plastic deformations (anything that creates heat), reverting what
can be controlled will often not revert the parameters that can not be directly controlled.

The handling of flexible products offers many examples of this: actuators (winches, tension-
ers, turntables etc) give control over some aspects of the movement of the flexible product
(movements along the route, some aspects of the shape of free spans) but not over others
(roll, the details of the shape of free spans, the sliding of internal components). The reverting
the controllable aspects will generally not revert the uncontrollable ones, and this may be
significant.

One example of irreversibility is helical buckling (Section 8.0) followed by hockling: in a straight
product under internal torque and tension, reducing tension can give rise to helical buckling. If
the span is long compared to the diameter, the instability can give rise to small curvatures and
no slip occurs. In more realistic cases, this buckling is accompanied by slip of the components
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Figure 59: A cube on a slope can not be brought back to its original state by forces across the
slope.

and hence energy dissipation into heat. Increase the tension back above the value at which the
instability occurred can cause a hockle to occur [62] Even if the helix was so little pronounced
that a damaging hockle does not appear, the flexible product will not be straight. The particular
issue of hockling at the touch-down point during installation on the seafloor is considered in
Section 95.2.

Another example of irreversibility was discussed in Section 0.2: spooling and unspooling behave
differently.
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9 System behaviour

9.1 Introduction

The object of Part 9 is to present relevant cases that show the interplay between the effects
discussed so far in preceding sections. This interplay is sometimes complex and can give rise to
surprising behaviour of the operation as a whole. The emphasis here is on providing an insight
in these interplay, and so the discussions presented here are qualitative: no hand calculations
or numerical simulations are provided.

The behaviors described in this Section all come from reports received in confidence from
the industry. They are presented in anonymized form. The cases were reported with various
degrees of documentations. For some of them, the mechanism was established with a high
degree of confidence. In other cases, the mechanism described here may be only one of several
possible causes of the reported event, given the available data.

9.2 Torsion in factory
9.2.1 Unbalanced winding machine

A winding machine has the potential to apply considerable external torque to the flexible
product that it builds. The winding machine can apply external torque through tension in the
components, and through radial forces applied to wrap components around the product. This
raises the question of how to ensure that the flexible product coming out of a winding machine
does not carry a significant internal torque (Figure 60).

Figure 60: Example of component for which there is no obvious way of defining “zero torsion”

At the beginning of the production of the flexible product, the head end is typically attached to a
steel flexible product through a swivel with which it is pulled through the extrusion machinery:
there is at this stage little or no resistance against roll from the product downstream of the
production machinery, and hence little torsion. One can easily measure the material roll rate
by setting a tag (for example a patch of adhesive tape) on the product (Section 3.12.2), and in the
absence of torsion, material and spatial roll rates are identical. This provides an opportunity
to tune the winding machines by zeroing the roll rate.

The situation changes later in production, when the head of the flexible product is stored in
a downstream turntable or spool, adding resistance against roll (Sections 6.2 and 6.1), so that
torsion can no longer be relied upon to be zero. Without ideal longitudinal marking, there is
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no obvious way to measure torsion, and without torsion, it is not possible to use Equation 10
to obtain the spatial roll rate.

A longitudinal marking extruded on the polymer sheath does not provide additional information:
A straight longitudinal marker is the same as having a series of point markers and observing
zero material roll on all of them (Figure 61). With reference to Section 3.4, this is not necessarily
an ideal longitudinal marking, and absence of material roll does not imply the absence of
internal torque. A parallel might be helpful: consider a piece of metal that is under tension. A
strain gauge is glued to the metal under tension, and calibrated. Reading zero strain does not
imply zero stress.

Figure 61: Unbalanced winding machine (in grey) and longitudinal markings. The marking in
black is what would be applied by e.g. extrusion. The markings in red are ideal longitudinal
markings following a positive helix because of the positive internal torque. The multiple red
markings show the motion of a single ideal longitudinal marking. Downstream to the right.

Figure 62: Same as Figure 9.2.1, but the winding machine does not apply an external torque,
while the route geometry applies a negative flip torque (cross-section marked in green).

A situation in which a flexible product is stored (spool or turntable) out of the production
machine, with internal torque, yet with a straight (non-ideal) longitudinal marking is referred
to as "built-in torsion”.

9.2.2 Flip torque

A related behavior can occur with the following (idealized) situation: the winding machine
leaves the flexible product free to roll and does thus not apply any torque to it. The flexible
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product then passes through a route which geometry induces a flip torque (Section 5) which
will be assumed to be negative, before being stored in a turntable.

At steady state (Section 7), the flip torque must be balanced by external torques applied up-
stream or downstream. During transport, external torques from friction against chutes (Section
0.4), tensioners and rollers (Section 6.5) are generally small, and in this case, it is conservative
to neglect them. As a result, the flip torque is counterbalanced by the downstream turntable:
the downstream segment carries a positive internal torque (Figure 62).

Hence at the winding machine, there is no external torque, but the flexible product is rolling
in the negative direction. A longitudinal marking extruded there will be seen to follow a
negative helix around the flexible product, even though the flexible product carries no internal
torque. Downstream of the flip geometry, the positive internal torque induces a negative torsion.
Whether the longitudinal marking then will follow a negative or positive helix depends on the
torsional stiffness of the product, and on the effect of roll rate on the flip torque (Section 5.3).

The scenarios presented in Section 9.2.1 and the present Section are limit cases: more re-
alistically, winding machines and route geometry will both introduce internal torques in the
product. The two scenarios show that it is difficult to guarantee that a longitudinal marking is
an ideal longitudinal marking (Section 3.4). In other words, a flexible product with a straight
longitudinal marking can have a internal torque. The situation complicates further if the flex-
ible product is torsionally unbalanced (Section 4.8). Scenarios with torsional unbalance are
discussed in Sections 9.5.2 and 9.0.

9.2.3 Bird-nesting

The scenarios discussed in Sections 9.2.1 and 9.2.2 result in similar situations at the downstream
turntable (or spool): the flexible product carries a positive internal torque (due to negative
external torques applied upstream), and material-rolls steadily in the negative direction.

In mild cases, the internal torque is stored in the turntable in the form of a negative torsion
(being measured with an ideal longitudinal marking) (Section 6.2). In more severe case, “bird
nesting” can occur. Typically, the tension drops downstream of the last tensioner before the
turntable, below the tension at which helical buckling can occur (Section 8.6).

Helical buckling can be “self-limiting”: the formation of a positive helix relaxes internal torque,
and only a limited length of helix appears. However in the present scenario, the upstream
setup induces a continued spatial roll, so that the helix formation does not stop: the helix is
continually generated downstream of the last tensioner and is stored in the turntable. The
product stored in the turntable has an aspect suggestive of a bird’s nest (Figure 63). Flexible
products of smaller diameters are typically undamaged, yet unserviceable if no solution is found
to remove the link in the flexible product.
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Figure 63: Bird's nest: a flexible product having undergone continuous helical buckling.
9.3 From storage to storage
9.3.1 Long-distance conservation of torsion

In the following “storage” will stand for turntables, spools and the seafloor - locations in which
friction prevents the flexible product from rolling over long distances. The special case of
baskets will be addressed in Section 9.4. Transfer of flexible products between storages are
made in a variety of settings, including:

In factory, when a product is shuttled between two turntables, to perform several passes
through winding, extruding or other machines.

In load-out operation, where the flexible product is transferred from a turntable storing
the completed product , to a turntable on board and installation vessel.

During installation, where the product is transferred from an on-board turntable to the
seafloor.

In a detailing operation, where the flexible product is transferred to spools and segmented
for road transport.

Cenerally, the distance between storages is small compared to the length of flexible product
being transported. This makes it reasonable, barring instabilities, to assume the operation will
approach a steady state (Section 7). Further assuming ideal longitudinal marking (Section 3.4),
internal torque and tension both not changing over time implies that torsion will be constant
over time at any given point. Hence the twist between any two points along the route will be
constant. Since for a fixed route the writhe between any two points along the route does not
change with time, the link between two points does not change with time. This implies that
at steady state with an ideal longitudinal marking, the spatial roll rate is uniform along the



90 9 SYSTEM BEHAVIOUR

route. In practice, the value of that roll rate depends on the upstream boundary condition. In
particular, if a flexible product is stored without twist in the upstream storage, then at steady
state the roll-rate will be zero along the whole route.

The material roll rate DR/Dk at the upstream storage has to be zero, so Equation 77

OR

ok
applies here, where T is the torsion of the flexible product in storage. Let us assume that T
is uniform along the flexible product in the storage. 0R/0k at the downstream storage is the
same as at the upstream one, and hence at steady state the torsion tof the flexible product
stored in the downstream storage is the same as in the upstream storage.

—T

Hence over long lengths of flexible products, and as a first approximation, the torsion in the
installed product is equal to the built-in torsion (Section 9.2).

The above reasoning is not applicable for the head and tail section of the flexible product:
while the head of the flexible product is traveling along a route, it is relatively free to roll
(Sections 6.4 and 6.5). In the absence of flip torque, for example, this implies that the internal
torque in the segment behind the head can be released (and the same applies to the tail).

9.3.2 Torque buildup

An important class of problems occurs when a flip torque (Section 5) is present along a route
between two storages (as defined in Section 9.3.1). To simplify the discussion, it is assumed
that the upstream storage stores product with zero torsion, the flip torque is applied in a
positive direction, at one single point on the route, and the route does not vary over time. The
conclusions will still largely hold when relaxing these assumptions. The setup is schematized
in Figure 64.

upstream flopping downstream
turntable torque turntable

Figure 64: Upstream and downstream storages and flip torque.

To further simplify reasonings, let us imagine that the head of the product has reached the
downstream storage, and that somehow it does so with zero torsion everywhere along the
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route. Then again somehow, the flip torque is “switched on’, and the operation continues.
The flip torque causes a positive roll at the point of application, spreading upstream and
downstream as the operation progresses. The spread is slowed down but not stopped, by
rollers and tensioners (Section 0.5), curves (Section 5.3) and chutes (Section 6.4).

At the upstream storage, since no torsion is stored in it, the spatial roll rate is zero (Section
0.2), so that a positive twist builds up between the upstream storage and the point with flip
torque. At the downstream storage, the downstream twist gets stored (Section 0.2).

If the operation reaches a steady state (Section 7), then the spatial roll rate everywhere becomes
zero. Downstream, since the twist between the head of the flexible product and the point of
flip torque is distributed over that whole length, the torsion approaches zero. At zero spatial
roll rates, the external torques from rollers, tensioners, curves and chutes becomes zero: the
flip torque is balanced by external torque at due to friction at the upstream storage. As a
consequence, the internal torque in the flexible product, upstream of the flip torque point, is
equal to the flip torque (Figure 65).

One should be careful to assume that the steady state provides a safe upper bound for the
torques that can be produced during installation: It is suspected that instabilities like torsion-
pressure instability (Section 8.2) and flop-torque-geometry instability (Section 8.4), as well as
cracking with hydraulic tools (Section 0.6) can cause significant increases in torques.

upstream flopping downstream
turntable torque turntable

Figure 65: Steady state configuration.

If the flip torque is high enough, the internal torque can be high enough to cause helical
buckling (Section 8.6), or local damage to the cross-section (Section 10), somewhere between
the upstream storage and the flip torque point.

Multiple incidents are thought to share the mechanism described above. In a load-out operation,
the free span above the onboard turntable generated a flip torque. The intensity of the flip
torque varied with the geometry of the free span, and waves of roll were documented to
propagate upstream, across several tensioners. The internal torque ultimately caused damage
to the cross-section, rendering the product unfit for use, causing severe financial loss. Similarly,
in various operations, multiple documentations of helical buckling near the upstream storage
have been seen.
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9.3.3 Evolution of a loadout operation

A loadout operation between two turntables is considered. Tens of kilometers of flexible product
are to be out-loaded, to an installation vessel. The length of the route is a few hundred meters.
It is assumed that near the downstream turntable, the route geometry imposes a positive pseudo
external flip torque (Section 5.4).

At the start of the operation, the flexible product is stored in the upstream turntable with zero
internal torque (Figure 66). The longitudinal marking is ideal, so there is zero torsion.

The head of the flexible product is winched along the route (Figure 67). The head of the flexible
product has not yet reached the flip area, and so there is neither torque not torsion in the
flexible product.

The head of the flexible product has just reached the flip area (Figure 68). Because there is
no flexible product downstream of the flip area, the downstream torque is zero. Because roll
has just started, no torsion build-up has yet occurred upstream, and the upstream torque must
thus be zero. To respect force equilibrium, the flip torque must hence be zero. This in turn
implies that the roll rate (in the absence of torsion: material as well as spatial) is equal to
the value for which the flip torque becomes zero (Figure 40, red curve), which is roughly “the”
Frenet-Serret torsion of the flip geometry (typically, this Frenet-Serret torsion is not uniform
over the span).

The head of the flexible product has just reached the floor of the turntable (Figure 69), and it is
either latched to the turntable, or enough flexible product has been stored that friction prevents
material roll at the touch down point. Under the same argument as above, the upstream torque
is still zero. Because the distance between the flip area and the downstream turntable is very
short, the spatial roll rates at both points are equal, and hence the spatial roll rate in the
flip area is positive equal to the opposite of the downstream torsion. By stating that spatial
and material roll rates in the flip area are nearly the same (assuming that the torsion is small
compared to the Frenet-Serret torsion), this allows to determine the roll rate from the “effect
of roll rate on flip torque” diagram.

The level of downstream torsion thus generated depends on the torsional stiffness of the product.
Two limit cases are of interest: If the torsional stiffness is high, torsion will be small, and the
torque will be the opposite of the flip torque at near-zero material roll rate. If it is low, the
downstream torsion will be the opposite of the Frenet-Serret torsion. Either way, in this phase,
the consequences of flip are felt downstream, and torque-induced failures would be observed
in the vicinity of the touch down point in the downstream carousel.

As the operation progresses, the positive spatial roll at the flip area leads to the build up
of positive torsion upstream. This has several effects: the spatial roll rate at the flip area is
reduced, increasing the flip torque. Reducing the spatial roll rate also reduces (in absolute
value) the downstream torsion. This progresses until steady state is reached (Figure 70) in
which the upstream torsion is constant, causing the downstream torsion and torque to be zero,
so that the upstream torque is equal to the flip torque. The flip torque is a value corresponding
to zero spatial roll rate (near zero material roll rate).
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At this point of the operation, the maximum value of the upstream torque is reached, and failure
can be experienced anywhere between the upstream turntable and the flip area.

The tail of the flexible product has just left the upstream turntable, and is thus no longer
restrained to a material roll equal to zero (Figure 71). The upstream torque is just relaxed by
roll of the flexible product along the route. Relatively rapidly, the upstream torque gets close
to zero. From the point of view of torque equilibrium at the flip area, the situation is very
similar to that just after the head of the flexible product reached the downstream turntable:
this is another phase of the operation where failure at the touch down point can occur.
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Figure 66: Flexible product stored in the upstream turntable.
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Figure 67: Flexible product winched along the reach approaches the flip area.
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Figure 68: Flexible product enters the flip area and experiences high roll rate.
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Figure 69: Flexible product latched to the turntable, high torsion or torque downstream of the
flip area.
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Figure 71: New transient as the cable tail leaves the upstream turntable.
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9.4 Baskets

Unlike turntables, baskets do not rotate around a vertical axis, and as a consequence, storing
a flexible product in a basket induces torsion in the stored product (Section 6.3)

Let us consider a positive basket (Figure 49) in which a flexible product is stored as it is
produced, coming from a winding machine that induces zero spatial roll rate, or from a spool

or turntable. Equation 806 states

0—T+a—R+@
N ok A

where A is the length of a coil and T the torsion stored in the coils.

At steady state with the above mentioned absence of spatial roll at the winding machine,
O0R/0k = 0 near the basket, hence T = —360/A (here steady state is a simplification, assuming
all coils to have the same length). This means that there is a negative internal torque stored
in the basket. In order to ensure equilibrium, this implies that there is a negative internal
torque in the flexible product between the winding machine and the basket (assuming that
there is no flip torque, Section 5). In the period before steady state, this negative internal
torque will propagate upstream from the basket, slowed down but not stopped by tensioners,
rollers (Section 6.5) and chutes (Section 6.4).

The torsion T = —360/A is usually quite large, and hence baskets are used with either flexible
products of small diameters, or flexible products in which by construction have a low torsional
stiffness. Low torsional stiffness in one direction is achieved by winding all layers in the same
direction. In the present case, a basket with positive top feed, inducing negative torsion, this
would require components laid as positive helices (Z-laid).

When the flexible product is taken out of storage, “the movie is played backwards” but the
sign convention for roll is flipped, so the spatial roll has the same value as when paying in. In
mathematical terms. The sign of the stored torsion is unchanged, because it is independent of
the choice of positive direction along the route.

oR 360
5E:—<T+7r) (125)
360 360
:'_(__X'+"7T> (126)
=0 (127)

As can be seen in Figure 72, with the two spatial roll rates being identical, this is in a way
as if the storage in the basket had not happened - and this is also true before steady state.
However, as mentioned above, while being loaded, the basket imposes an external negative
internal torque, resulting in a negative internal torque upstream. While being unloaded, under
the above assumptions and at steady state, the basket imposes 0R/0k = 0. Whether there will
be a internal torque downstream of the turntable depends on the rest of the route.

Industrial experience leads to favoring top-feeding into baskets from points placed high above
the basket. A possible explanation is as follows: in a positive basket, the free span is a positive
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Figure 72: Flexible product entering (left) and leaving (right) a positive basket, with zero spatial
roll at the top.

spiral, and feeding the flexible product through the free span induces a positive flip torque.
This external torque partly balances the negative internal torque in coils, thus decreasing the
internal torque upstream of the basket. When paying out from the basket, the flip torque is
still positive (with the sign convention flipped). The internal torque tends to release the torsion
stored in the coils, and is balanced by friction in the basket. An obvious challenge is to chose
the height of the free span adjust the length over which the curvature changes plane, in order
to approximately cancel out the internal torque stored in the coils.

9.5 J-lay installation
9.5.1 Torque build up

During the installation of a flexible product from a vessel to the seafloor, the same situation as
described in Section 9.3.2 can occur: The seafloor takes the place of the downstream storage,
freezing material roll through friction. “Spatial roll" then needs to be understood relative to
the vessel, or to the touch-down point, not relative to a point on the seafloor.

The geometry of the route on board the vessel is often a source of flip torque. Another potential
source that needs to be excluded is strong cross currents, which may cause the free span
between the touch down point and the installation vessel not to be restricted within a vertical
plane.

In one case, an offshore laying operation had to be interrupted when helical buckling appeared
between the on-board storage and a part of the on-board route generating flip torque. It was
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not possible to pass the buckled geometry through tensioners and thence overboard, so the
product ultimately had to be cut and abandoned on the seafloor.

9.5.2 Touch-down point hockling

In the free span between the installation vessel and the touch down point, the tension will vary,
increasing from the seafloor towards the vessel. If the flexible product is torsionally unbalanced
(Section 4.8), then torsion T and elongation € both influence internal torque M; and axial force
R; (Equation 6). The axial force Ry appearing in this equation is the tension in the flexible
product, not the effective tension [60].

To simplify reasoning, it is assumed that the free span to the touch down point is in a vertical
plane, so that no flip torques are developed there. Also, the unbalanced cross-section has a
behavior dominated by a tensile armor laid as a positive helix (Z-laid). This implies that if
elongated, it tends to unwind and acquire a negative torsion. Alternatively, if elongated but
prevented from rolling, it acquires a positive internal torque.

If the depth and the top tension have been held constant long enough, steady state is ap-
proached (Section 7). The internal torque in the free span will approach zero (Section 6.2),
hence there is a negative torsion, varying in intensity with depth (Figure 73 b).

a)

b)

c)

d)

Figure 73: a) Unloaded product, with tensile armor in positive direction (stippled helix). b)
Under high tension and at steady state, negative torsion and no internal torque. c) As tension
is relaxed under constant link, negative internal torque. d) With decreasing tension, internal
torque is relaxed by helical buckling. e) Reapplying tension may lead to a damaging hockle.

In the next step, the top tension is rapidly decreased by paying out a length of flexible product
without the laying vessel moving forward by the same length, or by holding the top of the
flexible product and letting the vessel surge aft. This decreases the tension along the catenary.
Because the decrease is rapid, the link (Section 3.9) in the free span does not change and the
torsion remains unchanged® (Figure 73 ¢).

3Actuallg the torsion can redistribute along the free span, but the link, which is the integral of the torsion,
does not change. This does not affect the present reasoning.
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Figure 74: Helical buckling, liable to cause a hockle if tensioned (anonymous source, by
permission)

With the elongation decreasing while torsion remains unchanged, a negative internal torque
appears along the free span. Tension is lowest at the touch-down point. The combination of
internal torque, and low tension can be unfavorable enough to cause helical buckling (Section
8.6) near the touch down point (Figure 73 d).

Reapplying a higher top tension may either resolve the helical buckling, or lead to a localized
hockle with the potential for serious damage to the cross-section (Figure 73 e).

9.6 Shore pull-in

At the start of a shore pull-in operation, the flexible product is stored on board an installation
vessel anchored or beached as close to the high tide line as possible. The head of the flexible
product is then hitched to a steel flexible product and winched to the shore terminal. The
product paid out can either be carried by an alley of rollers temporarily set up on the beach,
or supported by a series of floaters. In this section, only the scenario of an alley of rollers is
discussed.

The winch force needs to be large enough to drive the deformation of the flexible product as
it passes the rollers. The longer the pull in, the higher the force becomes. If the cross-section
is torsionally unbalanced, the flexible product will tend to unwind. In Figure 75, it is assumed
that the flexible product has a single tensile armor laid as a positive helix (Z-laid). The head
of the flexible product is usually free to roll (it is hitched to the winch flexible product via a
swivel), and the rollers only slow down roll during the pullout (Section 6.5). Towards the end

of the pullout, the flexible product is elongated, has torsion, but a low internal torque (Figure
75 middle).

Once the flexible product head has reached the shore terminal, the winch load is slowly
released. Spring back, from relaxing tension in the flexible product is small. So although the
head is free to roll, friction against the rollers, as well as internal friction, will almost completely
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Figure 75: Flexible product at rest (top) at steady state during pull-in (middle) and after
relaxing tension (bottom).
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Figure 76: Phases of a pull-in operation and effect of armor wire strain.

prevent the roll of the flexible product so that torsion is unchanged. This results in a internal
torque (Figure 75 bottom).

Figure 76 shows series of lines of constant value of tension and torque in the flexible product,
and strain in the tensile armor, as a function of elongation and torsion. The bold line shows the
idealized history of elongation and torsion of a cross-section: it first follows a line of constant
(zero) torque, and then a line of constant torsion to the point of zero tension. As can be seen,
this leads to compressive strains in the tensile armor. This may result in a local failure of the
tensile armor (Section 10). Helical buckling (hockling) is expected to be prevented by the high
amount of work needed to pull in “slack” needed for the helical geometry.
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10 Local failure mechanisms

10.1 General remarks

Section 10 discusses the various mechanisms by which flexible products can fail when subjected
to torque. More specifically, failures with large local plastic deformations are described. Helical
buckling is handled in Section 8.6 because of its apparent similarity with mechanisms of torque
generation.

While torque generation is related to only a few properties of the flexible product (for example
the friction bending moment M), failure mechanisms are more dependent on details of the
construction of the flexible product. Skew-kinking (Section 10.2) is only relevant for flexible
pipes, while herniation buckling (Section 10.4) is strongly influenced by the presence or absence
of multiple tensile layers around the product.

Design codes do not, generally, address the issue of determining the torque that a flexible
product can safely be exposed too. Attempts to use extent codes to do so may thus lead to
unconservative results. Further, the failures modes are not always recognized as torque related,
making it more difficult to improve future operations.

In the following, figures depict the aftermath of failure under a positive internal torque. The
corresponding figures for negative internal torque are obtained by mirroring. This mirroring
will also change the sign of the helices in the component. For example, a product with a single
tensile armor will fail differently if torque increases, or decreases tension in the armor.

10.2 Skew-kinking

Skew-kinking is a mechanism that has been observed in flexible pipes, and that is related
to kinking. Kinking can occur when e.g. a pipe is bent: it first ovalizes. Then as bending is
increased, the ovalization becomes more pronounced and localizes, leading to local high plastic
deformations. Ultimately, this results in a kink, that is a flattened cross-section of the pipe,
with the wall of the pipe (nearly) self-contacting along a line orthogonal to the axis of the pipe
(red line in Figure 77, left).

Figure 77: Kinked pipe (left), and skew-kinked pipe under positive internal torque (right).
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Figure 78: Skew-kinking can easily be confused with crushing.

When torque is present in addition to bending moment, the kink-line is no longer orthogonal
to the axis of the pipe, and the kink can occur at curvatures that would otherwise have been
acceptable (Figure 77, right).

Where the torque is high, the kink axis can be almost tangent to the pipe, and this gives rise
to a geometry that can be misinterpreted as resulting from crushing (Figure 78). High external
pressures or high tensioner contact forces can contribute to this failure mode.

The mechanism is not know to have occurred in cables or umbilicals: clearly the “payload”
(e.g. insulators and conductors) resists compression and thus limits ovalization.

10.3 Birdcaging

Birdcaging is a failure of the tensile armor of a flexible product, in which the tendons, near a
given cross-section of the flexible product, displace outwards radially, creating the name-giving
‘birdcage” shape. The birdcage is limited in extent along the flexible product because of the
resistance of outer layers (for example an outer PE sheath or PP twine).

Birdcaging is due to compression of the tensile armor(s), around the circumference of the flexible
product. Compression of a tensile armor can have several causes:

— Compression (negative “wall” tension) of the whole cross-section.

— Torque in the product. A tensile armor laid as a positive (respectively negative) helix will
experience compression under a negative (respectively positive) internal torque. This is
the so called “slack” direction, in which torsion decreases the contact pressure between
the tensile armor and the underlying layers or components.

For products with two tensile armors laid in opposite directions, the two load scenarios above
are expected to cause different patterns of failure, providing more forensic information on the

mechanism of failure:

— Compression would cause both tensile armors to buckle (Figure 79).
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— A positive (respectively negative) torque would cause the outer armor to buckle if it is a
negative (respectively positive) helix. This is a torque in the “slack” direction, meaning it
decreases the contact pressure between the two tensile armors. The inner tensile armor
would be in tension, pressing against underlying layers and would not buckle (Figure
80).

— A torque that sets the outer armor in tension and the inner in compression (in the “tight”
direction) will not cause birdcaging, but possibly herniation-buckling (Section 10.4).

Figure 80: Birdcaging under positive internal torque: the inner tensile armor does not buckle.

10.4 Herniation buckling

Herniation buckling can occur when a flexible product with two tensile armor laid in opposite
directions has been subjected to an excessive torque in the “tight” direction: the torque has put
the outer tensile armor in tension, and the inner armor in compression. A known variation is a
flexible product with a tensile armor surrounded by a layer of yearn (typiclay polypropylene)
laid in the opposite direction to the armour’s.

The number of tensile tendons in tensile armor layers is normally chosen so that there is some
slack between the tendons and they do not press against each other in the hoop direction.
Hence it is possible to create a larger gap between two neighboring tendons, by pressing
together all the other gaps.
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Figure 81: Probable birdcaging (Courtesy of TenneT)

If the compressive forces in the inner tensile layer is high enough, it can buckle outwards
through the gap in the outer tensile armor, causing large local plastic deformation (Figure 82).
The name hernia is borrowed from medicine.

Figure 82: Herniation buckling under positive internal torque.

Friction could be expected to prevent transverse motions of the tendons of the outer armor to
pack, thus making it improbable to have one major gap: if torsion causes the internal tensile
armor to expand, and the external tensile armor to contract in the radial direction, there will be
high contact forces between the layers. According to the Coulomb friction model (Section 6.4),
any slip will be resisted by contact forces tangent to the surface of contact. Yet, experience
shows that herniation buckling can occur as soon as, assuming there is a gap in the outer
tensile layer, the compression in the inner tensile layer are enough to cause local deformation:
somehow friction is “effectively zero”.

It is believed that when the flexible product is being transported, bending and unbending
cause the tendons to slip in their longitudinal direction. As discussed in Section 6.4, slip in the
longitudinal direction makes it possible to have slip in the transverse direction driven by very
small transverse forces. This opens for an instability with the following feedback loop:
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1. At some position over the surface of the flexible product, the inner tensile armor is raised.

2. The combination of slope on the inner tensile armor, and tension in the outer tensile
armor result in a “"downhill” transverse force.

3. With bending and unbending effectively “canceling” friction, this results in transverse
displacement of tendons of the outer tensile armor, away from the bulge of the inner
tensile armor.

4. This results in fewer tendons of the outer tensile armor (or a gap in the outer armor), and
thus less forces preventing the inner tensile armor from bulging.

5. and so on.

10.5 Inward radial buckling

Inward radial buckling is a situation in which a tensile armor (in compression) works its way
inward in a flexible product (Figure 83). For it to occur, the layer under the tensile armor must
be soft and the layer above stiff. This has been observed to occur with an inner tensile armor
within an outer tensile armor (stiff) laying on a layer with filers (soft) as found in three-phase
power cables or umbilicals.

Figure 83: Inward radial buckling under positive internal torque

10.6 Lateral buckling of tensile armour

Lateral buckling is another form of buckling of a tensile armor in compression. Again, com-
pression of a tensile armor can be due to wall compression, and to torque (or any combination
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of both). In this failure mode, instead of buckling in the radial direction (as in birdcaging or
herniation buckling, Sections 10.3 and 10.4), the tendons of the armor buckle within the layer,
displacing in the hoop direction as illustrated in Figure 84. The dramatic consequence of this
failure for round armour wires is shown in Figure 80.

=

%

Figure 84: Lateral buckling under positive internal torque.

Figure 85: Torsional-flexural lateral buckling under positive internal torque.

Where the tendons are not circular in cross-section, a variant of this failure mode exists, in
which the tendons undergo torsional-flexural buckling: they flip by a quarter turn to present
their “weak axis” to the curvature introduced by buckling as shown in Figure 85. This is known
as torsional-flexural lateral buckling.

10.7 Payload buckling

Payload buckling is an in-layer buckling of “payload components” (phases in an electrical
cable, tubes or wires on an umbilical). It has been observed both in flexible products with
single tensile armor and two tensile armors wound in opposite direction. The mechanism of
failure in the later case is not well understood.

For a single tensile armor, wound in the direction opposite to that of the payload, then a torsion
that puts the tensile armor in tension (Figure 87, top) puts the payload in compression causing
buckling. This is not a typical construction of a coilable product: payload and tensile armor are
wound in the same direction, but a similar mechanism applies: if the lay angle of the payload is
lower than that of the tensile armor (Figure 87, middle), then torsion in the tight direction will
compress the payload in the axial direction. If the lay angle of the payload is higher than that
of the payload (Figure 87, bottom), then torsion in the slack direction compress the payload in
the axial direction.
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i

Figure 86: Example of lateral buckling of tensile armour (Courtesy of Tennel)
10.8 Unwinding at termination

Pulling heads - the termination to a flexible product allowing to tow it through a route may
be based on different principles. One of them is to attach each wire in the tensile armor to the
pulling head. In a torsionally unbalanced cross section, this can result in the unwinding of the
tensile armor in the vicinity of the pulling head (Figure 88).

When this happens, the tensile armor must slide over the underlying layers. As a consequence,
friction limits the distance from the pulling head over which unwinding occurs. If the flexible
product is subjected to curvature changes while under tension, the tensile armor slips in the
tendons axial direction, facilitating slip in the transverse direction and thus unwinding.

A flexible product always unwinds under tension, but generally does so as a whole - with
each cross section rolling as a whole, without relative slip of the components. Thus other
components contribute to the torsional stiffness. When slip occurs near the pulling head, the
tensile armor is free to unwind, and indeed has been documented to align with the flexible
product.

As the tensile armor unwinds, its lay angle approaches zero: for the same length along a
tendon, more length along the flexible product is covered, and the pulling head rolls and moves
forward relative to layers under the tensile armor (in black in Figure 88, seen through gaps in
the tensile armor).
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Figure 87: Buckling of the phases in an electrical cable

Figure 88: Unwinding of an unbalanced flexible product near the pulling head (red)
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Assessing torsion
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11 Introduction

11.1 Intention and disclaimer

Part Il of the present document provides a guidance for the assessment of the level of torques
that are likely to develop during the handling of flexible products, as well as for the assessment
of the level of torque that the product can tolerate without incident or damage.

Many of the criteria proposed in this document have not been validated experimentally yet.
Also, no partial safety factors have been introduced, as would be necessary to provide satis-
factory reliability in the presence of uncertainties. Finally, not all known failure mechanisms
are satisfactorily understood and covered in this guidance.

This document is not prescriptive or normative: Users remain free to create and market innova-
tive products, solutions, tests or analysis procedures not foreseen in the guideline. Neither is
the application of the present guideline absolving its users from their respective responsibilities
towards ensuring successful operations.

Neither the SINTEF Ocean nor its affiliates, nor the members of the Torston JIP consortium,
accept responsibility for any consequence arising from the use of the present guideline.
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12  Units

121  Requirements

All calculations described in this guideline should be carried out using a “consistent unit
system’, to be chosen for that purpose, as described in the remainder of Section 12. This is in
order to prevent mistakes arising from the use of quantities with inconsistent units.

Where inputs to the assessment are available in other units than those in the chosen consistent
unit system, they should first be converted to the consistent unit. Where the results of analyses
need to be reported in other units, the output of the procedures presented in this document
should be converted after completion of the respective procedures.

12.2 Base units

Units for time, length and mass can be freely chosen. One possible choice is the SI base units
second s, the meter m, and the kilogram kg. Other choices are acceptable.

Units for the other basic quantities defined in e.g. the S| unit system (electric current, temper-
ature, amount of substance and luminous intensity) will not appear in calculations, although
some properties may be tabulated as a function of temperature. There is no need to select
base units for these quantities.

12.3 Dimensionless quantities

Angles should be expressed in rad (radians). Other measures of angle should be used with
care: firstly, most numerical programming languages use radians in their trigonometric function.
Secondly, some results presented in the following are only valid for radians. In particular,
moments (whether bending moments or torque) are energy conjugate of angle in gradients,
and the symmetry of the stiffness matrix in Eq. 44 will consequently be lost if an other angular
measure is used.

All strains should be calculated as the length after deformation divided by length before defor-
mation, minus one. The use of non-linear strain measures is acceptable, the only requirement
being that linearisation for small deformations and rotations is equal to the above definition.
This is the case for strain measures like Euler-Lagrange or Almansis-Euler strains. The use of
microstrains is not recommended, again because it is not the energy conjugate of stress in a
consistent system of units.
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12.4 Derived units

The unit for any other quantity is derived from the base units and measures described in
Sections 12.2 and 12.3.

For example, assuming the S| base units are chosen, then

— The unit for a force must be kg - m - s~2, which is the Newton N (the kilogram force is
not the correct unit for force with this choice of base units).

— The unit for torsion must be rad - m™1.

— The unit for weight per length is N - m™! (not to be confused with mass per length).
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13 Cross section properties

13.1 Axial and torsional stiffness
13.1.1 Definitions

Equation 44 provides the relation between elongation and torsion and the corresponding ten-

sion and torque:
Rl . Ks KsT £
=L ][] 129

where ¢ and T are respectively the elongation and torsion of the product and R; and M, are
respectively the axial force and torque. The matrix entries are:

Axial stiffness K. is the change of the tension divided by the change of elongation of the cable,
when neither end of the cable is free to rotate.

Torsional stiffness K is the change of torque divided by the change of torsion of the cable,
when neither end of the cable is free to translate.

Axial-torsional cross stiffness K. is the change of tension divided by the change of torsion
of the cable, when neither end of the cable is free to translate.

Torsional-axial cross stiffness K. is the change of torque divided by the change of elongation
of the cable, when neither end of the cable is free to rotate.

Unless significant energy dissipation occurs in torsion and in elongation, and provided angles
are measured in radians, then K. = K¢ are equal. Procedures in the following are based on
the assumption that K¢ = K.

Torsional stiffness and axial-torsional cross stiffness can change significantly with the sign of
the torque, due to the loss or gain of contact between components. This is true both for coilable
products and torsionally balanced products. The procedures in the following must be repeated
to provide values of stiffness the stiffness coefficients for both signs of torsion.

13.1.2 Evaluation by numerical analysis

The evaluation can be carried out with a numerical analysis software that models a segment
of the flexible product (which may be short), and satisfying the following requirements:

1. It represents the geometry of the various components.

2. At the cross section at each end of the model, each component is free to rotate in all
directions.

3. At the cross section at each end of the model, each component is free to translate in
the radial direction of the flexible product. If the component is itself a sub-component of
a larger component (for example a copper wire within one of three conductors within a
cable), then the sub-component must be free to translate in the larger component’s radial
direction, instead of the product’s radial direction.
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4. At the cross section at each end of the model, each component is constrained to translate
in the axial direction and in the hoop direction together with the cross section of the
flexible product.

5. The elasticity of the materials involved is correctly represented.

6. Components can gain and loose contact with respect to each other.

2D formulations considering only a cross section are acceptable if they are formulated to carry
out an analysis equivalent to what is mentioned above.

The following load cases are to be applied:

1. An elongation AL is applied to the model, which is of length L, to produce tensions up
to the product’s rated tension. The end cross sections are not allowed to roll. The axial
strain is computed as Ae = AL/L. The tension AR; in the flexible product and the torque
AM,; are logged. The axial stiffness and the torsional-axial cross stiffness are computed

as
AR,
=2 129
Ac (129)
AM,
Kee = 130
= (130)

2. A twist AT is applied to the model, to produce internal torques up to the product’s rated
torque, or a torsion up to the product’s rated torsion. The end cross sections are not
allowed to translate. The torsion is computed as At = AT/L. The tension AR; in the
flexible product and the torque AM,; are logged. The torsional stiffness and the axial-
torsional cross stiffness are computed as

AM,
K, = 131
= (131)
ARy
= —— 132
= (132)
3. Verify that
Kee & Ker (133)

13.1.3 Experimental evaluation

A straight sample of flexible product must be terminated by end-fittings so that all components
are prevented from moving relative to each other, at each end of the sample.

The length L of the sample between the terminations should preferably be longer than 10 times
the outer diameter of the sample, and no shorter than 5 times the outer diameter of the sample,
in order to limit the uncertainty related to compliance in the end-fittings.

The test rig should be able to apply tension the highest tension that the flexible product will
encounter during the operation. For each direction of torque, the test rig should be able to
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apply a torsion or torque up to 100% of the flexible product’s rated torsion or torque for that
direction. The tests can also be carried out at lower loads provided that they explore all the
relevant contact conditions and that there are no material non-linearities that would invalidate
a linear extrapolation of response at higher loads,

The test rig must allow to measure elongation, tension, torsion and torque in the specimen.

The load cases and the procedure for determination of the stiffness coefficients are identical to
what is described in Section 13.1.2.

An alternative procedure is the following:

1. An axial force is applied through the end fittings, to produce a tension AR; up to the
product’s rated tension. The end fittings are allowed to roll freely (no external moments,
either from actuators or friction are applied by the rig to the end fittings). Ae = AL/L
and At = AT/L are measured as before. We then compute

Ae
- 134
¢= AR, (134)
AT
b= — 135
AR, (135)

2. External torques ares applied to the end fittings, to produce an internal torque AM; up
to the product’s rated torque, or a torsion At up to the product’s rated torsion. The end
fittings are allowed to translate freely (no axial forces, either from actuators or friction
are applied by the rig to the end fittings). Ae = AL/L and At = AT/L are measured as
before. We then compute

Ae
= 1
c AM, (136)
AT
= 137
d AM, (137)
3. Verify that
brc (138)
4. Compute
d
Ke = —— 139
ad — bc (139
b
Kee = ————— 140
ad — bc (140)
a
Ky = —/—— 141
ad — bc (147)
Kegm —— S (142)
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13.1.4 Stiffnesses at constant torque and axial force

K, is the axial stiffness at constant torsion. The axial stiffness at constant torque K} is relevant
in situations where an unbalanced cross section can unwind freely as the flexible product
elongates. It is computed as

KSTK [
T
2
=K, — ]]<<” (144)

K is the torsional stiffness at constant elongation. The torsional stiffness at constant tension
KX is relevant in situations where an unbalanced cross section can elongate (or shorten) freely
as the flexible product undergoes torsion. It is computed as

KeeKe
K =Ky — % (145)
K2
= Ke— 2 (146)

Kte = K¢ is the “cross stiffness” term: it gives the increase in tension due to an increase in
torsion at constant axial strain, and the increase in torque due to an increase in axial strain
at constant torsion. KX, =K. gives the increase in tension due to an increase in torsion
at constant torque, and the increase in torque due to an increase in axial strain at constant
tension

KK
Ki, =Ker — £t (147)
K£T
Where the inverse is needed, it is convenient in numerical procedures to use
1 K
Kt = ki (148)

T KL K2 KK,

to prevent division by zero when K.; = 0 for balanced cross sections.

13.2 Moment-curvature diagram, friction bending moment
13.2.1 Importance and sensitivity

In the assessment of torque generation, the moment-curvature curve is important for two rea-
sons. First, it is needed in order to carry out a global static analysis, to obtain the geometry of
the flexible product, in particular in free spans. Second, the moment-curvature relation is used
in order to assess the friction bending moment My, which in turn is needed in the assessment
of flip torque.
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The moment curvature curve of the flexible product depends on the material properties of
each cross-section component, the friction properties of the tensile armour and neighbouring
layers, and interlayer radial contact pressures. These properties are affected, in particular, by
temperature.

Assuming dry friction, the friction forces depend on the contact forces between the compo-
nents. These are affected by temperature: in particular, temperature causes polymer sheaths
to contract, pressing their contents together. Tension also causes helical components to move
or press in the radial direction. Torsion, affecting tension in individual components, also causes
changes in the contact pressures and hence in the friction forces.

Viscous fluids (including tar or asphalt-like compounds) are used in some flexible products for
corrosion protection, partially or completely filling the space between components. The viscous
property of the fluid affects My in terms of both the temperature and deformation rates.

When evaluating My for the purpose of torque assessment it is crucial to obtain an upper
bound value. This will typically be achieved by assuming lower bound temperatures, maximum
expected tension in the operation, and both negative and positive torque with magnitude as
close as possible to the maximum expected torque in the operation.

13.2.2 Moment-curvature by numerical analysis

The analysis can be carried out with a numerical analysis software satisfying the following
requirements:

1. It represents the geometry of the various components

2. At the cross section at each end of the model, each component is free to rotate in all
directions, and free to translate in the radial direction of flexible product. If the component
is itself a sub-component of a larger component (for example a copper wire within on of
three conductors within a cable), then the sub-component must be free to translate in the
larger component’s radial direction, instead of the product’s radial direction.

3. At the cross section at each end of the model, each component is free to translate in the
axial direction, but constrained to translate in the hoop direction of the flexible product,
together with the cross section.

4. The elasticity of the materials involved is correctly represented
5. Components can gain and loose contact with respect to each other.

0. The software must be able to model friction forces between components, correctly ac-
counting for contact pressures between the components.

/. The model is 4 times or more the longest pitch length of any component.
The following load case is to be applied: one end of the specimen is constrained to neither

translate nor rotate. The specimen should be modelled without gravity load. An external
bending moment is applied to the other end. The external bending moment is increased in
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steps until the minimum bending radius is reached. This should be repeated for various values
of torque applied to the cross section.

Curvature at the middle of the model (to minimize effect from either end of the truncated model)
is extracted at each step, and plotted against the applied bending moment (cf. Figure 89).

2D formulations assume constant curvature in the longitudinal direction. Such formulations are
acceptable if they allow to carry out an analysis equivalent to what is mentioned above.

13.2.3 Moment-curvature by test

The specimen must be either terminated as described in Section 13.1.3, or simply cut at both
ends, with components free to translate in and out of the cross sections.

The length of the specimen between terminations (or between point of application of couples)
must be at least equal to twice the longest pitch length of any helical component.

The test rig must allow to apply a load on the specimen equivalent to that described in Section
13.2.2.

The curvature of the specimen must be evaluated at the middle of the specimen. Care must be
taken when doing this, because the curvature will generally not be uniform along the specimen
due to end effects. The curvature is continuously monitored and plotted against the applied
bending moment.

The effect of gravity must be corrected for when a horizontal rig is used. Further, the specimen
is likely to have an initial curvature in its moment-free state. These effects are simply corrected
for by setting the zero-reference for the curvature measurements equal to the curvature prior
to application of the external bending moment.

Where possible, the test should be repeated with various values and direction of torque applied
to the specimen.

A test rig for bending may not allow to apply tension up to the level encountered in some
operations (J-lay, beach aull in). In that case, the data obtained from the test at low tension
must be completed by values computed by numerical analysis for high tension

13.2.4 Evaluation of the friction bending moment

Once a moment-curvature graph has been obtained from the specimen, the graph can be used
to estimate the friction bending moment My, as shown in Figure 89. Where any doubt arises
concerning the selection of a tangent to the curve in the “full slip” area, a conservative choice
is made by selecting the highest value of M.

An alternative method is shown in Figure 90.

Where moment curvature curves have been established under various conditions of torque
and/or temperature, one value of My is evaluated for each condition.
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Figure 89: Typical moment curvature diagram of a flexible product. Realistic curve (black) and

idealized (red). MBR is the minimum bending radius of the flexible product.
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Figure 90: Alternative method: the specimen is bent back and forth. This difference between
moments for loading and reversed loading, at zero curvature, is equal to 2Mj.
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14 Overall torque load assessment procedure

The handling of a flexible product, from production to installation is, for analysis purposes,
separated into phases. For each route the product is following, up to three phases are relevant:
the early transient, steady state, and the late transient. The phases of handling can include:

1. Start of the winding process, before the cable head reaches the downstream turntable.
2. Steady state of winding process.

3. End of winding process, after the cable tail leaves the winding machines.

4. Start of the extrusion process, before the cable head reaches a new downstream turntable.
5. Steady state of extrusion process.

0. End of extrusion process, after the cable tail leaves the extrusion machines.

7. Start of loadout operation, before the cable head reaches the installation vessel.

8. Steady state of loadout operation.

9. End of loadout operation, after the cable tail leave onshore storage.

10. Start of installation operation, while the head of the cable is routed out of the vessel.
11. Pull in while cable head is pulled over the beach.
12. Steady state of installation operation.

13. End of installation operation, as tail of the cable leaves the vessel.
For each phase a variety of mechanisms may generate torques:

Coiling writhe (Section 15).
Flip torque (Section 16).

1.

2.

3. Cranking (Section 17).

4. Torsional imbalance (Section 18).
5.

Residual curvature (Section 19).

In principle each mechanism must be assessed for each phase, leading to a substantial analysis
matrix. However some combinations can quickly be dismissed as irrelevant: for example,
if @ product follows a straight line between two spools at low tension, then coiling writhe,
flip torque, cranking and torsional imbalance can be judged irrelevant for the corresponding
transients and steady state.

For each phase and mechanism, a diagram of the torque along the route is obtained. Each
diagram is split into a positive part and a negative part (Figure 91, top).

For each phase, the positive parts for all mechanisms are added into one diagram of total
positive torque for the phase, and the same for the negative part (Figure 91, bottom). In Figure
91, the sums of the positive (respectively negative) parts is drawn in black. The highest positive
torque is extracted from the diagram of sums of positive torque for the phase (marked with a
small circle). The same is done for the negative parts.
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datal
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data3
datad

~

Mechanism 1
Mechanism 2
Mechanism 3
Mechanism 4
All mechanisms

Figure 91: For a phase, addition of the positive (left) and negative (right) parts of the torque
induced by various mechanisms. Small offsets between the curves were introduced for read-
ability. No such offsets are to be introduced in an actual assessment.

Once all the phases have been analyzed, the overall highest positive torque for all phases is
identified, and the same is done for the overall highest negative torque. These two values are
then to be compared to the torque capacity (Sections 20 and 21).
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15 Coiling writhe at steady state

Coiling refers here to the storage of a flexible product in a basket or ship hold which can not
rotate (as opposed to a spool or a turntable). Typically, each coil is within a horizontal plane.

Figure 92 shows a positive basket (the mirror image would be a negative basket).

When coiling a flexible product into a positive basket, at steady state, torsion and torque

1

=—=- 149

T=— (149)
K*

M, =——* (150)

are caused by change of writhe. 1 is taken as the smallest radius of curvature in the coil. For
a negative basket, the signs are changed

T= (151)

A ¥

M, = (152)

_1|x—f|»—l

Only the coiling writhe from a downstream basket is considered as a source of torque for the
route: Coiling writhe from an upstream basket is considered not to induce torques. Coiling
writhe from a downstream basket is ignored in the early transient phase, and considered to be
uniform over the route during the steady-state and late transient phases.
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Figure 92: A positive basket (the mirror image is then a negative basket).
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16 Flip torque

16.1 Introduction

The assessment of flip torque is done in two phases (Sections 16.3 and 16.4), with the possibility
for iterations (Section 10.7). The first phase is a global static analysis using a linear elastic
beam element model, in order to obtain an approximation of the geometry of the cable along
the route, in particular, in free spans (Section 16.3). Once the geometry of the route has been
computed, this is used to compute the flip torque (Section 16.4). Where flip torque geometry
instability is a potential concern, the approach must be iterated (Section 16.7).

The choice of segments to analyze depends on the context, as discussed in Section 7.

16.2 Limitation

The procedure presented in this chapter has an important limitation in its domain of validity:
it assumes that the material roll rate is uniform along the segment of route that is analysed.
This is only valid if, at the relevant levels of torque, the torsion in the flexible product is small
compared to the Frenet-Serret torsion of the segments of the route that generate flip torque.

Flexible products with two or more tensile armour layers will as a rule of thumb have so high
torsional stiffness that the above assumption is verified. On the other hand, “coilable” flexible
products, and other flexible products designed with a low torsional stiffness (with a single
tensile armour or none at all) will generaly not verify the above assumption, and the flip torque
assessment procedure is not valid.

A procedure that does not assume that torsion is small would require the solution of what is
called a boundary value problem, and so in practice, a finite element solution of the torsion
along the route. Combined with the need for a finite element solution to determine the geometry
of the route by a separate finite element analysis (Section 16.3), and for the need to iterate
(Section 106.7), this points to the future of flip torque evaluation by a single, specialised, finite
element analysis tool.

16.3 Global finite element analysis

The objective of the global finite element analysis is to compute an approximate geometry
for the flexible product along the route. The flexible product is modeled using Euler-Bernoulli
beam elements (as opposed to Timoshenko beam elements that account for shear deformations),
with a linear elastic bending stiffness. The transport of the flexible product along the route is
not modeled. The bending stiffness is to be taken equal to the product's bending stiffness at
full slip. This is determined as the smallest slope in the moment-curvature diagram (Figure
93).
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Figure 93: For the FE analysis, the bending moment is taken as dM/dxk as illustrated

A convergence study should be carried out to verify that the mesh is sufficiently dense: halving
the length of the beam elements should not influence the results significantly. In addition, the
mesh must be sufficiently dense in order to provide nodal positions at closely spaced intervals,
for the procedure in Section 16.7. As a rule of thumb, the angle between the tangents to the
flexible product, at both ends of an element, should be under 2 degrees (a quarter turn should
thus be meshed with 23 elements or more). Also, all the beam elements in the model should be
meshed with the same length to reduce numerical noise in the finite difference scheme applied
to compute the torque (it is possible to eliminate that requirement, but this would require a
more advanced procedure than what is described in Section 16.7).

Surfaces that are in contact with the flexible product, including turntables, seafloor, chutes,
roller highways, tensioners and so forth must be modeled with correct geometry. The friction
properties (dry friction against chutes, rolling of supporting rollers, the grip and tracking of
tensioners) can be modeled in any ad-hoc fashion, as long as that the length of flexible product
found to be in each free span (the slack in the span) is realistic for the operation. Regarding
external friction, the flexible product must be moved a short distance in the longitudinal direction
in order to fully activate friction forces in the intended direction.

The finite element analysis must consider a set of load cases that encompass what will be
experienced in the operation. This includes free spans with torsion in the slack and tight
direction, and for turntables or baskets: full and empty, laying by the outer wall and by the
nave.

Stringent convergence criteria must be used, to ensure that the positions (coordinates) of the
nodes are determined with high precision. It is recommended to apply load-based or energy-
based convergence norms. Displacement-based norms are to be avoided if most of the product
is supported by rollers, chutes or other rigid geometries.

Once the analysis of a load case is completed, the positions (coordinates) of the nodes of
the model are exported. Care must be taken to export the numbers with full precision (15
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significant digits). The high precision of nodal coordinates is needed because this data will
be subjected to multiple differentiation, a process which strongly amplifies any noise in the
data. "High precision” here means that the solution to the model, with all its assumptions
and simplification is obtained with high precision, while the effect of these assumptions and
simplification on the solution is acknowledged.

16.4 Flip torque computation procedure

The result of the flip torque analysis is, for each material roll rate, a diagram of the internal
torque along the route. The procedure described here is a slight simplification of what is
implemented in the code Jordan.py. However, the essential steps are identical.

The procedure starts with an array xi; where i € {1,2,3} is the index for three coordinates
in space and j € {1,2,...,n} is the node number from the finite element analysis. n is the
number of nodes in the FE model.

In the following, an index notation like x;i. stands for “the i-th coordinate of all nodes” So
while x is a matrix, x;. is a vector with n components. Similarly, the vector x.; contains the 3
coordinates of node j. The notation a - b represents the multiplication of two matrices, or of
two vectors (the usual dot product) or the multiplication of a matrix by a vector.

In the following, we will introduce a family of reference systems with a torsion equal to the
material roll rate: Each node j along the route has 3 orthogonal and unit length vectors. The
3 vectors are numbered k € {1,2,3}. The ith coordinate of vector k at point j along the route
is denoted e‘fj. The collection of 3 coordinates of vector k at point j is denoted eg.

A finite difference scheme will be used several times in the following. If z; is some quantity
known for each node j, then z is the collection of these quantities for all nodes. lts finite
difference d(z); (the value at point j of the finite difference d (z) of z) is computed as

3(2ja—2zi4a) — 32 (2i_5 — z; 168 (2o — zi40) — 672 (2j_1 — 24
d(Z)]- _ (Z] 4 Z)+4) (Z] 3 Z)+3) ‘240 (Z] 2 Z]+2) (Z) 1 Z]+1) (153)

Because zj_4 and zj;4 appear in the scheme, d(z)j can only be computed for nodes j €
{5,6,...,m—4}. In the procedure below, finite differences will be applied repeatedly to
compute 3rd order derivatives. Hence some results will only be available for nodes j €
{13,14,... ;n—13,n—12}. This must be accounted for during the finite element analysis
by having 12 elements outside of the area of interest.

1. Establish an arc-length coordinate for each node

11. Set
s1=0 (154)

12. Forje{l,2,... ,n— 1} compute

Sj+1 = Sj + \/(X1j+1 - X1j)2 + (X241 — X25)2 + (X341 — ij)2 (155)
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13. Forj €{5,6,... ,n—4}, compute
ds; = d (s); (156)

2. Establish a family of local reference systems along the flexible product, with one reference

system at every node of the finite element model. The torsion of the family of reference
system is equal to the material roll rate (the choice of values for the material roll rate is
discussed in Section 16.5).

21. Forj € {5,6,... ,n—4}, compute the coordinates i € {1,2, 3} of the tangent vector
at node j as

ty = d (x), (157)
Normalize the tangent vectors t;
1 t;
= — 158
S T 9

2.2. At point j =5, chose a unit vector e% orthogonal to ek. Unless ek is vertical,
2 1Ll 1 ol
€5 = [ —ey; €5 0 } / H —ey €5 0 ” (159)

is an adequate choice in the horizontal plane.

2.3. Compute
ek =e; x e (160)
24 Forje{5,6,... , n—>5}
2.4.1. Compute the rotation vector
DR

Dk
where DR/Dk is the material roll rate defined in Section 3.10 and k is the

payout defined in Section 3.2. DR/DXk is assumed constant along the route,
which is a simplifying assumption.

2.4.2. Compute the rotation rate matrix
K. = V3 0 W1 (1 62)

2.4.3. Compute the rotation matrix

100 sin [v.| 1 —cos|v.|
N:: - 010 + K:: -+ K:: : K—2 (/I 63)
00 1 |V;| |\):|

The functions sin [v| / [v| and (1 — cos|v|) / [v| are both fractions where numerator
and denominator tend to zero as |[v| becomes small or zero. This will occur for
straight locations along the route and zero material roll rate. Small |v| will
thus cause run-time errors depending the programming language. A typical
presentation is the appearance of “NaN"-valued results. To avoid this, for small
Iv], the functions can be replaced with 1 and 1/2 respectively.
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2.4.4. Compute

e, =N.-e (164)
€1 =N - € (165)
3. At each node j, compute curvature k.; and express it in the local reference system.
31. Forje{9,10,... ,n—8}
3.1.1. Compute
d(el).

o= v 166

K ) dS) ( )
3.1.2. Compute

Ké?c = K ~e?j (167)

K},);-’C =Ky - e?’j (168)

4. At each node, compute the bending moment in the cross section by Eq. 170, and use Eq.
172 to compute the flip torque per unit length.

41. Forie{2,3}
411. Forje{13,14,... ,n— 12} compute
hij =d (K}:OC)]. (1 69)
42. Forie{2,3}
421. Forje{13,14,... ,n— 12} compute

M =M
J

(170)

This step fails if |h;| is zero, or extremely small. This will occur in parts of
the route that remain in uniform curvature (in direction and intensity), including
straight part of the route. The simplest way to handle this is only to handle the
parts of the route with change of curvature plane (which is where flip torque
is produced). Another way is to chose a value dh which is large compared to
values of [h;| obtained in segments of the route where the curvature is uniform in
intensity and direction, but small compared to values of |h;| obtained elsewhere
along the route, and compute

h:
My = — - 171
P M (dh TRy )
43. Forj e{13,14,... ,n— 12} compute
dMy; = (Myj K5 — My k59°) ds; (172)

5. Integrate along the route to obtain the distribution of the internal torque M.

5.1. Set
Mi13 =dMi (173)
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52. Forje{14,15,... ;,n— 12} compute
My; = My + dMy; (174)
53. Forje{n—11,n—10,...n} compute

M5 = Myn 12 (175)

The above procedure yields a torque curve M;. that is zero upstream Mj; = 0. In reality
however, the distributions of internal torque obtained in this way are defined to an integration
constant, meaning that the whole distribution can be uniformly shifted up or down. The choice
of that shift depends on the boundary conditions at both end. The procedures for specific
situations, presented in Sections 16.5 and 16.6 take care of this issue.

Important results that should be extracted from M;. once the proper integration constant has
been added to account for the boundary conditions, are My, (the total flip torque generated
by the flip area), max (M;.) and min (M;.) the maximum and minimum torque found in M. .

16.5 Flip torque transient close to downstream storage

We consider a situation where a route has a flip torque-inducing geometry, that is a short
distance of a downstream storage (turntable or spool), compared to the length of the rest of
the route upstream.

The present procedure is generally not relevant if the downstream “storage” is the seabed:
the distances within the installation vessel are typically small compared to the free span, so a
steady state situation (Section 16.0) will be reached without the downstream torque build-up
considered in the following.

At the start of an operation, a transient will occur when the head of the flexible product reaches
the downstream storage. At the end of the operation, a new transient will occur when the tail
of the flexible product leaves the upstream storage. The aim of the assessment is to evaluate
the downstream internal torque at these stages.

In the transient, the upstream torque is small (conservatively, it is set to zero), and thus the flip
torque must be balanced by the downstream internal torque. This is reflected in the assessment
procedure below.

The red curve in Figure 94 shows an example of a torque-torsion diagram. Importantly, this
diagram must be established assuming zero tension, hence the slopes in the diagram are noted
Kz, and not K+. In the example, positive torsion corresponds to the tight direction, and negative
torsion to the slack direction of the flexible product.

The black curve in Figure 94 is the flip-torque diagram, obtained as specified in Section 16.8 .
This black curve is rotated 180 degrees around the origin to obtain the green curve®. In other

This is because 1) a positive roll causes a negative torsion further upstream, and 2) a positive flip torque
causes a negative flip torque further upstream.
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Flip torque curve
Rotated flip torque curve
Torsion-torque curve

Figure 94: Assessment of torque transient for a turntable of spool

words, if the black curve is obtained by plotting My¢ against T, the green curve is obtained by
plotting —M¢ against —t. The black curve is an example of flip torque diagram for a flip area
with positive Frenet-Serret torsion.

The assessed transient downstream torsion T and the transient downstream torque My are
found at the intersection of the (green) rotated flip torque curve and the (red) torsion-torque
curve (Appendix C). The torque diagram (to be entered in Figure 91) is zero upstream of the
flip torque inducing geometry, and torque My in, and downstream of, the flip torque inducing
geometry.

16.6 Steady states

In an operation where the flexible product comes from an upstream “storage” that determines
the upstream material roll rate, and goes to a downstream storage that absorbs torsion, the
operation will generally approach a steady state in which the flip torque produced at various
flip areas is taken up by upstream internal torque. At steady state, the material roll rate in
flip areas will approach zero.

Flip areas along the route are numbered with a € {1,2,...,n,}, counting from upstream to
downstream. At each flip area along the route, the flip torque is evaluated by following the
procedure described in Section 16.4, for DR/Dk = 0, and M{,,, max (M) and min (M{.) are
documented (see Section 16.4 for the convention on the use of the semicolon as a subscript).

If it is possible to cover the whole length of the route with one FEM analysis, and carry out
the procedure described in Section 16.4 for the whole length, then there is no need to carry
out the following procedure.
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Figure 95: Two torque distributions obtained using the procedure in Section 16.4

The highest torque along the route is assessed as follows:

1. Set
M, = (176)
M =0 (177)
MMM =0 (178)
2. Forae{l,2,..ng.}
2.1. Compute
M = max (max (M) + My, M%) (179)
M™M™ = min (min (M{}) + My, M) (180)
where max (A) is the highest element in vector A, and max (a,b) is the largest of
a and b.
2.2. Compute
M; =M; + M7, (181)
3. Compute
MM = MM — M, (182)
MM = MM M, (183)

Step 3 ensures that the values of M™* and M™™ are for M; = 0 at the downstream end.

The values of MI"® and MT™'™ obtained after step 3 are then kept for comparison with the
flexible product’s torque capacity.

Figure 95 shows two torque distribution obtained using the procedure in Section 16.4. Figure
96 shows the values M™™ and M{*** as computed using the above procedure.
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Figure 96: Torque distribution along the whole route, with MJ™™ and M obtained using
the steady-state assessment procedure.

16.7 lteration

Internal torque affects the geometry of free spans, and this is not captured in the finite element
analysis described in Section 16.3. If there is any suspicion that this may be significant, the
analyses in Sections 16.3 and 16.4 should be repeated as follows:

The flip torque per unit length dM;/ds, evaluated in Section 16.4, is applied as a distributed
external torque along the flexible product, when repeating the FE analysis. When doing so,
the choice of boundary conditions for roll degrees of freedom becomes critical. This choice
depends on the phase of the operation that is being analyzed (Sections 16.5 and 16.6 ).

The finite element analysis is repeated and the new geometry thus obtained is used to update
the flip torque analysis (Section 16.4). The sequence of finite element analysis and flip torque
analysis is iterated until the geometry of the route is stable from one iteration to the next. If
the iteration cannot be made to converge towards a stable route, then the operation must be
deemed liable to flip torque geometric instability (Section 8.4).

16.8 Flip torque diagram

The flip torque diagram for a segment of route is obtained by carrying out the analysis described
in Section 10.4, for a range of values of the material roll rate DR/Dk. At least the material roll
rates between 0 and the value at which the flip torque becomes zero must be covered. If, in
further analyses, material roll rates are encountered that fall outside the covered range, then
the range of material rates in the flip torque diagram must be extended by further applying
the procedure in Section 16.4.
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Positive Frenet-Serret torsion
Negative Frenet-Serret torsion

DR/Dk

Figure 97: Relation between the sign of Frenet-Serret torsion and the position of the flip torque
diagram

It is often convenient to make the approximation that the diagram provides the relation between
the spatial roll rate and the flip torque. This approximation is reasonable if the torsion in the
flexible product within the length of the route covered by the diagram is small (in absolute
value) compared to the Frenet-Serret torsion of the route. If this is not verified, and torsion is
large, then the flip torque diagram might become a questionable tool, because the torsion, and
hence the material roll rate might change significantly along the length of the route covered by
the diagram. If this is the case, then more advanced analysis methods will have to be devised.
Coilable flexible product are designed to be very compliant in the slack direction, and they
can, under the right circumstances have very high torsion.

Figure 97 shows examples of flip torque diagrams for a segment of the route dominated by
positive (and negative) Frenet-Serret torsion. This is provided as a check against sign mistakes
when setting up such a diagram.
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17 Cranking

Cranking assessment accounts for actuators that can force displacements of the flexible product
in a direction orthogonal to the route.

Examples of actuators that must be included in the cranking assessment are

— Roller boxes that can be displaced transverse to the route.

— Manipulators to stack the flexible product in a turntable. This can be direct handling by
personnel in the turntable, or a hydraulic guiding arm.

Examples of actuators that must not be included in the cranking assessments are

— roller and chutes: these apply forces in the direction radial to the flexible product but do
not give displacement in that direction.

— Tensioners, winches working along the route, spools and turntables: these introduce
displacements, but in the route’s longitudinal direction.

The assessment is made using a FE analysis of the relevant part of the route with an elasto-
plastic bending model. An elasto-plastic model for the bending response must be used, as
otherwise actuator forces will induce no torque. Further, without an elasto-plastic bending
model one will loose the roll resistance associated with change of curvature plane. Transport
is not represented. The model must also represent roll-resisting friction of the flexible product
against rollers, chutes etc. Friction coefficients (including in tensioners, where the increase of
friction by clamping forces must be accounted for) are set to conservatively high values along
the route. Because transport is not modelled, tracking (Section 6.5) is not to be accounted for
in this procedure.

For a given actuator force, a diagram of the force along the route is produced. Where several
actuators can induce torque on the same sagment of the route, the analysis must consider
simulatenous actuator forces. The analysis produces a torque diagram along the route for each
actuator load case.

The above torque diagram is combined with the torques diagrams from other sources, using
the procedure outlined in Section 14. If the total torque thus assessed is acceptable, then
the actuator loads are acceptable. Otherwise, the procedure must be repeated with reduced
actuator loads.

The forces thus obtained are then used as an upper limit to allowable actuator forces for this
operation, and are used also for actuator forces while the flexible product is transported.
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18 Torsional imbalance

18.1  Pull-in operation

Pull-in operation with unbalanced product may induce torsion by unwinding the product while
transported under tension, then relaxing the tension, without transport (Section 9.6).

For a pull-in operation, or during the transport of a flexible product over long distances and
using significant tension, the maximum tension Ry nax (s) that may occur at coordinate s along
the route must be evaluated. The simplest assessment would be to add the rated strength of
winch and each tensioner, at all the points upstream of the point of application of the force. A
more advanced assessment could account for the reduction of tension due to friction (external
and internal) - but no guidance is offered for this here.

Ry min (8) should be zero for all route coordinates s unless special precautions are taken to
ensure a minimum tension, or unless it is known that compression can occur.

For all route coordinates, the “unwinding torsion” T, (s) is the torsion under Ry .y (s), and is
computed according to Appendix B

Rl max (S)
L(s) = —=-— 184
Tu (8) K (184)
with KK
K — —er  MERT 185
(o= (183)
At Rimin (s), the same torsion will induce a "tension-relaxation” torque
K&T
M, (S) = K (lein (S) — Ri max (S)) (/I 86)

This computation is carried out at many points s along the route, resulting in a “tension-
relaxation” torque diagram.

18.2 ]-lay installation on the seafloor

The procedure described in the following is the only procedure in the present guideline that
is relevant to the assessment of torque in the catenary between an installation vessel and the
sea floor (Section 9.5). This must not be confused with the assessment of torque on board the
installation vessel, where a variety of sources (e.g. flip torque, cranking) are to be assessed.
The present procedure differs from other ones in that instead of producing a diagram of the
torque along the free span, only the torque at the touch down point is to be assessed. This is
because torque will be approximately uniform along the catenary, and the tension lowest at
the touch-down point, so failures, if any, would occur there.
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The assessment procedure is based on a catenary solution, which does not account for bend-
ing stiffness, sea currents and dynamic response. For any given water depth, the assessment
procedure requires the conservative choice of both a minimum tension (slack) and maximum
tension (tight) configuration. The choice of these configurations should strive to account, con-
servatively, for the wave response of the vessel. Both configurations are described based on
the bending radius at touch-down point, Tyin and Tax respectively. In the following, where
the symbol “m" appears, computations are to be repeated replacing “m" with “min” and then

" "

max.

For the purpose of choosing Timin and Tmax it is useful to note that the effective tension (cf.
Section 4.9) at the hang-off point, is

tm=wl(z+1m) (187)
where z is the height of the hang-off point over the seabed and where w is the submerged
weight per unit length (in [N-m™1]) of the flexible product. Also, the horizontal distance
between hang-off point and touch-down point is

z
AXy = T cosh <1 + —) (188)
rm
where coshx = % is the hyperbolic cosine function. Finally, the length of the free span is

L= V224 2zr, (189)
The torque-free twist in the free span is (Appendix A):

*— m Ln+2z

Tom =K g {? (Lm (tm +2) + 173, log (1 + ﬁ—)) — szLmAe} (190)
m

where g is the acceleration of gravity, m the mass of the flexible product per unit length, p,

is the density of seawater and A, the outer cross section of the cable.

When the span rapidly goes from a tight to a slack configuration (without forward movement
of the installation vessel), the twist in the flexible product laid on the seafloor is conservatively
assessed using the assumption that the torsion at touch down point is equal to the torque-free
torston:

m (1 1 m
Tl - K:;192_Z (gl—?nax - gL?nln) - K:lz (% + pnge> (Lmax - Lmin) (1 91)

The torque at the touch down point in the slack configuration is evaluated as
M; = K:kcil (Tu max — Jumin — Tl) (1 92)

with

K = K — KoK Kt (193)

T
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19 Residual curvature

Residual curvature can occur if a flexible product is stored, and either plastic deformation, or
creep in sheaths (typically polymer or lead) occurs so that these sheaths have a curved shape
in the absence of load on the sheath (including loads coming from other components in the
flexible product). When the flexible product is transported, the residual curvature of the sheath
may not align with the curvature of the route. This may induce roll, and torsion.

The residual curvature must be provided as an input, to assess how it may result in torsion. A
conservative approach is to model the beam elements with a moment-free curvature equal to
the curvature in the upstream storage. Less conservative values can be obtained by detailed
analysis, but no guidance is provided here.

A simplified method to assess this is to model the flexible product using Euler-Bernoulli beam
finite elements, that models the whole route, from storage to storage. The ends of the route must
be at the points where the flexible product gets in contact with other coils (or the seabed). The
bending-curvature relation of the flexible product must be represented by the beam elements. If
the relation is not available or cannot be accommodated by the software, then a linear bending-
curvature relation can be used, with the bending stiffness corresponding to the absence of slip
(resulting in a upper bound for the stiffness). The torsional stiffness K.+ is the stiffness assuming
free axial deformation, and torsion in both tight and slack torsional direction must be accounted
for.

External friction is set to zero in the transverse direction: friction is assumed not to impede
roll.

19.1  Simplified analysis

The global static finite element analysis is based on a standard linear-elastic bending model

M, = Elw, (194)
M, = Elw; (195)

where EI is the bending stiffness and wsy and w3 are the curvature components.
Two sets of boundary conditions are to be considered:

1. The flexible product is restrained from rolling at the upstream end and free to roll at
the downstream end. The roll angle at the upstream end is chosen to align the residual
curvature with the curvature in the upstream storage.

2. The flexible product is free to roll at the upstream end and restrained from rolling at the
downstream end. The roll at the upstream end is chosen to align the residual curvature
with the curvature in the downstream storage.

For particularly short routes, two additional sets of boundary conditions need to be considered.
Starting from load case 1 above, the roll at the downstream end is set to align the residual
curvature in the downstream storage by
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1. applying a positive 180 degree roll to the downstream end,

2. applying a negative 180 degree roll to the downstream end.

The internal torque along the route are retrieved for all load cases studied and further evaluated
as described in Section 14

19.2 Advanced analysis

If the simplified analysis method proves to be overly conservative, a more accurate global static
finite element analysis may be performed if the software tool includes a linear-elastic bending
model that accounts for residual curvature:

M; = EI [w; — wiA; (k)] (197)

where w9 and w are the residual curvature components which are assigned scale factors
As (k) and As (k) as a function of payout k. The other quantities are defined in Section 19.1.
The scale factors are typically kept at zero until the gravity load has been applied and the
contact forces from the supporting rollers, chutes and the storage geometries have converged.
Thereafter, the load scale factors are increased to 1.0.

The whole route is modelled from the upstream storage to the downstream storage including
all contact geometries that are required to support the flexible product along the route. The
model should extend a quarter coil into both the downstream and upstream storage so that one
can set appropriate boundary conditions. The translation degrees of freedom at both ends are
kept fixed, except in the axial direction at one end where an appropriate tension load is applied.
The rotation degrees of freedom at both ends are kept fixed, except for the roll rotation at the
downstream end which is kept free. A shorter part of the route may be modelled provided that
it is possible to set realistic boundary conditions for the reduced model.

The torsional stiffness for both the tight and slack directions shall be considered. If the analysis
shows that the flexible product will roll such that only the torsional stiffness for the slack
direction is relevant, the tight direction torsional stiffness can be disregarded: this will result
in smaller torque values.

The residual curvature components w9 and wj are selected based on the expected residual
curvature at the upstream storage. The beam element should be oriented to get one of the
element coordinate axes aligned with the upstream storage axis. Then, one of the residual
curvature components can be assigned zero value, and the other one can be set equal to the
expected residual curvature at the upstream storage. In the most conservative case, one may
assume that the residual curvature will be equal to the curvature of the innermost coil at the
upstream storage.

The scale factors for the residual curvature components A, (k) and Az (k) may be assigned
uniform values along the whole route. If the software tools allows the user to easily apply
scale factors for each beam element, it will be possible to simulate that the residual curvature
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spreads with the transport velocity from the upstream storage to the downstream storage
similar to what happens in the transient phase at start-up of the operation. This effect is
only relevant to simulate if it is likely that it will lead to different equilibrium configuration
compared to the configuration that results when A (k) and A3 (k) are uniform along the route.
The flexible product will in most cases be kept in place along the route by numerous supports
in the vertical and lateral directions. In these cases, the final equilibrium configuration and the
resulting torque are not expected to differ with respect to how the load scale factors A, (k) and
A3 (k) are applied along the route. If the final equilibrium configuration shows that the flexible
product is not coiled nicely at the downstream storage, the model should be extended at the
downstream end until the beam elements are coiled as intended at the downstream storage.

The main advantage of applying the bending model in Egs. 196 and 197 is that the torque
induced along the route from the residual curvature is accounted for. At a point along the route,
the induced internal torque per unit length due to residual curvature will be equal to

oM,
0z

which follows by inserting Eqgs. 196 and 197 into Eq. 55 assuming m; = 0.

The internal torque along the route are retrieved for all load cases studied and further evaluated
as described in Section 14
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20 Local failures

20.1 Stresses in the tensile armor
20.1.1 Stresses due to bending

The contribution from friction between the layers, to the stresses in the tensile armour is
difficult to compute for two reasons:

1. Curvature may change direction (Frenet-Serret torsion, Section 3.11.4) over distances
that are not large compared to the pitch length of the tensile armor. This invalidates the
assumption of uniform curvature (in intensity and direction) used in extent in theories of
bending induces stresses [49, 50, 48].

2. The contact pressure and hence the friction between armor layers and surrounding layers
is influenced by tension, torque, internal constraints induced by fabrication (shrinkage of
polymer sheaths, creep, thightness of laying various layers), temperature, and curvature-
pressure instability (Section 8.3).

Assuming the flexible product is designed so that the maximum axial stress oy; in the tensile
armours due to bending reach yield stress at minimum bending radius then a rough approxi-
mation for the sum of the friction-induced stresses and the component bending stresses is

o}, = £k MBR SMYS (199)

where k = [K| is the norm of the curvature vector (Section 3.3), MBR is the minimum bending
radius of the flexible product and SMYS is the specified minimum yield strength of the tensile
armor wires.

For simplicity, the bending stresses are considered uniform over the cross section of any given
armor wire. The stresses are considered tensile on the outside of the curvature and compressive
on the inside of the curvature.

20.1.2 Stresses due to torque and wall tension

Global analysis provides estimated effective tension Rf and torque M;. In situations where the
flexible product is submerged, Eq. 45 is to be used to compute the wall tension R} (Section 4.9):

outside of water (and in the absence of pressurization of internal components), this simplifies
to R}Y = Rf{.

While some cases can be treated analytically, generally, given R}" and M;, stresses in the
tensile armor must be computed using dedicated finite element software capable of handle
axisymmetric loading conditions (such as Caflex, Helica and UFLEX). In such analyses it is
important that geometry, lay angles and materials are adequately represented. The software
must allow for components losing and gaining contact with each other. In terms of boundary
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Figure 98: Assessment of the envelope of allowable force resultants. Each radial line corre-
sponds to a value of r. The envelope joins the points where the stress reaches a critical value
(at any point in the cross section, and for any local failure mechanisms).

conditions, the software must, in effect, consider a slice of the flexible product, which the cross
sections at both ends remaining plane, and normal to the axis of the flexible product. One plane
is fixed. The other plane can translate along the axis and rotate around it. All components
must move with the plane, except that they can have radial displacements.

A procedure for the determination of combinations of R}" and M; is to model the cross section
using a software as mentioned. A variety of ratios 1 = R}"/M,; is selected. For each ratio r,
progressively increase M; while keeping R}Y = r My, until critical stress is reached in one of
the component. In a graph (Figure 98), plot the values of R}¥ and M; for which critical stress
was reached. The procedure is repeated with negative values of My, and then all the above is
repeated for each value of r so that “rays” are sent in all directions around the origin.

20.2 Lateral buckling of tensile armour
20.2.1  Notations

The wire's lay angle, cross section area, shear and Young's moduli are denoted «, A, G, and E.
For rectangular wires, the width and thickness are w and t. For circular wires the diameter
is d. The mean radius of the layer is R, and the number of wires in the layer is n. Where
relevant, subscripts i and o refer to the inner and tensile armour layer, respectively.

01c is the critical axial stress in the wire. For buckling failures, o1 < 0, and one must ensure
that 01, < 07 to prevent failure.
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20.2.2 Moments of inertia

For a rectangular wire, the wire's moments of inertia for torsion J, bending around the weak
axis Iy and around the strong axis I3 are computed as:

1 641t
—wtd | D - 200
J=w [3 7T5W} (200)
1
I, = —wt? 201
9 12wt (201)
1
I = Etw3 (202)
For a circular wire, the moments of inertia are
nD*
== (203)
nD4
L=1I o (204)

20.2.3 Buckling of rectangular wires

This buckling mode is illustrated in Figure 84 and has been extensively studied for flexible pipes
subjected to axial compression in previous research efforts, see Section K.1.1. Equation 205
has been validated against tests and shown to be in very good agreement for double-armoured
flexible pipes subjected to axial compression.

The critial stress in a wire is [26]

sin? o
wtR2

O1c = —

[EI5(1 4 cos® &) + 4EI, cos® & — GJcos2a] (205)

It is interesting to note that the buckling stress in Equation 205 corresponds to a lateral
sinusoidal buckling mode where the buckling length is equal to the wire length along a half
pitch:

iR

_ 20
b= e (200)

A smaller buckling length than in Equation 206 may occur if the armour wires are very closely
packed so that neighbouring wires restrict lateral displacement. A smaller buckling length
implies increased capacity. However, this beneficial effect cannot be accounted for in a simple
manner and therefore the capacity shall be calculated by Equation 205.
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20.2.4 Buckling of circular wires

The critical buckling stress for a circular wire may be calculated as follows [25]

ED?sin? 2« N 2G cos?
16R2 Esin? 2« + 2G

Ol = — (207)

The critical buckling stress for a circular wire is 7.5% larger than the one for a rectangular wire
as given in Equation 205 with ], Iy and I3 based on Eqgs. 203 and 204. The larger buckling
stress does not necessarily imply larger capacity because the steel area fill factor is normally
smaller for armour layers with circular wires.

20.2.5 Torsional-flexural buckling of rectanqular wires

This failure mode is shown in Figure 85 and may occur for armour layers subjected to outward
radial motion where a significant gap is formed at the inside of the armour layer. In that case,
the gap may allow the wires to rotate about their own axis. The final deformed state consists
of combined lateral deflection and axial rotation of the wire.

The failure mode is however not likely to occur because the wire compressive axial force will
stabilize the axial rotation [26] The stabilizing effect is significant because the compressive
axial force is always large whenever buckling is relevant. Further, the stabilizing effect will be
present also if a large gap occurs at the inside interface of the outer armour layer. The axial
rotation is therefore unlikely to be initiated even if a significant gap is formed. However, if
large lateral deflections occur due to e.g. the buckling mode in Section 20.2.3, the wires may
start to rotate due to lateral contact between neighbouring wires. This will only occur when
the wire state is close to the lateral stability limit or in the post-buckling state.

Based on the above arguments, the lateral buckling mode in Section 20.2.3 will occur prior to
the torsional-flexural failure buckling collapse mode. Hence, the failure mode is not relevant
to consider in design. The capacity shall instead be computed by Equation 205.

20.3 Birdcaging

Birdcaging refers to the radial failure mode illustrated in Figure 80. This failure mode may
occur in two different ways:

1. Failure of outer supporting layer(s)

2. Birdcaging of tensile armour
The first mode is addressed in Section 20.3.1 and represents tensile failure of the supporting
layers due to radial expansion of the tensile armour. The second mode is addressed in Section

20.3.2 and may occur if the supporting layers do not have sufficient radial stiffness to prevent
the tensile armour from buckling radially.
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20.3.1 Failure of outer supporting layers

High-strength tape wound around the tensile armour may be applied to increase the birdcaging
capacity. Failure of the high-strength tape layer is normally not acceptable. Hence, the failure
criterion may be taken as the ultimate tensile capacity of the tape when subjected to radial
expansion of the underlying tensile armour layer. For products with an external sheath, this
failure criterion yields the following critical wire stress in the tensile armour layer:

R? A; sin? t
o = cosx | oA sin“oy L omE eyt (208)

nA sin?o R?  cosoy Rs

where the layer mean radius R, the wire area A, the number of wires n and the lay angle «
refer to the considered tensile armour layer. The tape’s ultimate strength is denoted oy, the
number of tape plies is ny, the tape’s layer radius is Ry, and the tape’s lay angle is ;. The
second term in the square brackets accounts for the radial load-carrying contribution from the
external sheath at onset of failure. Here, Es denotes Young's modulus, €, is the ultimate strain
of the high-strength tape, ts is the sheath thickness and Rg is the sheath layer radius.

For products based on outer yarn layers, the same failure criterion leads to

R? cosa o iMiAg sinoy
nAsin?a  R?  cosoy

(200)

O1c = —

where the load-carrying capacity of the yarn layers are neglected as they “always” are de-
signed to have the same lay angle as the underlying tensile armour [66]. The contribution to
the load-carrying capacity from yarn layers would in any case be insignificant.

Note that the beneficial effect of external over-pressure is conservatively neglected in Eq. 208.

20.3.2 Birdcaging of tensile armour

The birdcaging problem may be studied by using curved beam theory for the tensile armour
and by considering the supporting layers as an elastic foundation. The elastic radial buckling
stress can then be derived by assuming a sinusoidal buckling mode.

The plastic sheaths outside the tensile armour restrain it from lifting. This is accounted for by
computing the radial stiffness of each restraining layer number j

COS O
nR

Cj = 27TE]'tj (21 O)

Each wound layer (antibuckling tape, yarn) contributes with the following radial stiffness

iq4
B sin” o cos &
¢ =nBA ———;
cos®; R*n

(211)

Importantly, in the two expressions above, the mean radius R and the number of wires n refer to
the underlying armour wire layer (which is being checked for buckling), not to the restraining
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sheath or tape layer. The subscript j refers to the restraining layer, where n; is the number
of yarns or the number of tape plies, Ej is the Young's modulus, A; is the cross-section area of
the tape or a single yarn thread, and the lay angle is denoted «;. The stiffness contributions
from all restraining layers are added together

c=) ¢ (212)
j

The wire initial curvature components are given by

< = COS & sin o (213)
R
sin?

Ko = R (214)

The buckling shape is sinusoidal and is defined in terms of the following parameters

I
a; = K%—ZK%—ZLI—?’K% (215)
2
c GJ
Ao = E—I2 2E—I2K%Kg + KélL — K%K% (21 6)
a3 = K2 — K3 (217)

which yields the number of sinusoidal half-waves per length m representing the number of
sinusoidal half-waves per length

o Gz Qg ap  Q
mi=S_ 3 11,2 218
w7 as * a2 (218)

With this, the elastic buckling stress is calculated as [54]

(219)

TRl [m' — Sm? 4 &
O1c = —

A

20.4 Herniation buckling

See Section 10.4 for a description of the mechanism and Appendix F for the theory behind
this assesment. The failure mode involves an “inner” armor layer herniating outwards through
either a layer of yarn or through another layer of tensile armor. This later layer, wether yarn
or actual tensile armor, is in teh following refered to as the “outer tensile armor”. The lay
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angles of the inner and outer armor, &; and o, must be of opposite signs. oy; is the specified
minimum yield strength of the material of the inner layer.

In the following, w; and w, are the widths of the threads in the inner and outer tensile armors,
n; and n, the numbers of threads and R; and R, the middle radii. The width of the largest
possible gap in the outer layer (in the direction orthogonal to the threads of the outer layer),
(s

G = ¢ (27tR, cos &g — Mg W) (220)

where ¢ = 1.2 if the outer layer is a tensile layer and ¢ = 2 if it is a yarn layer. For yarn
layers, it is important to take w, as a minimum value when the yarns are pressed together.
We compute

G
L= 221
2sin (Jogg — o)) (221)
L sin
i 222
_ L cos? &y + Ry sin B sin o4 223)
Ri (cospB —1)
We compute the vectors
A = [Lcos i, Ry (cos p — 1), Ry sin p] (224)
D; =[0,1,0] (225)
Dy = [cos a4, 0, sin o] (220)
and
D, —BD;) x A
N
where X is the cross product.
The plastic-hinge moment of a rectanguler wire of the inner layer is calculated as
1
Mp = Zwitfoyi (228)
and for circular wires as )
M, = gt:fcryi (229)
The critical stress is OM.. C
Ole = ———F (230)

20.5 Inward radial buckling

See Section 10.5 for description of this failure mode and Appendix G for the theory behind this
assessment. For a rectangular wire cross section

7T
O1c = ——

% (231)
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and for a circular one

2
O1c — —go—yi (232)

20.6 Carcass collapse of flexible pipes

Excessive torsion that results in high inward radial contact pressure may cause collapse of the
carcass. An approach for calculating the critical radial pressure is presented in the following,
which mainly is based on the procedure proposed in the Handbook on Design and Operation
of Flexible Pipes [17].

As a first step, calculate the equivalent ring bending stiffness per unit length of the flexible
pipe

< EI
_ v Ejl2;

Eleq = E n;K; . (233)

)' Pl
where the summation index j is taken over the pressure spiral layer and the carcass layer,
provided that there is no gap between them. The quantity n; is the number of helices in
lagyer j and Ej is the Young's modulus. The factor K; is close to 1.0 for massive cross-sections
and depends generally on the lay angle and the smallest moment of inertia I; about the
cross-section’s principal axes. The quantity L, ; is the pitch length defined as

27TR)'

— (234)
tan oy

Lp,i =

where Rj is the mean layer radius and o is the helix lay angle of the considered layer.

The sum in Eq. 233 implies that the utilization of the pressure spiral is so low that it will
contribute fully with supporting stiffness to the carcass. Further, if there is a gap, the stiffness
contribution is lost and consequently only the carcass contribution shall be included in the
sum. The carcass collapse capacity will then be significantly reduced. For the case of excessive
torsion where the innermost tensile armour transmits high radial contact pressures onto the
pressure spiral, it is very likely that there is contact between the pressure spiral and the
carcass, and then the sum in Eq. 233 should include both layers.

For installation scenarios and during the product operation phase, one should carefully assess
whether or not the pressure spiral will provide supporting stiffness to the carcass. The failure
scenario will often be water ingress in the annulus due to a damaged external sheath. This
may introduce a gap between the carcass and the pressure spiral, and further the external
hydrostatic pressure will be carried by the carcass and the internal plastic sheath. Due to
ovality and manufacturing imperfections, it is in practice very difficult to determine the true
gap values representing loss of radial contact pressure and loss of supporting stiffness. As an
example, Chen et. al. [10] found that the stiffness contribution from the pressure spiral for a 6
inch pipe shall be set to zero if the gap is larger than 2.5 mm. Further recommendations on
the limiting gap values are not provided in this document.
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Figure 99: Ovalization parameter &, and circumferential stress components [17]

Next, the elastic buckling pressure of the carcass is calculated as

3El.q

= (235)

Pe =
where R. is the carcass mean radius.

Ovality of the cross-section will reduce the capacity significantly. According to APl 17B [1] the
maximum initial ovalization around the cross-section may be estimated as (see Figure 99)
Dmax - Dmin

— > 0.002 2
S S 0.00 (236)

In a handling operation, the initial ovalization parameter suggested by APl 178 in Eq. 236 may
be too small if the flexible pipe is subjected to high external radial contact forces and/or large
bending. In such cases, one should consider to perform a detailed FE analysis or performing
tests to verify the dy-parameter.

A further reduction of the capacity is caused by residual stresses. This may be accounted
for by assuming full plastification during manufacture and thereafter elastic unloading to zero
moment. This corresponds to the following residual stress in the outer fiber of the carcass
cross-section

Wo
We
where W, is the cross-section plastic section modulus, W, is the cross-section elastic section
modulus and oy, is the ultimate compressive stress of the carcass. This results in the following
effective compressive yield stress

0y = Oy — 0y (237)

Ofe = 0f — Oy (238)

Thereafter, the critical collapse pressure of the carcass p. is calculated by solving the following
second order equation

2 O'feFft Et2FfR60 peO'feFft
(Ol o (14 SRR PeOtel et _ 239
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where the carcass fill factor carcass is defined as,

Fr=—r (240)

in which n is the number of helices (normally 1 or 2) with cross-section area A, Eq. 234
defines L, and t is the thickness of the carcass corrugated plate profile. The carcass fill factor
is typically F¢ =~ 0.55.

Carcass collapse is then avoided by ensuring

P <Pe (247)

where p is the pressure acting on the carcass outside. The pressure p due to excessive torsion
must be computed by an axi-symmetric loading software as described in Sec. 20.1.2. An
expression for p can be derived if there is only one tensile armour layer, however, flexible
pipes “always” have either two or four tensile armour layers.

20.7 Tensile yield failure

Tensile yielding is in principle relevant for all product types. When double-armoured products
are subjected to torque, one of the tensile armour layers will be subjected to compressive
stresses. In that case, one of the compressive local failure modes described under Section 20
is more likely to occur, at least for high tensile strength materials. Tensile yield failure is most
relevant for single-armoured products provided that the supporting layers/components have
suffictent strength to withstand the radial pressure load from the tensile armour.

Tensile yielding is prevented by ensuring

01 < O1¢ (242)
O1c = Oy (243)

where oy is the yield strength of the wire.

20.8 Skew kinking

This failure mode is relevant only for flexible pipes which can flatten and create a hinge, as
sketched in Figure 100.

In the absence of external pressure, the critical torque at which skew-kinking would occur is
roughly

T, ~ 2W,.R (244)
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Figure 100: Skew kinking

Figure 1071: Flexible pipe crushing test

where R is the mean radius of the innermost metallic component (carcass or pressure armor),
and W;, is the work needed to squash a pipe segment of unit length (Figure 101), to the point
where the inner component comes in contact with itself. This value is obtained experimentaly

by taking a length of pipe a applying compressive loads along opposite longitudinal lines along
the pipe.

See Appendix H for theory.
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21 Global failures

21.1  Helical buckling

2111 Foreword

If helical buckling is initiated, the pitch length P of the helical bucling mode depends chiefly on
the value of the torque and the tension. However, the post-buckling evolution of the shape of the
flexible product after buckling is also influenced by the stiffnesses related to these forces, that
is, how the tension and torsion at the boundaries of the buckling area evolve, as the buckling
progresses. Self-contacting loops requires lengths of flexible product to be pulled in. Hence
a tension at the boundaries, that does not increase as the buckling segment pulls in length
will promote the formation of self contacting loops. Similarly, a torsion that only decreases
slowly as buckling progresses will cause a large writhe to be concentrated in the buckling
area, resulting in a large helix diameter. In a handling operation, where the flexible product is
being transported along a route, correctly modelling of these boundary conditions, and thus the
post buckling behavior will generally be challenging. Furthermore, whether a self contacting
loop, will, subjected to increasing tension, open up or result in a localization of deformations (a
hockle) depends on the torque, on stiffnesses, and on the dissipation of energy by friction and
plastic deformation. Hence the strategy offered here for handling helical buckling is to ensure
that helical buckling is not initiated.

However this strategy is not unproblematic so caution will have to be exerted: consider the
buckling of columns in compression (Euler’s buckling criteria). If a column is bent before being
subjected to compression, it will collapse at lower loads than predicted by Euler’s theory. The
same applies to helical buckling: The theory behind Eq. 245 considers a straight rod for
which a bifurcation (singular stiffness matrix) will occur under certain loads. In contract, in the
handling of flexible products, helical buckling is most likely to occur in free spans, which can
be far from straight. An attempt is made to account for this in Eq. 245, which is Greenhill's
equation, modified to account for a final state (a self-contacting loop) with lower energy than
the energy of the system at bifurcation.

21.1.2 Greenhill's formula

To prevent helical buckling of a flexible product in a span between two supports separated by
a distance L, one must ensure that everywhere between the supports

2 2
m? — B2r, < (O‘Tﬁ) (245)
with
maM L aR (246)
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where R; is the effective tension in the flexible and M; is the torque. The formula is adapted
from [20] (see also [2]), with the introduction of a factor « on the length L and a factor 3 on
the tension 1. Where the supports prevent transverse displacement in both directions, o« = 1.
Where the supports allow some transverse displacement in one direction (typically: either
horizontal or vertical), « = 0.5. Where the supports allows some transverse displacement in
two directions, including because the support does no prevent the flexible to lift, the supports
are ineffective for helical buckling prevention. One must then use « = 0, or re-categorize the
free span by ignoring such ineffective supports. The factor =1 must always be used, except
if the flexible cable is absolutely straight (high tension and no sag), in which case 3 =2 is
allowable.

In particular, for large spans L — 400, this simplifies to
mi < 4r (247)

This can be used as a requirement for the minimum tension to be maintained at the touch-down
point during installation on the sea floor: the distance to the next support (the vessel) is very
large. The minimum tension must be evaluated by including the influence of sea current and
wave loads.

The following Sections provide further guidance on the use of Eq. 245.

An alternative capacity assessment approach based on Greenhill's equation is available in work
by Gay Neto and Martins [33].

21.1.3 Selecting tension for assessment

At any point along the route, the most negative value of Ry that may possibly occur at a given
location is to be used. For typical handling routes, R; = 0 is generally an adequate value
because the flexible product can sag between supports, thus avoiding compression. In that
case Eq. 245 shows that the maximum allowable length L between supports is

2
LT (248)
my |

Special cases may arise for the selection of the value of Ry, including:

1. If at a given point along a span, tension is guaranteed to be maintained above R; at all
times, then the value Ry can be used.

2. If at any point along the route, compressive forces may occur, then the most negative value
of Ry must be used in Eq. 245. Such a situation can arise for example if two tensioners
are used with an inadequate control system, and are close to each other or are separated
by close-spaced roller boxes that prevent lateral displacements in all directions.
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21.1.4 Pitch length

If buckling occurs, the pitch length P of the helix that is formed depends on the torque needed
to trigger buckling (Figure 58)

4
- (249)
|
This applies both for short spans and long spans.
For long spans only:
2m
P 250
N (250)

21.1.5 Bending stiffness

In the above, the bending stiffness EI is to be taken equal to the sum of the bending stiffnesses
of the individual components. Where components are themselves divided into sub-components
(as the conductor of an electric phase, itself made of metal strands wound together), the sum of
the bending stiffnesses of the sub-components are to be taken. Where plastic deformations are
expected to occur in some components during handling, the tangential stiffness under plastic
deformation of these components is to be used.

21.1.6 Roller alleys

If along a straight segment of the route, rollers are regularly spaced with a distance L between
them, and the rollers do not prevent the flexible product from lifting, then the flexible may
buckle with a pitch length P =L/ with o« = 0.5 if

my > %‘ (251)
X7 2
0= () =

See Appendix | for theory.

21.1.7 Catenary between two supports

If two supports at the same height are separated by a distance L, and the maximum deflection
between the supports is d (Figure 102), then compute

z/x="T (253)
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L/2

Figure 102: Geometry of a free span (catenary)

Read the corresponding value of r/x (the ratio of curvature radius at the bottom of the catenary
to width) from Figure 103 (The plotted curve has equation z/x = r/x (cosh (r/%) — 1)) and

compute 1 (the radius of curvature at the middle of the span, not to be confused with r; = R; /EI)

r=1/x- % (254)

The lowest tension, to be used for helical buckling assessment is then
R, = gmr (259)

where m is the mass per unit length of the flexible product and g = 9.81 m - s72 is the
acceleration of gravity. Figure 103 is established assuming that the shape of the flexible in the
span is not significantly affected by the stiffness of the flexible product (a catenary solution).
For short spans the results will be unconservative: for spans with L smaller than 40 diameters,
use a finite element analysis instead.

21.1.8 Catenary during installation

As a screening analysis, one can use a catenary solution to assess the tension at the touch
down point when laying a flexible product on the seabed. If x and z are respectively the
horizontal and vertical distance from the installations vessel's chute to the touchdown point
(Figure 104), then Figure 103 can be used to evaluate r/x. The tension at the touch down
point is then

Ri=wgr (256)
=w, (1/x)x (257)

where wy is the submerged weight of the flexible product.

Such an analysis can easily over estimate Ry and thus be unconservative: current, and wave
induced motions of the installation vessel, as well as the uncertainty over the length of cable
paid out will all affect R;.
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Figure 103: Relation between deflection and curvature radius in a catenary.

Figure 104: Geometry of a free span (catenary)
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22 Case study

221 Objective

This section provides a worked example of torsion assessment. While this section does not
provide an example for every procedure outlined in this guideline, it should give a better idea
of the typical sequence of actions to be taken in an assessement, and of the inputs required.

This section covers phases 7, 8 and 9 of a cable’s lifetime, as discussed in Section 14: these
are the initial and final transient, as well as the steady state in a load-out operation. This
section adresses the mechanisms “coiling writhe” and “flip torque”. For the sake of brevity, only
a single route geometry is considered. In reality, multiple geometries need to be considered, in
particular to account for the various possible positions of the touch-down points in the storages
at both ends of the route.

22.2 Cross section

We consider a cable with 149.2mm outer diameter (Figure 105, Table 2). The cable has two
tensile armours wound in opposite directions. An anti-buckling tape is wound around the outer
armour, and a layer of PP yarns is wound outermost. Key results from a finite element analysis
of the cross section are presented in Table 3.

22.3 Critical stresses

All relevant buckling mechanisms are evaluated. When no unit is specified after a value (for
intermediate results), base Sl units are used:

Lateral buckling of the inner armour

Assuming E = 2.1e5MPa and v = 0.3, calculations yield G = 0.81ell and oy = —11.3MPa.

] \ \ Inner armour \ Outer armour \ Tape \ Yarn \
Section [mm] Z5 Z5 o4
Pitch length | [mm] —2800 2800 84 60
Mean radius | [mm] 81 88 90.3 | 92.5
Number 92 92 140
Material steel steel | UHMWPE PP
E [GPd] 211 211
v [-] 0.3 0.3

Table 2: Outer layers of example cable
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Figure 105: Cross section of example cable

+ torston - torston

(tight) (slack)
M¢ 0.96 (kN - m]
K:, 241.12 | 239.93 [kN-m?-rad ]
K 266.50 [kN-m? - rad™]
EI (slip) 35.54 [kN - m?]
do,/0M; | —14.35 —14.19 [MPa - kN~ . m™!]
(inner)
doy/0M; | 12.63 12.09 [MPa - kN—t. m™!]
(outer)

Table 3: Results from FE analysis of the cross section: bending moment of friction, torsional
stiffness at constant tension, bending stiffness at full slip, stress from torque
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Herniation buckling of the inner armour through the outer armour

Calculations yield G = 0.0989, L = 0.1351 (the outer layer is well packed), B = —0.298, B =
—37.74, A = [ 0.133 —0.00358 —0.0238 ] ,D; =[0 1 0], Dy = [0.984 0 —0.179 ],
C =279.0 and 0y, = —355.8MPa.

The outer armour layer is well packed, leaving only a short gap, so that this is not a critical
failure mode.

Lateral buckling of the outer armour

Calculations yield oy = —11.1MPa.

Herniation buckling of the outer armour through yarn

Yarn can compress in the radial direction, permitting the formation of a larger gap than what its
nominal diameter would indicate. Here the gap width is computed assuming a yarn diameter
of 3.5mm.

Calculations yield G = 0.0219, L = 0.0197 (the outer layer is well packed), B = 0.0434,
B =-238, A=[00193 —827 —0.00382],D;=[0 1 0], Dy=[0981 0 0.194 ],
C =12087. and 01, = —15389MPa.

The failure mode thus seems very unlikely. The actual gap width should be tested, using forces
to create a gap. Also, the assessment methods ignores the antibuckling tape. We have no
experience of the effect of such a tape on herniation buckling, but it could be quite beneficial.

Birdcaging of the outer armour

Calculations yield a = 1.96e — 5, G = 0.8077ell, ¢c; = 1.83e7, c; = 4.59e6, ¢ = 1.88e7 ,
K, = 2.16, kKo = 0.426, a; = —27.8, ay = 2.918, a3 = —4.48 m = 13.14. o, = —1127MPa. This
is a high value, thanks in particular to the antibuckling tape.

Summary

The critical failure mode is lateral buckling, for both tensile armours. The inner tensile armour
(wound in the negative direction) has a critical stress oy = —11.3MPa, which corresponds to
a critical torque

Mic = 01c - 907 /dM; = —11.3 - —14.35 = 162 [kNm] (258)
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The outer tensile armour (wound in the positive direction) has a critical stress ;. = —11.1MPaq,
which corresponds to a critical torque

In other words, the cable is safe from local buckling if the torque remains within the interval

—134 [kNm] < M; < 162 [kNm] (260)

22.4  Global buckling

Assuming that the product will never experience compressive forces, we assume R; = 0, Green-
hill's cirteria simplifies to
x27E]
L
We assume that the supports only prevent displacement in the vertical direction, so o« = 0.5.

The bending stiffness is conservatively taken as the stiffness under full slip, EI = 35.54 [kN-m?].
If for example, supports are placed 5m apart, then this results in

M| < (261)

IM,| < 22.33 [kNm] (262)

This suggests that global buckling would become a concern before local buckling.

22.5 Route

The cable is to be transported from a negative on-shore turntable, in which it is stored torsion
free, to a positive turntable on board an installation vessel. The coordinates of points along
the route are detailed in Appendix L, and the geometry of the route is shown in Figure 106.
The shore is on the left, the vessel on the right. The reference systems are of the torsion-free
family. The red crest show the intensity and direction of curvature. The radius of the cable is
not to scale. The route is delibrately shortened for this example, making it easier to provide
visualisations of the route as a whole that also show what is going on at critical sections along
the route.

22.6 Steady-state flip torque evaluation

The code Jordan for flip torque assessment is used. The inputs are:

1. The geometry of the whole route (cf. Appendix L).
2. A material roll rate of 0 [deg/m].
3. The friction bending moment My = 0.96 [kN - m].
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Figure 106: Example loadout route: plan, elevation and isometric view
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Figure 107: Route curvature

The analysis produces the following outputs.

Figure 107 show the intensity of the curvature along the route, as well as its direction within
a torsion-free family of reference systems.

Figure 108 shows the evolution over time of the curvature experienced by a cross section (which
is directly relevant for the computation of click torque). This is computed for the material roll
rate of 0 [deg/m] specified as input to the analysis.

Figure 109 shows the effect of the material roll rate on the accumulated flip torque along the
whole route. This output is not relevant because a non-zero uniform material roll rate is not
likely to occur along the whole route. This type of output is relevant when studying single free
spans.

Figure 110 shows the distribution along the route of the internal torque (top) and flip torque
(bottom).

Figure 111 shows the writhe angle along the route. This result only serves to show that a
torsion-free longitudinal marking will change roll angle along the route.

To conclude, at steady state, internal friction induces negative torque along the route. The
torque is strongest far upstream along the route. This suggests that in addition to local
buckling, a flip torque-geometry instability could develop in the free span of the upstream
turntable. Treating this requires iterations as described in Section 16.7.
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Curvature in direction 3 [1/m]

Upstream internal torque [kNm]
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Figure 108: Curvature experienced by a cross section
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Figure 109: Effect of the material roll rate on flip torque
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Figure 110: Flip torque distribution at zero material roll rate
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Figure 111: Writhe along the route



22.7  Flip torque in transients 165

Upstream internal torque [kNm]

Material roll rate [deg/m]

Figure 112: Effect of roll rate on flip torque
22.7 Flip torque in transients

The analysis presented in Section 22.60 is repeated with the change that the first 319 points of
the route are cut out: the analysis only considers the free span in the onboard turntable. Figure
112 shows that the flip torque in the free span is zero for a material roll rate of —9.6 [deg/ml.

The roll rate and hence the local torsion are found as described in Section 22.6, and the result
is show in Figure 113.

At the start of the operation, upstream torsion and torque are low, and the flip torque is taken
up by downstream internal torque. Downstream, friction in the turntable causes material roll
rate to be zero. High stiffness implies that the flip torque cause a small torsion downstream, so
the spatial roll rate is small: 0.38 [deg/m]. For the flip torque to be taken up upstream (steady
state), upstream torsion must be about 0.24 [deg/m]. So steady state will be approached when
roughly an amount of cable equal to the length of the route has been paid out after the cable
head is secured in the downstream turntable.

22.8 Assessment

The torques found in Figure 110 are well within the safe range for local buckling (Eq. 260) and
global buckling (Eq. 262). The same is true of the torques expected in a transient (—1 [kNm],
Figure 113) just downstream of the on-board turntable free span).
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Figure 113: Transient assessment
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This suggest that the operation would be safe with a good margin. One should however keep
in mind the limitations of our ability to date to prove before hand that an operation will be
safe. Several moments should be pointed out:

— M was estimated as a single value, using finite element computation. Assessment of
M; at low torque and tension is difficult, because it depends on details of the fabrication
process and material behaviour which are difficult to capture. Further, in reality, My is a
function of torque (and tension) opening the possibility for curvature-pressure instability

(Section 8.3).

— Figures 110 and 113 are established for a given route geometry. This geometry changes
during the operation as the turntable is filled, but also because the torques that appear
change the shape of the free spans. Ultimately, this includes the flip torque-geometry

instability (Section 8.4).
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We call x the horizontal distance from the touch-down point, C the vertical distance from the
touch down point, z > 0 the depth of the touch-down point, r the bending radius at the touch-
down point, p,, the density of sea water, g the acceleration of gravity, m the mass per unit
length of the flexible, and A. the outer area of the product. The torque-free twist in a free

span is assessed as follows.

Assuming the product follows a catenary shape
X
C:r<cosh——1>
T

The arc-length from touch-down point is

E=VE+2r

and we note that

VI + 8 =12+ 2+ 20
=C+rT
and
62 - C2
2¢

T =

The submerged weight of the product is

w=g(m—Acpw)

(263)

(264)

(265)
(266)

(267)

(268)

The effective tension at a point at arc-length § from the touch-down point, or at a height ¢

above it is

Rf = wy/12 4 &2

=w(C+T)
The wall tension at the same point is (see Equation 45)

RV =R — P A,

=g(m—Acpw) (C+T1)—pwgl(z—0) A

=gm(C+71) = pwgzAe

= gm\/ T‘2 + 62 - pngAe

Torque-free torsion is (see Section B)

_ RY
K*

ET

(275)
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with . K
Keo K2, —K.Kq (276)
hence
s (gm\/rz e pngAe> (277)
The torque-free twist over the free span is thus
L
Ty = J Tud (278)
0
1 L
= (ng V12 +E2dE — prnge) (279)
ET
QK* [E\/ﬂ e+ 12log (a /Pt a2>} K LpgzAe (280)
= an: [&(r+ Q) +12log (& + 1+ Q)] a;O — K 'LpwgzAe (281)
£
L
5 m (L (r+z)+1’log (1 + :Z)) — K* 'LpwgzA. (282)
L
T, = e {%1 (L (r+z)+1°log (1 I Z)) — szLAe} (283)

The following is an assessment of the twist laid on the seabed when suddenly going from a
tight (L = Lyin) to a slack (L = Liwax) configuration. It is done assuming that the torsion
laid on the seabed is equal to the torque-free torsion. This is conservative, because in reality,
torque will increase in the free span during release, limiting the laid torsion.

w
_ thd

= 284
K e
1
=% (gmr — pygzA,) (285)
eT
1 [2—22
- - Pw e 2
K. <9m 5z PwgzA ) (286)
LTﬂ.ClX
T, = J TdL (287)
Lmin
gm Lmax L I_
_ [2 — 22 _ —max 7 tmin W . 2
22K me z-dL K= PwgzA (288)
gm 1 3 3 2 2 I—711ax — I—min
= 5 - - max min )| — — 1,.  Pw e 2
ZZK:T <3Lmax 3Lm1n z’L +2z°L ) K?c Y gZA ( 89)
gm 1 3 3 <9m ) I—max - I—Tnvrx
- Lis g ) (9, gAL) Smex — Emin 290
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B Pull in operation

A linear coupled elongation-torsion system, can be described with

Ks KeT € _ Rl
e o
If My =0 and Ry # 0 then
Rl KeT
= — — 292
SRR (292)
and
K
=__ 293
€ . (293)
so that
R KETKET
KETK—i -t KT =0 (294)
KST KSTKST
K. R1+(KT— K )T:O (295)
Ker
K
—t R/ =71 (296)
Ks]T(lfsT KT 1
K
e R, = 297
K2 — KK (297)
and so one introduces
1 Ke
= * (298)

2
K. K2 —K: K,
At zero torque, a force Rymqx Will thus induce a torsion

_ Rl max (299)

u
*
KET

If, maintaining this torsion, the axial force is set to Rymin, and the change in axial strain is

Ry.i —
Ac — 1m1nK£R1 max (300)

inducing a change in torque
M, = KA (301)
_ KsT Rl min — Rl max (302)

Ke
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C Flip torque transient close to downstream storage

Assuming a short distance between the flip area and the downstream storage (compared to
the longer distance between upstream storage and flip area). The subscript f and d refer to
the flip area and the downstream storage. The transient in the route as a whole is a steady
state in the fd part of the route.

The rate of change of twist T in the part of the route between the flip area and the downstream
storage is

aT aRd aRf

-4 = (303)
%1/ EXD d—%—rﬁ% (304)
DR;
o =" (305)

where T, is the "upstream” torsion of the flexible product entering the flip area. 0T/dk is zero
assuming local steady state between the flip area and the downstream storage. DR4/Dk is
zero because of friction in the downstream storage. T, is zero because torsion has not had the
time to build up so soon after the onset of flip.

Torque equilibrium is (My¢ standing for the flip torque)

DR¢
My (D) =MebraT = M (xa) (306
—Mit (—ta) = My (T4q) (307)

which justifies Figure 94. M; (ty) is zero early after the onset of flip.



D Flip torque transient close to downstream basket

We can write

aT E)Rd aRf b27't

2nr
D d DRf b
—Tg+ % — T
DRf B
Dk~ ¢ %
where b = +1 for a positive basket and b = —1 for a negative basket.

Torque equilibrium is (My¢ standing for the flip torque)

M, (%if) = Mibra] — M, (1a)

—M¢ (—Td — g) =M, (T4)
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(308)
(309)

(310)

(311)

(312)
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E Stresses in the tensile armour

Single armor, tight direction

Oy = Aéijﬁkk + Quﬁij (31 3)
1 A
ij = 504 — === 04 314
500 T (aA 4 2 IO S
1
E= ésij Gij (31 5)
1 A
= —0ij0ij — o7 o 316
4pG]GJ 4w (3N + 2u) Ol Ok (316)
1
= @ (0104 — £E0kKOkk) (317)
with
A
— 318
. 3A+2p (318)
A
= 319
3K (319)
= (320)
14+v
~ 0.2308 (321)

For a lay angle o« and mean radius T, the tensile armor takes loads

Mt = xrsin o (322)
R} = xcos « (323)

where x is the total tensile force in the direction of laying, carried by the layer. The remaining
load to be taken up is thus

M] = M; — xrsin o (324)
R} =R}" —xcos (325)

If we assume this load is taken up by a sheath of same radius r, then it induces stresses in the
sheath

1 /M .

o1z = (Tl — xsin oc) (326)
1

011 = — (RYY —xcos «) (327)

A
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so that the elastic energy in the sheath is proportional to

E (%—xsinocfﬂl—a) (R —x cos «)” (328)
— 2 (sin? & + (1 — &) cos® «)
—2x(¥sinoc+(1—&)R¥"coscx>+... (329)
=2 (1— & cos? )

M
—2X(Tlsinoc+(1—£)R{"cosoc>+... (330)

so that the energy in the sheath is minimum for

T My sin o+ (1 — &) R cos o
= 1
x 1—&cos?x (331)

Here we minimize the energy in the sheath instead of the energy for the whole system. This is
an approximation that is valid if most of the elastic energy is stored in the sheath, that is if the
sheath is more complient than the tensile armor. The advantage of this approximation is that
it is not necessary to establish the stiffness of the rest of the components in the cross section.

The tension force in each tendon of the tensile armor is

R = — (332)

where n is the tension in each tendon. Correspondingly, the axial stress in the tendons is

Toy = — (333)
amny

where a; is the cross section area of each tendon.

Double armor, contact between armors This case includes the situations where the inner
armor is tight against, or lifts from, the inside of the flexible product.

In this case, the inner armor gets in compression, and contacts the outer armor, which is in
tension. As simple analysis can be obtained by considering the stiffness to be dominated by
the contributions from both armors.

The inner and outer layer have mean radius, lay angle, tendon cross section and number
of tendons i, i, ai, Ny and 1,, ®, Ao, Mo. If the axial stress in each layer is o3 and o,
respectively, then the axial force and moment for the flexible product are

M;=Ao0;i+Bo, (334)
Ri=Coi+D o, (339)
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with

We compute

and get

E  STRESSES IN THE TENSILE ARMOUR

A= Tiniay sin X4
B =1on,0a, sin o,
C= n;ai CoS &g

D =n,a, cos o,

A =AD —BC
D B
.= —M, — —R
L= AV T AN
GOZ—EMl—FéRl

(336)
(337)
(338)
(339)

(340)

(341)

(342)
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F Herniation buckling

The failure mode involves an armor layer herniating outwards through either a layer of yarn
or through another layer of tensile armor. The two layers involved will be referred to as the
inner and outer layers, respectively.

The width of the largest possible gap in the outer layer (in the direction orthogonal to the
threads of the outer layer), is

G = ¢ (2R, cos g — Mg Wo ) (343)

where R, is the mean radius of the outer layer, n, is the number of threads in the outer layer,
W, is the width of each thread in the outer layer and «, the lay angle in the outer layer.
c = 1.2 if the outer layer is a tensile layer and ¢ =2 if it is a yarn layer.

The half length of thread of the inner layer, exposed under the gap is

B G
~ 2sin (Jog — o))

(344)

where o4 and «, are the lay angle of the inner and outer layers. If the layers are laid in
opposite directions, then o and &, must be of opposite signs. This length corresponds to an
angle around the helix

. L sin x4

p= R,

We consider a reference system centered on the axis of the flexible, with €; parallel to this axis,
and €, pointing towards the middle of the gap. The point on the inner thread at the middle of
the gap has coordinates

(345)

Py =[0,Ry,0] (346)
A point on the same thread at the border of the gap has coordinates
Py = [Lcos o, Ry cos B, Ry sin p] (347)
We define
A=Py,—P; (348)
= [Lcos i, Ry (cos p — 1), Ry sin B] (349)

As the thread herniates, these points move in the directions
D; =[0,1,0] (350)
D, = [cos o, 0, sin oy (351)
by amounts d; and ds respectively. After displacement, the distance between the points is
a?=) (A'+Did,—Didy)’ (352)

i

~ Y (A®+2A" (Did, —Did;)) (353)
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So for the displacements to preserve the distance to the first order, we thus require

A-Did;, = A-Dsyd, (354)
Ri(cosp—1)d; = (L cos® oy + Ry sin B sin oq) d, (355)
d; = Bd, (356)
with L eos? R, sin B s
COS” i + Ry sin [5 sin o4
B = 357
Ri(cos —1) (357)
The new vector between the points is
A=A +Dyd, — D, (358)
= A+ (D, —BD;) dy (359)
The angle between these vectors is, to the first order
‘A X A‘
‘ ’ (360)
~ Cd, (361)
with
D,—BD;) x A
Al]A]

C is the angle of bending at the joint near the edge of the gap, per unit of sliding at the edge
of the gap.

If the threads of the inner layer have rectangular cross section, the plastic-hinge moment of a

thread is calculated as ]
ZWitf%t (363)

where oy; is the specified minimum yield strength of the inner layer, and t; the thickness of
the inner layer. If the threads are circular,

M, =

1
M, = G tioy: (364)

The energy dissipated by the hinges is M,4Cd, while the work on the part of the thread in
the gap is 2Fd, where F is the axial force in the thread. Hence instability arises when

F; > 2M,,C (365)

For a flexible product subjected to torsion only (no axial compression or bending), and with
forces borne exclusively by the inner and outer layer:

Fong cos g + Fimicos oy =0 (360)
so that .
FO _ iM4{ COS X4 (367)
N, COS Xg

The torque born by the two layers together is

T= ROFOTIO sin Xo + RiFiTli sin (0.5} (368)
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G Inward radial buckling

The work needed to displace a 90° hinge (which implies bending thread reached by the hinge
and straightening thread left by the hinge) by a distance & is

1
W = nMp¥ = —dao; (369)
where t is used as a characteristic of the longitudinal extent of the plastic hinge. In reality,

the longitudinal extent will depend on the wire cross section and the work hardening of the
material.

This leads to

M,
0. = —TT—F2 370
lc ta ( )
For a rectangular cross section this gives
s
O1c = —— 0y (371)
4
and for a circular one
2
O1c = —go—yi (372)

The details of the constant in front of oy, depend on the (arbitrary) choice of the distance (here
taken as t) over which plastic work is equal to ™M, hence the actual uncertainties are quite
large, and testing or FEM analysis would be required. For circular threads, lateral buckling
would always occur first.
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H Skew kinking

H.1 Assessing M,

Let M, be the plastic moment, per unit length, of a longitudinal plastic joint in the pipe wall.
The work needed to squash a unit length of the pipe (with four plastic joints) is

Wy = 4gMp — oM, (373)

which allows to assess M,, based on a squash test.

H.2 Energy dissipation

We assume that under skew kinking, each originally circular cross section will develop four
hinges. Two will be the skew hinges, and two will be longitudinal hinges. The hinges will have
deformed with the following angles

1. Two skew hinges with angles o; = 7 +7v and ay = § —y (Figure 114), where vy is the
angle of relative rotation of the segments on both sides of the skew hinge. Each hinge is

of length L, and at an angle  with the axis of the pipe.

2. Two longitudinal hinges with angles o3 and a3 with a3 4 4 = 7. Each hinge is of length
L |cos B].

The hinge length L is related to the pipe diameter (conservatively) by
Llsin 3| = R (374)

Neglecting membrane energy and the energy stored in elastic deformation, assuming M,, is
not affected by 3, and noting ¢ and s for cos 3 and sin 3, the energy absorbed in the hinges is

W, =M, L (o + oo + oz el + oy [c]) (375)
= ML (1 +c|) (376)

1
— M,7°R L'd 377)

H.3 Available energy and critical 3 (pure torsion)

Assuming that this deformation is driven by torque T, the work is
Wq = Tycosf (378)

For B =0, the critical value of  is that which maximizes Wq4/W,., or equivalently, maximizes
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Figure 114: Skew-kinking hinges

s lslc

f(B)= i (379)

For € [0,71/2], s = |s| and ¢ = |c|. Over that interval:
(380)

of (=5 (1+c)+s’c
OB =0= (1+c¢)? (381)
0=(2c"-1)(14+c)+ (1—c?)c (382)
0=c*+2c*—1 (383)
0=(c+1) <c—_1+\/5) (c—%ﬁ) (384)
_ ﬁ; ! (383)
[3 = arccosc ~ 52° (386)

For this critical angle, and choosing y = /2 (a large value leads to lower critical load)

2
T. - TM,R 1+c¢ (387)
Y 1—c?c
— W, R__*°¢ (388)
1—c?c
~ W, R3.843... (389)

> 2W,, R (390)
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| Helical buckling

.1 Stability condition

See [20, 2]

The equilibrium of a straight beam (following axis €;) under constant tension can be written

oM X - -
a—s+a—SXR—O (397)
M+4+xXxxR=0 (392)
Elkfs + M fi +Xx R=0 (393)

where f; form an orthonormal base where f; is tangent and f3 points inside the curvature. This
leads to

62x2 aX3

EI ds? + Mlg — X2R1 =0 (394)
92 d
EI 6;3 - Mlg — xR =0 (395)

which, by introducing x = x5 4+ ix3 can be written

% . 0x
EI@ — 1M1& — XR1 =0 (396)

We are looking for solutions of the form x = Xexpibs where b is an angular wave number.
Replacing in the above and dividing by exp ibs leads to

(EIb>* =M b+Ry) X =0 (397)
which has non-trivial solutions iff
EIb? —M;b+R; =0 (398)
which is achieved for

M, & /M2 — 4RE1

b —
1,2 2F1

(399)

allowing general solutions of the form

x = X' expib;s + X% expibss (400)



1.2 Hinged boundaries

.2 Hinged boundaries

If the boundary conditions are hinged at s =0 and s =L then
X'+X*=0
X' expib,L +X?expibyL =0

This system of equation has non-zero roots iff

expib;L = expibsL

2m
b1 — b2 = TLT
Mi—4REI 27

El T

ME R
My RS

with

2
o TEI
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(401)
(402)

(403)
(404)

(405)

(406)

(407)

(408)

We arbitrarily chose by > by. For n =0 it is not possible to satisfy the boundary conditions.

The lowest critical loads are for n = 1.

The buckling shape is thus of the form

X
X = 7 (expibis + exp ibsys)
i

(.b1+b2) . (bl_b2
= Xexp |1 5 s | sin 5

=X i&s in n2—7Ts
T AP ) ® L

Hence, for a given torque My, the pitch length of helical buckling is

Akl
P Ml

M, >
SE=
1( M[l)

and the critical tension is

(400)

(410)

(411)

(412)

(413)

Considering Eq. 406, for a given torque M;, the required tension becomes zero when the

spacing be between support verifies

M; < M

EI
L <2n—
T[Ml

(414)
(415)
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.3 Infinite domain

Roots by and by are real iff the determinant M2 — 4R, EI > 0. As loads evolve from a stable
situation, an unstable situation will first be encountered for a zero determinant, so that

M? = 4R, EI (416)
M,
by =by = — 417
=ty =t (417)
Ry
=/ — 418
so that M
. . IV
x = Xexp (I_QEIS) (419)
The corresponding pitch length is still

_ 4mEl
P Ml

(420)



J Multilingual glossary

Table 4 provides translation of key technical terms in selected languages.

|

English

|

Norwegian

|

French ‘

Roll

Rull

Rouli

Spatial roll rate

Romlig rull rate

Taux de rouli spatial

Material roll rate

Materiell rull hastighet

Taux de rouli matériel

Link Lenke Liage
Twist Tvist Torsade
Writhe Vridning Vrille
Torsion Torsjon Torsion

Torque, torsional moment

Torsjonsmoment, dreiemoment

Moment de torsion

Table 4:

Translation of some technical terms

183
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K Literature review of failure modes

K.1 Local failure modes
K.1.1  Lateral buckling of tensile armor

Numerous research efforts have addressed tensile armor lateral buckling of flexible pipes sub-
jected to dynamic bending during operation. This is because flexible pipes may be exposed to
significant negative wall tension in empty condition in deep waters. The lateral buckling mode
was first described in 1997 [38]. Since then, experimental work included laboratory mechanical
tests without radial pressure, as well as costly full-scale deep immersion performance tests,
and laboratory pressure chamber tests [6, 3, 58, 63]. The tests results showed that the driving
mechanism is cyclic bending that reduces the friction and gives accumulation of wire transverse
slip, which at a certain stage results in lateral buckling. Novitsky and Serta [34] pointed out
that the buckling process differs for dry and wet annulus conditions. The buckling process
seems to be primarily elastic if the tensile armor is exposed to sea water, whereas severe
plastic deformations typically occur for the dry annulus condition since friction then plays a
more important role.

Vaz and Rizzo [65] created a computationally light finite element model by utilizing a single wire
approach for each tensile armor layer in a flexible pipe. A pure external pressure load condition
was applied for varying interlayer friction for the tensile armor. They identified two lateral and
two birdcaging buckling modes dependent on the amount of friction and the strength of the
anti-buckling tape. Yang et al. [69] created a similar model with an improved interlayer contact
modelling and curved beam elements for the tensile armor wires. Their results confirmed the
findings of Vaz and Rizzo.

(Ostergaard et al. [38, 40, 41, 42| conducted mechanical tests for the wet annulus condition of
flexible pipes, and developed a numerical frictionless single wire model. As expected, the model
predicted lower bound buckling loads due to frictionless assumption. The numerical model
was extended to account for friction [39], but due to unresolved issues it was not possible to
conclude that wire friction imposed a significant influence on the mode of deformation and the
load carrying ability [38].

Seevik and Thorsen [53] proposed an analytical model for the lateral buckling mode accounting
for wire friction. They simulated the buckling response by means of tailor-made finite elements
and found that their analytical model over-predicted the capacity both for static and cyclic
curvature. Seevik and Ji [51] developed a new frictionless analytical model. The model was
shown to agree well with the frictionless numerical model developed by @stergaard [38], and
had as expected an inherent safety margin in the range of 2 when compared against the
(stergaard tests. They also performed numerical simulations using the BFLEX software and
predicted the same failure and no failure cases as the @stergaard tests. The frictionless
analytical model and the test comparison are also presented in work by Seevik and Thorsen
[54] which in addition deals with the birdcaging failure mode. The frictionless analytical model
is strongly related to the periodic buckling mode that was considered in later work by Li et
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al. [26]. In fact, these models are identical if the buckling length is set equal to half the wire
length in a pitch, instead of conservatively assuming infinite buckling length as proposed by
Seevik and Ji [51].

Zhou et al. [70] studied the effect of the anti-buckling tape on the lateral buckling behavior.
They found that the tape lay angle direction should be the same as applied for the outer tensile
armor layer, and that a smaller lay angle will perform better than a larger lay angle.

Paiva and Vaz [43] formulated a frictionless numerical model based on the @stergaard model
[38] They validated the model against experiments and applied symbolic regression to derive
an empirical equation for the compressive failure load.

Li et al. [23] developed a frictionless analytical model similar to the model presented by Seevik
and Thorsen [54]. They extended the work by distinguishing between a global and a periodic
buckling mode in Ref. [26] where the global mode was identical to the one in Ref. [23]. The
periodic buckling mode was shown to be in good agreement with the @stergaard tests [38]
and to reduce the conservatism compared to the global mode. The effect of cyclic bending
was considered in later work [24] and was shown to result in the same critical load as for the
frictionless periodic buckling mode in Ref. [23] Li et al. [25] extended the analytical work by
considering the effect of wire axial rotation constraint and presented an analytical equation for
the compressive failure load of circular tensile armor wires.

It is important to note that for the torsion-induced failures studied in this handbook, the loading,
lateral friction behavior and triggering mechanisms can differ from what has been addressed in
previous research. Further, the loading in previous research has consisted of axial compression
and external radial pressure. For such loads, the inner tensile armor layer is more susceptible
to buckling since it has less radius, a lower number of wires and may have less transverse
friction resistance. For torque loading, the lateral buckling mode may equally well occur for
the outer tensile armor layer.

In handling operations, the product is typically exposed to only a few bending cycles, while
many hundred or thousands of cycles were needed to trigger the buckling process in previous
research. Application of the models formulated in previous research may thus yield overly
conservative predictions. The tensile armor of power cables and umbilicals are often smeared
with corrosion coating with a highly temperature-dependent viscosity, which increases the
friction resistance at low temperatures and may function as a lubricant at high temperatures.
These aspects motivate development of a new analytical model applicable for a limited number
of bending cycles that accounts for interlayer friction. This will require validation against
experiments with dry annulus condition, possible at varying temperature. However, most of the
available tests for flexible pipes have been performed for wet annulus condition.

The previous research has focused on flexible pipes with anti-buckling tape and rectangular
tensile armor wires. As of today, there are no experimental tests for circular tensile armor wires
that can be used for validation [25]. Umbilicals and power cables do not have anti-buckling
tape, and may thus display a more pronounced interaction with the external polymer layer.
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K.1.2 Birdcaging

The first known incident of birdcaging failure occurred in 1977 for a flexible pipe operating
at 1700m water depth [6] In 1989, the failure mode was recognized as a potential failure for
damaged external sheaths at large water depth [3]. The failure is well known by flexible pipe
producers and is described in design codes [1]. Birdcaging failures for flexible pipes may be
avoided by ensuring that the anti-buckling tape layer has sufficient strength.

Vaz and Rizzo [65] performed finite element simulations with pure external pressure loading.
They found that birdcaging failure could take place as anti-buckling tape failure and radial
buckling on an elastic foundation.

A detailed finite element model of a 2.5m flexible pipe with almost 400 000 degrees of freedom
was created by de Sousa et. al [12] They performed full-scale laboratory tests focusing on
failure of the anti-buckling tape in axial compression without radial pressure. The numerical
model was shown to predict birdcaging failure with good accuracy compared to the laboratory
tests.

Rabelo et al. [44] investigated whether birdcaging failure could be triggered by instabilities of
the external sheath. They studied previous birdcaging experimental observations and concluded
that strong evidences of validity were obtained for their hypothesis.

Seevik and Thorsen [53] developed an analytical model for birdcaging of flexible pipes based on
separate treatment of anti-buckling tape failure and radial buckling of a straight beam on an
elastic foundation. The analytical model was shown to agree fairly well with simulations based
on tailor-made finite elements. In more recent work [54] they improved the analytical model
by using curved beam theory and proposed a capacity interaction formula considering anti-
buckling tape failure, radial elastic buckling and wire yielding. They reported that the curved
beam approach gave the best fit when compared against the de Sousa tests [12], whereas the
straight beam assumption was on the conservative side.

Regarding use in this handbook, the analytical model proposed by Seevik and Thorsen [54] is
applicable for flexible pipes with anti-buckling tape and an external sheath. Although they
considered only pure axial compression, their analytical model should be valid also for flexible
pipes subjected to torque loading which compresses the outer tensile armor layer. The main
concern regarding validity is the radial stiffness contribution from the supporting layers. For
instance, a power cable or an umbilical with an outer layer consisting of wound polypropylene
yarns provides far less support against radial outward displacements. Using the analytical
model in a different application without sufficient experimental validation may be questionable,
as also indicated by Seevik and Thorsen [54] in view of the limited available test data for
birdcaging failure.

K.1.3 Other local failure modes

Wu et al. [67] recently addressed tensile armor failure of flexible pipes subjected to large
torsion. Based on knowledge of existing failure modes they identified wire yielding, birdcaging
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and core collapse as potential failures. Regarding the critical collapse pressure of flexible
pipes, an extensive literature review is available in recent work by Li et al. [22].

As of 2022, there exist presently no research in the open literature addressing the herniation
buckling mode in Section 20.4 and the skew kinking failure in Section 10.2. The reason may be
that these failures modes are specific to torsional loads, and thus not encountered in normal
operating conditions. The failure modes may also be wrongly attributed to excessive bending
or birdcaging. Nevertheless, it is clear that new criteria must be developed to cover the skew
kinking and herniation buckling failure modes.

K.2 Global failure modes
K.2.1 Loop formation and kinking

A criterion for loop formation was first presented by Greenhill in 1883 [20] who studied the
mechanics of ship propeller shafts. Loop formation problems of cables for oceanic applications
have since then been studied by numerous authors. Liu [27] performed kinking tests of elec-
tromechanical cables with tensile armor that was compared against Creenhill's equation for
infinite cable lengths. These and other test results were reviewed by Rosenthal [45, 46] who
concluded that long straight cables subjected to tension and torque will become unstable ac-
cording to Greenhill's equation modified by an appropriate safety factor. Ross [47] used energy
considerations and found that loop formation could occur for twice the critical tension predicted
by Greenhill's equation.

Yabuta [68] addressed loop formation and subsequent kinking by considering the potential
energy of an assumed helical deformation pattern. He derived a criterion for maximum allowable
slack for avoiding loop formation and a criterion for re-opening the loop when the cable is re-
tensioned, Yabuta validated the theoretical results against experiments and concluded that the
cable kinking phenomenon is governed by initial slack, initial torsion, cable diameter and the
ratio of bending stiffness to torsional stiffness.

Coyne [11] used equilibrium equations to find an expression for the axial end-shortening in
the loop formation problem. The end-shortening was applied to derive a criterion for the
maximum allowable slack before loop formation occurs and an expression for re-opening the
loop. Expressions for the required tension and the maximum curvature at re-opening was
presented. Coyne concluded that the prediction of loop formation was in agreement with Ross'’
work [47] and existing experiments, but the loop re-opening criterion deviated when compared
against a single experimental data set.

Thompson and Champneys [64] conducted experiments and mathematical analysis of the en-
ergetically preferred post-buckling mode, to gain insight about the localized loop formation
in Coyne's work [11]. Champney and Thompson later applied an analytical approach based
on Cosserat beam theory to show that the critical torque and tension predicted by Greenhill's
equation is reasonable for small initial curvature, but becomes non-conservative for large initial
curvature.
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Ermolaeva et al. [16] performed loop formation experiments of wire ropes at zero tension and
low tension. Their work showed that Yabuta’s criterion for slack was non-conservative, and that
the slack criteria proposed by Ross [47] and Coyne [11] were conservative. For low tension,
they found that Greenhill's equation with a safety factor of 2 was reasonable.

Gay Neto and Martins [33] conducted parametric studies of loop formation for catenary risers
using a geometrically-exact beam model including seabed frictional contact. They developed an
empirical correction factor for Greenhill's equation dependent on the tension at the touchdown
point before loop formation, the bending stiffness and the submerged weight. For very low
values of tension, the empirical correction factor may give overly conservative predictions due
to the large relative increase of tension during the loop formation process.

Seevik and Koloshkin [52] re-constructed the riser model of Gay Neto and Martins [33], and
incorporated the effect of tension-torsion coupling and applied a non-linear bending moment
model to account for internal friction of the tensile armor layers. In dynamic applications, they
found that it was more conservative to apply the linear-elastic bending model for low utilization
with respect to loop formation, and that non-linear bending models gave the most conservative
predictions for high utilization. They also proposed to apply the maximum curvature predicted
in quasi-static analysis at the onset of instability as a curvature criterion for avoiding kinking
deformation in dynamic applications. Later, Opgard [35] reported that the maximum curvature
criterion could fail to detect formation of loops with smaller curvature than those expected
from the quasi-static analysis. This underlines that prediction of loop formation in dynamic
applications is a complex task.

Regarding relevance to the present work, the analytical formulae proposed by Gay Neto and
Martins [33] for loop formation is applicable when the tension is not too low. For low tension, it
may be necessary to apply numerical simulation to avoid too conservative capacity predictions.
Further, it will be challenging to account for dynamic motions, and internal friction which may
result in both conservative and non-conservative predictions in time-domain simulations [52, 35]
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The following provides the X, Y and Z coordinates (3 columns) of points along a loadout route
(406 rows). The table starts upstream (on-shore turntable) and ends downstream (on-board
basket).

.2213485025
.2686090947
.3203197209
.3764200575
.4368401969
.5015016638
.5703182333
.6431972684
.7200411214
.8007488565
.8852183576
.9733483380
.0650404386
.1602013937
.2587447715
.3605925212
.4656762803
.5739379460
.6853297418
.7998137870
.9173607866
.0379481959
.1615578893
.28817300563
4177744297
.5503370472
.68582556654
.8241904318
.9653639272
.1092562735
.2557523534
.4047090972
.55659533858
.7092809780
.8644563560
.0212133577
.1792567864
.3382651244
.4978944457

-21.
-21.
-21.
-21.
-22.
-22.
-22.
-22.
-22.
-22.
-22.
-22.
-23.
-23.
-23.
-23.
-23.
-23.
-23.
-23.
-23.
-24.
-24.
-24.
-24.
-24.
-24.
-24.
-24 .,
-24.
-24.
-24.
-24.
-24 .,
-24.
-24.
-24.
-24.
-24.

4683521540
6135858499
7572912550
8993304808
0395675212
1778689876
3141050374
4481501662
5798836439
7091899057
8359590511
9600868915
0814748503
2000298294
3156635922
4282919798
5378340571
6442108382
7473439009
8471539960
9435594219
0364744702
1258080392
2114622567
2933313970
3713011732
4452482928
5150405016
5806371431
6415901349
6980455048
7497454471
7965307891
8382438993
87473193568
9058504628
9314665812
9514624567
9657395726

O O O O O O OO O OO O OO O OO OO O OO OOOOOoOOOoOOoO0o oo oo

.0000000000
.0000000000
.0000000418
.0000003832
.0000019699
.0000070528
.0000196902
.0000461149
.0000949026
.0001769108
.0003049600
.0004932440
.0007564779
.0011088314
.0015626568
.0021270463
.0028063222
.0035985536
.0044942158
.0054750942
.0065135084
.0075719634
.0086033286
.0095516240
.0103534623
.0109401399
.0112403739
.0111836476
.0107040925
.0097448058
.0082624509
.0062319710
.0036512373
.0005454565
.00302885256
.0069807448
.0111815619
.0154630737
.0196179318



.6577833947
.8175587632
.9768413763
.1352524556
.2924198782
.4479840374
.6016034533
. 7529595327
.9017602984
.0477433202
.1906773220
.3303624851
.4666298216
.5993392312
. 7283764633
.8536495010
.9750840437
.0926184042
.2061982885
.315677118561
.4212809468
.5226631757
.6198411459
. 7127227203
.8011987356
.88561424611
.9644104621
.0388451456
.1082784164
.1725366015
.2314467039
2848432726
.3325758876
.3745171455
.41056704123
.4406772476
.4648243191
.4830491700
.4954447784
.5021627970
.b034150768
.4994734602
.4906677891
4773818629
.4600478463
.4391397140

-24.
-24.
-24.
-24.
-24.
-24.
-24.
-24.
-24.
-24.
-24.
-24.
-24.
-24 .
-24.
-24.
-24.
-24.
-24 .
-24.
-24.
-23.
-23.
-23.
-23.
-23.
-23.
-23.
-23.
-23.
-23.
-23.
-22.
-22.
-22.
-22.
-22.
-22.
.4463924171
-22.
-22.
-22.
-22.
-22.
-21.
-21.

-22

9742222292
9768605629
9736330270
9645482356
9496461307
9289984097
9027081576
8709087584
8337621108
7914561474
7442018578
6922299112
6357869133
5751316249
51056312961
4422582824
3705871643
2957941395
2181556629
1379456032
0554337648
9708848521
8845584000
7967088048
7075851557
6174312816
5264856226
4349804999
3431412642
2511848965
15693177590
0677331034
9766079738
8860993690
7963403719
7074360396
6194590042
5324456103

36125631002
2769365752
1933060904
1101792892
0273299089
9444908315
8613585002
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.0234005979
.0265293938
.0286897712
.02956387516
.0287104320
.02568224176
.0204829911
.0122988173
.0008829471
.0141371301
.0331116189
.05663609753
.0841691124
.1167774198
.1543798048
.1971188837
.2450835518
.2983082368
.3b67741312
.4204124856
.4891094014
.5627118446
.6410348679
. 7238694627
.8109907639
.9021663248
.9971639093
.0957585632
.1977384890
.3029094981
.4110977824
.5221508060
.6359363060
.7523393320
.8712574832
.9925944904
.1162524437
.2421229966
.3700779456
.4999596619
.6315718064
. 7646708245
.8989586544
.0340770692
.1696040036
.3050521389
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.4151657538
.3886596368
.3601701948
.3302466411
.2994260797
.2682279793
.2371471150
.2066447854
.1771410847
.1490082817
.1225653889
.0980758375
.0757452598
.0657186860
.0380809654
.0228592742
.0100268325
.9995079034
.99118381356
.9848997517
.9804720911
.9776959710
.9763529041
.9762181294
.9770674661
.9786835064
.9808609913
.9834112810
.9861658323
.9889786189
.9917275179
.9943147281
.9966663263
.9987310654
.0004785049
.0018966269
.0029891095
.0037724137
.0042728560
.0045237505
.0045627095
.0044292319
.0041626433
.0038004375
.0033770072
.0029229716

-21
-21
-21
-21
-21
-21
-21
-21
-21
-20
-20
-20
-20
-20
-20
-20
-20

-19.
-19.
-19.
-19.
-19.
-19.
-19.
-18.
-18.
-18.
-18.
-18.
-18.
-18.
-17.
-17.
-17.
-17.
-17.
-17.
-17.
-17.
-16.
-16.
-16.
-16.
-16.
-16.
-16.

.7775990414
.6928554396
.6067554887
.5189208013
.4289766206
.3365622554
.2413415498
.1430126179
.0413166676
.9360456014
.8270481971
.7142341937
.5975771117
.4771161199
.3b529556128
.2252627220
.0942630721
9602349102
8235019012
6844244214
5433899735
4008041437
2570812731
1126338750
9678623481
8231456172
6788325945
5352349848
3926215712
25121392056
1111835597
9726506841
8356843686
7003041885
5664830790
4341512922
3032012264
1734929393
0448601064
9171161813
79006058156
6634846657
5371773756
4109303807
2845424716
15678239247

W W W W W WW WM B B S D B DS DS S D S S S R R D R R DS D S S S D B S D N W W W W W

.4398699464
.5734452695
.7051114399
.8341558119
.9598304855
.0813649305
.1979800902
.3089035498
.4133852178
.5107130503
.6002282607
.6813394125
.7535349338
.8163934065
.8695916077
.9129101734
.9462366957
.9695662591
.9829992788
.9867368487
.9810737031
.9663892016
.9431364465
.9118299217
.8730321773
.8273399499
.7753703423
.7177473251
.6550891502
.b879969604
.5170450423
4427729074
.3656792879
.2862182798
.2047975249
.1217784787
.0374784911
.9521745721
.8661085324
.7794931208
.6925189343
.6053616363
.5181891979
.4311687671
.3444731052
.2b82851636

191



192

-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
-10.
.99999999564

0024646517
0020234713
0016157066
0012525570
0009404774
0006817191
0004750207
0003163947
0001999504
0001186968
0000652802
0000326153
0000143781
0000053418
0000015464
0000002988
0000000260
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

.0305996120
.9027107159
.7740163629
.6443947602
.5137437988
.381981156565
.2490439835
.1148882558
.9794878323
.8428333365
.7049308990
.5658008264
.4254762571
.2840018297
.1414323860
.9978317139
.8532712888
.7078288877
.56156872543
.4146311987
.2670463610
.1189198590
.9703399252
.8213952506
.6721739788
.5227629038
.3732468075
.2237078200
.0742248102
.9248728717
.77572281156
.6268407088
.4782874910
.3301185437
.1823833765
.0351253002
.8883811689
.7421811364
.5965484970
.4514996116
.3070438978
.1631837670
.0199145858
.8772250457
. 7350978522
.593561030561

NN DNDNDNDDNNDNDDNNNDDNDNDNDNDNDNDDNNDNDDNDNNDNEDNDNDDNDNNDDNDNDNDNDDNDRNDNDDNDNNMNDNDDNDNNDDNDDNDNDDNDNWWW

.1728022104
.0882397320
.0048331149
.9228378295
.84252825631
.7641952039
.6881423735
.6146818146
.b441287227
.4767957569
.4129871390
.3529927960
.2970827862
.2455022281
.1984669284
.1561598676
.1187286197
.0862837844
.05688983001
.0366074644
.0194093733
.0072657601
.0001036693
.9978179002
.0002739390
.0073114831
.0187483695
.0343846666
.0540069487
.0773925415
.1043136592
.1345413153
.1678488448
.2040150468
.2428267972
.2840811391
.3275868610
.3731654913
.4206518170
.4698938543
.5207524225
.56731003559
.6268213949
.6818089052
. 7379643826
.7951960404
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.9999993318
.9999960091
.9999863516
.9999639668
.9999191194
.9998387515
.9997064358
.9995030555
.9992079281
.9988000495
.9982599218
.9975717047
.9967253097
.99571862561
.9945597726
.9932688989
.9918795204
.9904394407
.9890108482
.9876695091
.9865030863
.9856084916
.9850882148
.9850457118
.98b657997564
.9867794413
.9887154002
.9914351084
.9949549588
.9992540111
.0042680339
.0098844523
.0159386374
.0222114825
.0284285741
.0342613933
.0393301205
.0432085487
.0454310812
.0455006632
.0428986327
.0370957652
.0275631255
.0137831763
.9952602827
.97156302431

.4524345558
.3118378543
.1716830978
.0319296601
.89256341403
.7534511129
.6146340873
.4760360992
.3376101601
.1993097791
.0610890211
.9229023525
.7847045474
.6464502665
.50809333562
.3695862218
.2308795212
.0919211937
.9526561433
.8130260657
.6729693113
.5324213895
.3913159706
2495852598
.1071609693
.9639772238
.8199738065
.6750992276
.5293141320
.3825947206
.23493594563
.0863546154
.9368924490
.7866186695
.6356320283
.4840623316
.3320711466
.1798517371
.0276282584
.8756537874
. 7242075963
.567356915991
.4241257684
.2761429061
.1299827029
.98b9852778

VR R R DD R R D D D D R R D D R R R R R D R R R DWW W W W WWWWWWWWWWN NN

.8534176056
.9125472035
.9725063835
.03321951856
.0946132223
.1566157385
.2191565019
.2821655255
.3455727484
.4093073704
.4732969600
.5374663720
.6017366761
.6660239262
.7302377137
. 7942799725
.8580437812
.9214121652
.9842573185
.0464402194
.1078106020
.1682074002
.2274600461
.2853902418
.3418142867
.3965463854
.4494026492
.5002053327
.5487874750
.5949980318
.6387067877
.6798091641
.7182309190
.7539322012
.7869108909
.8172053724
.8448961896
.8701064152
.8930010320
.9137849021
.9327003992
.9500242083
.9660619992
.9811419695
.99566076078
.0098099964

193



.9421693399
.9068023417
.8651095949
.8168330226
.7617808518
.6998313792
.6309353632
.5551174662
.4724765234
.38318491156
.2874869182
.1856962346
.0781932539
.96542181568
.8478843587
.7261350560
.6007739882
.4724433146
.3418219872
.20961869156
.0765641874
.9434026702
.8108821726
.6797439990
.5b071124356
.4244765233
.3016890384
.1829414626
.0687560484
.956956713326
.8557307189
.7574718819
.6649177540
.5780696445
.4968028510
.4208650993
.3498780482
.2833419900
.2206438314
.1610682573
.10381189556
.0480001982
.9927065850
.9369733897
.8798339914
.8203354721

.8444844745
.7058011325
.5702365810
.4380665544
.3096357713
.1848533539
.0641892671
.9476719177
.8353869886
.7273775646
.6236455354
.5241542216
.4288321246
.3375776444
.2502645824
.1667482117
.0868716694
.0104724287
.9373885916
.8674647556
.8006572431
.7365384819
.6753004040
.6167567310
.b608440847
.5075219191
.4567712907
.4085925800
.3630022640
.3200289304
.2797087195
.2420803953
.2071803030
.1750374098
.1456686788
.1190749506
.0952375136
.0741155076
.0556442441
.03973452569
.02627293568
.0151230632
.0061276323
.0008884565
.0061144328
.0097497982
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.0241002053
.0388220120
.0643052424
.0708597297
.0887703163
.1082932215
.1296536888
.1530452671
.1786303909
.2065425232
.2368895523
.2697582655
.3052195628
.3433340414
.3841582568
.4277508584
4741779455
.5235180323
.b758667765
.6313406084
.6900789566
. 7522448258
.8180236296
.8876201634
.9612537322
.0391515400
.1215404661
.2086375358
.3006393170
.3977103712
.4999709794
.6074849056
.7202480221
.8381782341
.9611073224
.08877501568
.2208257062
.3568081082
.4961778896
.6383034581
. 7824746889
.9279145112
.0737929263
.2192430434
.3633786588
.b0563127410
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.7575611234
.6906521287
.6188283901
.5414065824
.4578143209
.3676013867
.2704465072
.1661599024
.0646824334
.9360808040
.8105396020
.6783508539
.5399013506
.3956584743
.2461555743
.0919770939
.9337441088
.7721012135
.6077048382
.4412132930
.2732788787
.1045420829
.9356277445
. 7671429389
.5996763956
.4337990104
.2700649784
.1090131391
.9511680673
.7970405458
.6471270007
.5019076087
.3618430757
.2273699148
.0988941636
.9767840326
.8613616336
. 7528939075
.6515837303
.5575611360
.4708752343
.3914882641
.3192709015
.2539998826
.19563590282
.1429429096

O O O O O O O O O

|
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.0120003122
.0130735881
.0131743606
.0124999736
.0112364984
.0095555907
.0076117445
.0055402548
.0034561194
.0014533426
.0003950300
.0020360549
.0034356906
.0045771166
.0054583748
.0060899132
.0064920993
.0066923189
.0067222003
.0066152194
.0064043653
.0061200597
.0057886090
.0054311336
.0050627448
-0.
-0.
-0.
-0.
-0.
-0.
.0022655780
.0017372667
.0011475939
.0004939214
.0002203038
.0009843430
.0017793929
.0025780118
.00334392566
.00403229563
.0045900221
.0049565525
.0050649319
.0048428844
.0042141686

0046922577
0043225331
0039509938
0035705218
0031708226
0027398931

O O O O W W O W © O W O W W 0
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.6441762284
.7791362819
.9094148454
.0343061557
.15631896652
.2655393804
.3709306849
.4690439456
.5b96650675
.6426827535
.7180822735
.78593610565
.8463921071
.8996595798
.9459936518
.9856788844
.0190127532
.0462893706
.0677843834
.0837417514
.0943625859
.0997965727
.1001364844
.0954157991
.0856092368
.0706364087
.05603684607
.0246368694
.9932442122
.956b9766813
.9126173235
.8629594083
.8068197077
.7440509024
.6745523154
.59827900563
.5152487258
.4255461523
.3293247963
.2268064418
.1182779874
.0040861511
.8846293804
.7603481586
.6317151933
.4992250223
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.0962636781
.05647607732
.01781256352
.01562502420
.0451295801
.0725446724
.0982158650
.12284888563
.1471195626
.1716598034
.1970448298
.2237826250
.2523054431
.2829637045
.3160233564
.3516663220
.3899925430
.4310237846
.4747124474
.5209544446
.56696010869
.6204704440
.6733594016
. 7280548628
. 7843440558
.8420234372
.9009056710
.9608244372
.0216367298
.0832229272
.1454837345
.2083353407
.2717035892
.3355160153
.3996925130
.4641353702
.5287190730
.5932804402
.6576096878
. 7214427384
.7844555008
.8462602883
.9064046666
.9643730734
.0195909634
.0714318384

.0030999319
.0014200986
.0009051987
.0039541632
.0078019101
.0125191365
.0181708845
.0248155109
.0325038183
.0412784016
.05611732544
.0622134837
.0744151961
.0877854847
.1023224156
.1180150613
.1348437293
.1527803656
.1717887722
.1918252274
.21283988561
.2347785559
.2575846976
.2812015021
.30565744558
.3306538295
.3563973343
.3827731494
.4097627164
.4373637211
.4655926167
.4944868330
.5241067605
.5545369241
.b8568867409
.6182902389
.6519049223
.6869098859
.7235027482
.7618958779
.8023114706
.8449758103
.8901129340
.9379375257
.9886476221
.0424169213
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.3633832158
.2246956144
.0836577355
.9407448707
.7964032683
.6510429093
.5050318911
.3586924600
.2122989469
.0660773734
.9202069954
.7748231904
.6300217824
.4858645614
.342385b411
.1995974130
.05674974998
.9160730254
. 7753058284
.6351753719
.4956595460
.3567342605
.2183717976
.08056383737
.9431912009
.8062753841
.6697210085
.5334407763
.39732853156
.2612589684
.1250887732
.9886596385
.8518032762
.7143480094
.b761265778
.4369849548
.2967918843
.1554488308
.0128999503
.8691416249
. 7242311797
.5782943017
.4315307533
.2842180263
.1367125922
.9894485611
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.1192267144
.1622757766
.1998620397
.2312662423
.2557829565
.2727365390
.2814962917
.2814909464
.2722215996
.2b32735036
.2243259819
.1851602386
.1356649526
.0758390385
.00567921696
.9257425226
.8360121413
.7370200980
.6292733629
.5133563039
.3899186651
.2596627490
.1233301970
.9816884469
.83551785666
.6855993656
.56327033224
.3775797595
.2209499600
.0634999640
.0941243326
.2513202490
.4075296182
.5622387619
.7149769359
.86563137521
.0128556583
.15672417534
.2981393975
.4352396319
.b682528103
.6969045444
.8209321568
.9400818370
.05641064991

-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.

0993871456
1596607505
2232939862
2902908596
3606978981
4341000622
5106179992
5899066444
6716554084
7554898708
84097505697
9276202729

.0148852171
.1021874003
.1889105435
.2744137251
.3580411070
.4391318585
.5170300426
.5910942744
.6607067529
. 7252816066
. 7842722547
.8371775740
.8835469889
.9229841389
.9551493469
.9797608413
.9965946089
.0054833532
.0063142964
.9990263023
.9836064492
.9600859030
.92856357650
.8890626031
.8418041996
. 7869255932
.7246151302
.656508118561
.b785491028
.4952588196
.4054630682
.3094257181
.2074208478
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.8429335905
.6977420068
.5545052964
.4139001299
.2766328414
.1434220944
.0149827607
.8920094172
.7751590972
.66503432562
.5621666791
.4670020679
.3798883777
.3010657690
.2306599638
.1686787725
.1150120285
.0694348957
.0316144419
.0011192382
.0225684014
.0400379623
.05619346151
.0689420104
.0617645773
.0611099700
.05676722319
.05621162300
.0450638432
.0370822818
.0286748535
.0202743546
.0122391587
.0048519831
.0016788100
.0072156043
.0116859169
.0150751525
.0174181375
.0187898618
.0192958669
.0190626973
.0182287910
.0169361503
.0153230533
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